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Abstract

We first introduce the notion of meta-rank for a 2-parameter persistence module,
an invariant that captures the information behind images of morphisms between
1D slices of the module. We then define the meta-diagram of a 2-parameter
persistence module to be the Möbius inversion of the meta-rank, resulting in
a function that takes values from signed 1-parameter persistence modules. We
show that the meta-rank and meta-diagram contain information equivalent to
the rank invariant and the signed barcode. The equivalence leads to an algorithm
for computing the meta-rank and meta-diagram of a 2-parameter module M
indexed by a bifiltration of n simplices in O(n4) time. In addition, we define
notions of erosion distance between meta-ranks and between meta-diagrams, and
show that under these distances, meta-ranks and meta-diagrams are stable with
respect to the interleaving distance. Lastly, the meta-diagram can be visualized
in an intuitive fashion as a persistence diagram of diagrams, which generalizes
the well-understood persistence diagram in the 1-parameter setting.

Keywords: Multiparameter persistence modules, persistent homology, Möbius
inversion, barcodes, computational topology, topological data analysis

1 Introduction

In the case of a 1-parameter persistence module, the persistence diagram (or barcode)
captures its complete information up to isomorphism via a collection of intervals.
The persistence diagram is represented as a multi-set of points in the plane, whose
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coordinates are the birth and death times of intervals, each of which encodes the
lifetime of a topological feature. This compact representation of a persistence mod-
ule enables its interpretability and facilitates its visualization. When moving to the
multiparameter setting, the situation becomes much more complex as a multipa-
rameter persistence module may contain indecomposable pieces that are not entirely
determined by intervals or do not admit a finite discrete description [1].

Such an increased complexity has led to the study of other invariants for multi-
parameter persistence modules. The first invariant is the rank invariant [1], which
captures the information from the images of internal linear maps in a persistence
module across all dimensions. Patel noticed that the persistence diagram in the 1-
parameter setting is equivalent to the Möbius inversion [2] of the rank function [3]. He
then defined the generalized persistence diagram as the Möbius inversion of a function
defined on a subset of intervals of R, denoted Dgm, with values in some abelian group.

The idea of Möbius inversion has been extended in many directions. Kim and
Mémoli defined generalized persistence diagrams for modules on posets [4, 5]. Patel
and McCleary extended Patel’s generalized persistence diagrams to work for persis-
tence modules indexed over finite lattices [6]. Botnan et al. [7] implicitly studied the
Möbius inversion of the rank function for 2-parameter modules, leading to a notion of
a diagram with domain all rectangles in Z2. Asashiba et al. used Möbius inversion on a
finite 2D grid to define interval-decomposable approximations [8]. Morozov and Patel
[9] defined a generalized persistence diagram in the 2-parameter setting via Möbius
inversion of the birth-death function and provided an algorithm for its computation.
Their algorithm has some similarity with ours: it utilizes the vineyards algorithm [10]
to study a 2-parameter persistence module, by slicing it over 1D paths.

Our work also involves the idea of slicing a 2-parameter module. This idea of slic-
ing appears in the fibered barcode [11, 12], which is equivalent to the rank function.
To obtain insight into the structure of a 2-parameter persistence module M , Lesnick
and Wright [12] explored a set of 1-parameter modules obtained via restricting M
onto all possible lines of non-negative slope. Buchet and Escolar [13] showed that any
1-parameter persistence module with finite support could be found as a restriction of
some indecomposable 2-parameter persistence module with finite support. Further-
more, Dey et al. [14] showed that certain zigzag (sub)modules of a 2-parameter module
can be used to compute the generalized rank invariant, whose Möbius inversion is the
generalized persistence diagram defined by Kim and Mémoli. Our work considers the
images between slices of a 2-parameter module, which is related to the work by Bauer
and Schmal [15].

In [16], Botnan et al. introduced the notion of rank decomposition, which is equiv-
alent to the generalized persistence diagram formed by Möbius inversion of the rank
function, under some additional conditions. Botnan et al. further demonstrated that
the process of converting a module to a rank decomposition is stable with respect
to the matching distance [17]. Additionally, they introduced a visualization of this
rank decomposition via a signed barcode, which highlights the diagonals of rectangles
appearing in the rank decomposition, along with their multiplicity. They visualized
the value of the signed barcode with a 2-parameter persistence module generated by
clustering a point cloud with a scale and a density parameter.
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Fig. 1 Slicing a 2-parameter module M along vertical lines yields 1-parameter modules, such as
Ma

x ,M
b
x, and Mc

x. There are morphisms between these 1-parameter modules induced by the internal
morphisms of M , and the meta-rank captures the information about these morphisms. For example,
if M is defined as the direct sum of the two interval modules given by the two shaded rectangles, then
the meta-rank of M on [a, b) is the image of ϕx(a ≤ b), which has a barcode consisting of the red
interval. The meta-rank of M on [b, c) has a barcode consisting of the blue interval, and the meta-
rank of M on [a, c) is 0, as ϕx(a ≤ c) = ϕx(b ≤ c) ◦ ϕx(a ≤ b) = 0.

Fig. 2 A meta-diagram viewed as a persistence diagram of signed diagrams (red and blue mean
positive and negative signs respectively).

Unlike the previous results that perform Möbius inversion over a higher-
dimensional poset such as Z2, our work involves Möbius inversion over a finite
subcollection of intervals of R, which leads to a simpler inversion formula. In this work,
we introduce the notion of meta-rank for a 2-parameter persistence module, which is
a map from Dgm to isomorphism classes of persistence modules arising in a manner
analogous to how the usual rank invariant is defined. Instead of looking at images of
linear maps between vector spaces (as with the usual rank invariant), the meta-rank
considers images of the maps between 1-parameter persistence modules formed by slic-
ing a 2-parameter persistence module along vertical and horizontal lines, see Figure 1
and Remark 3.4. We then define the meta-diagram as the Möbius inversion of the
meta-rank, giving a map from Dgm to isomorphism classes of signed persistence mod-
ules. This contrasts Botnan et al.’s approach [16] of using Möbius inversion in 2D, as
our Möbius inversion formula over Dgm is simpler and consists of fewer terms.
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Contributions. The meta-rank and meta-diagram turn out to contain information
equivalent to the rank invariant (Proposition 3.8) and signed barcode (Proposi-
tion 4.11) respectively. Therefore, both meta-rank and meta-diagram can be regarded
as these known invariants seen from a different perspective. Based on such equiva-
lences, we introduce an algorithm for computing the meta-rank and meta-diagram of
a 2-parameter module M indexed by a bifiltration of n simplices in O(n4) time1. How-
ever, this different viewpoint brings forth advantages as listed below that make the
meta-rank and meta-diagram stand out on their own right:

1. The meta-diagram can be viewed as a persistence diagram of signed diagrams
as illustrated in Figure 2. Such an intuitive visualization generalizes the classic
persistence diagram – a known technique in topological data analysis (TDA) – to
summarize persistent homology. For examples, see Section 5.2.

2. The meta-diagram also generalizes the concept of a sliced barcode well-known in
TDA [12]. It assembles sliced bars on a set of lines, whilst remembering the maps
between slices induced by the module M being sliced.

2 Preliminaries

We regard a poset (P,≤) as a category, with objects the elements p ∈ P , and a unique
morphism p → q if and only if p ≤ q; this is referred to as the poset category for (P,≤).
When it is clear from the context, we will denote the poset category by P .

Fix a field k, and assume all vector spaces have coefficients in k throughout this
paper. Let vec denote the category of finite-dimensional vector spaces with linear maps
between them. A persistence module, or module for short, is a functor M : P → vec.
For any p ∈ P , we denote the vector space Mp := M(p), and for any p ≤ q ∈ P ,
we denote the linear map φM (p ≤ q) := M(p ≤ q). When M is apparent, we drop
the subscript from φM . We call P the indexing poset for M . We focus on the cases
when the indexing poset is R or R2, equipped with the usual order and product order,
respectively. Definitions and statements we make follow analogously when the indexing
poset is Z or Z2, which we will cover briefly in Section 5. If the indexing poset for
M is P ⊆ R, then M is a 1-parameter (or 1D) persistence module. If the indexing
poset for M is P ⊆ R2, with P not totally-ordered, then M is a 2-parameter (or 2D)
persistence module, or a bimodule for short.

Following [18], we require that persistence modules be constructible:
Definition 2.1. Let P ⊂ R. A module M : P → vec is constructible if there exists a
finite set S := {s1 < . . . < sn} ⊂ R such that:

• If a ∈ P with a < s1, then M(a) = 0,
• If a, b ∈ P , then M(a ≤ b) is not an isomorphism only if there exists 1 ≤ i ≤ n such
that either a < si ≤ b or a ≤ si < b.

Let P ⊂ R2. Similarly to before, we say a bimodule M : P → vec is constructible
if there exists a finite set S := {s1 < . . . < sn} ⊂ R such that:

1An earlier version of this paper, published at the 39th International Symposium on Computational
Geometry (SoCG 2023), erroneously claimed an O(n3) algorithm, which we have corrected in this version.
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• If (x, y) ∈ P and x < s1 or y < s1, then M((x, y)) = 0,
• If (x1, y1) ≤ (x2, y2) ∈ P , then M((x1, y1) ≤ (x2, y2)) is not an isomorphism only if
there exists 1 ≤ i ≤ n such that either x1 ≤ si < x2, x1 < si ≤ x2, y1 ≤ si < x2, or
y1 < si ≤ y2.

In either case, such a module is S-constructible.
If a module is S-constructible, unless otherwise stated, assume S = {s1 < . . . <

sn}. If M is S-constructible, then M is S′-constructible for any S′ ⊇ S. For the rest
of the paper, we assume any given persistence module is constructible.

Of particular importance in the study of persistence modules are the notions
of interval modules and interval decomposable modules. We state the following
definitions:
Definition 2.2. For a poset (P,≤), an interval of P is a non-empty subset I ⊂ P
such that:

• (convexity) If p, r ∈ I and q ∈ P with p ≤ q ≤ r, then q ∈ I.
• (connectivity) For any p, q ∈ I, there is a sequence p = r0, r1, . . . , rn = q of elements
of I, where for all 0 ≤ i ≤ n− 1, either ri ≥ ri+1 or ri ≤ ri+1.

We denote the collection of all intervals of P as Int(P ).
For I ∈ Int(P ), the interval module kI is the persistence module indexed over P ,

with:

kI
p =

{
k if p ∈ I

0 otherwise
, φkI (p ≤ q) =

{
idk if p ≤ q ∈ I

0 otherwise
.

Given any M,N : P → vec, the direct sum M ⊕ N is defined point-wise at each
p ∈ P . We say a nontrivial M : P → vec is decomposable if M is isomorphic to
N1 ⊕N2 for some non-trivial N1, N2 : P → vec, which we denote by M ∼= N1 ⊕N2.
Otherwise, M is indecomposable. Interval modules are indecomposable [19].

A persistence module M : P → vec is interval decomposable if it is isomorphic to
a direct sum of interval modules. That is, if there is a multiset of intervals barc(M),
such that:

M ∼=
⊕

I∈barc(M)

kI

If this multiset exists, we call it the barcode ofM . If it exists, barc(M) is well-defined as
a result of the Azumaya-Krull-Remak-Schmidt theorem [20]. Thus, in the case where
M is interval decomposable, barc(M) is a complete descriptor of the isomorphism type
of M .

When P = R2, of particular importance in this work are right-open rectangles,
which are intervals R ⊂ R2 of the form R = [a1, b1)× [a2, b2). If M can be decomposed
as a direct sum of interval modules kR with R a right-open rectangle, then we say M
is rectangle decomposable.

1-parameter persistence modules are particularly nice, as they are always interval
decomposable [21]. As a result, the barcode is a complete invariant for 1-parameter
persistence modules. On the other hand, bimodules do not necessarily decompose
in this way. In fact, there is no complete and simultaneously discrete descriptor for
bimodules [1].
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As a result, many necessarily incomplete invariants have been proposed to
study bimodules. One notable such invariant is the rank invariant [1] recalled
in Definition 2.3.
Definition 2.3 ([1]). For P a poset, define D(P ) := {(a, b) ∈ P × P | a ≤ b}. For
M : P → vec, the rank invariant of M , rankM : D(P ) → Z≥0, is defined point-wisely
as:

rankM (a, b) := rank(φM (a ≤ b))

For a bimodule, the rank invariant is inherently a 4D object, making it difficult
to visualize directly. RIVET [12] visualizes the rank invariant indirectly through the
fibered barcode. In [16], Botnan et al. defined the signed barcode based on the notion
of a rank decomposition:
Definition 2.4 ([16]). Let M : Rn → vec be a persistence module with rank function
rankM . Suppose R,S are multisets of intervals from Rn. Define kR := ⊕I∈RkR, and
similarly kS . Then (R,S ) is a rank decomposition for rankM if as integral functions:

rankM = rankR − rankS .

If R,S consist of right-open rectangles, then the pair is a rank decomposition by
rectangles. We have:
Theorem 2.5 ([16], Theorem 3.3). Every finitely presented M : R2 → vec admits a
unique minimal rank decomposition by rectangles.

Here minimality comes in the sense that R ∩ S = ∅. The signed barcode then
visualizes the rank function in R2 by showing the diagonals of the rectangles in R and
S .

3 Meta-Rank

In this section, we introduce the meta-rank. While the rank invariant captures the
information of images between pairs of vector spaces in a persistence module, the
meta-rank captures the information of images between two 1-parameter persistence
modules obtained via slicing a bimodule.

We begin with some preliminary definitions:
Definition 3.1. Let M : R2 → vec be a bimodule. For s ∈ R, define the vertical slice
Ms

x : R → vec point-wise as Ms
x(a) := M(s, a), and with morphisms from a to b as

φs
x(a ≤ b) := φ((s, a) ≤ (s, b)). Analogously, define the horizontal slice Ms

y : R → vec
by setting Ms

y (a) := M(a, s) and φs
y(a ≤ b) := φ((a, s) ≤ (b, s)) for all a ≤ b ∈ R.

Define a morphism of 1-parameter persistence modules ϕx(s ≤ t) : Ms
x → M t

x for
s ≤ t ∈ R by ϕx(s ≤ t)(a) := φ((s, a) ≤ (t, a)). Analogously, define ϕy(s ≤ t) : Ms

y →
M t

y for s ≤ t ∈ R by ϕy(s ≤ t)(a) := φ((a, s) ≤ (a, t)).
Denote by Pvec the collection of isomorphism classes of persistence modules over

R. Each element of Pvec can be uniquely represented by its barcode, which is what
we do in practice. We recall the definition of Dgm from [3], which serves as the domain
for the meta-rank:
Definition 3.2 ([3]). Define Dgm as the poset of all half-open intervals [p, q) ⊂ R for
p < q, and all half-infinite intervals [p,∞) ⊂ R. The poset relation is inclusion.
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Fig. 3 An illustration of M and its barcode for some values of mrkM in Example 3.5.

Definition 3.3. Suppose M : R2 → vec is S-constructible. Define the horizontal
meta-rank mrkM,x : Dgm → Pvec as follows:

• For I = [s, si) with si ∈ S, mrkM,x(I) := [im(ϕx(s ≤ si − δ))], for some δ > 0 such
that si − δ ≥ s and si − δ ≥ si−1.

• For I = [s,∞), mrkM,x(I) := [im(ϕx(s ≤ sn))].
• For all other I = [s, t), mrkM,x(I) := [im(ϕx(s ≤ t))].

Analogously, define the vertical meta-rank, mrkM,y : Dgm → Pvec by replacing each
instance of x above with y.

The results in this paper are stated in terms of the horizontal meta-rank, but hold
analogously for the vertical meta-rank.
Remark 3.4. Note that, whereas the rank invariant assigns to every interval the iso-
morphism class (i.e. the dimension) of the image of the linear morphism induced by the
interval, the meta-rank assigns to every interval the the isomorphism class of the per-
sistence module corresponding to the image of the morphism of persistence modules
induced by that interval. The latter isomorphism class is a barcode, which explains
our definition.

To simplify notation, we henceforth denote mrkM,x as mrkM . When there is no
confusion, we drop the subscript from mrkM .
Example 3.5. As illustrated in Figure 3, let I be the connected gray interval and
define the bimodule M := kI . The barcodes for the 1-parameter modules Ma

x ,M
b
x,

and M c
x are shown in red next to their corresponding vertical slices. The barcode for

mrkM ([a, b)) consists of the blue interval, which is the overlap of the bars in Ma
x and

M b
x, barc(M

a
x )∩barc(M b

x). Similarly, mrkM ([b, c)) has a barcode consisting of the pur-
ple interval, which is the overlap of the bars in M b

x andM c
x. As the bars in the barcodes

for Ma
x and M c

x have no overlap, im(ϕx(a ≤ c)) = 0, therefore mrkM ([a, c)) = 0.
Remark 3.6. In general,mrkx ̸= mrky. For example, consider the right-open rectangle
R with the lower-left corner the origin, and the upper right corner (1, 2), as in Figure 4.
Let M := kR. As illustrated, mrkM,x([0, 1)) = [0, 2) ̸= [0, 1) = mrkM,y([0, 1)).

The following Proposition 3.7 allows us to compute the meta-rank of a bimodule
via the meta-ranks of its indecomposable summands:
Proposition 3.7. For M,N : R2 → vec, we have:

mrkM ⊕mrkN = mrkM⊕N
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Fig. 4 An illustration of M , depicting mrkM,x([0, 1)) ̸= mrkM,y([0, 1)).

where mrkM ⊕mrkN : Dgm → Pvec is defined as:

(mrkM ⊕mrkN )([s, t)) := [mrkM ([s, t))⊕mrkN ([s, t))].

For a finite S ⊆ R, let S := S ∪ {∞}. Define S> : R ∪ {∞} → S as S>(t) :=
min

{
s ∈ S | s > t

}
. For M ∈ Pvec, [b, d) ∈ Dgm, let #[b, d) ∈ M denote the multi-

plicity of [b, d) ∈ barc(M). The rank invariant and the meta-rank contain equivalent
information:
Proposition 3.8. For an S-constructible bimodule M : R2 → vec, one can compute
rankM from mrkM and one can compute mrkM from rankM . In particular, given
(s, y) ≤ (t, y′) ∈ R2,

rankM ((s, y), (t, y′)) = #
{
[bi, di) ∈ mrkM

(
[s, S>(t))

)
s.t. bi ≤ y ≤ y′ < di

}
.

That is, the rank is the number of intervals in barc
(
mrkM

(
[s, S>(t))

))
containing

[y, y′].
The reason for needing S>(t) for the right endpoint is that if t ∈ S, mrkM ([s, t))

does not capture the information of the image of ϕx(s ≤ t), only the image of ϕx(s ≤
t− δ).

Proof. We start by showing that

rankM ((s, y), (t, y′)) = #{[bi, di) ∈ mrkM

(
[s, S>(t))

)
s.t. bi ≤ y ≤ y′ < di}. (1)

From the commutativity conditions on persistence modules, we have:

φ((s, y) ≤ (t, y′)) = φ((t, y) ≤ (t, y′)) ◦ φ((s, y) ≤ (t, y)),

and observe that φ((s, y) ≤ (t, y)) = ϕx(s ≤ t)|M((s,y)). From Definition 3.3, we have

mrkM

(
[s, S>(t))

)
= [im(ϕx(s ≤ t))]. For simplified notations, let h := φ((x, y) ≤

(t, y′)), f := φ((t, y) ≤ (t, y′)), g := φ((s, y) ≤ (t, y)), and N := im(ϕx(s ≤ t)). We
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have a commutative diagram:

M((t, y′))

M((s, y)) M((t, y))g

h
f

From elementary linear algebra, we have that rank(h) = rank(g)−dim(ker f ∩ im(g)).
As noted, N(y) = im(g), so rank(g) = dim(N(y)). It is immediate that dim(N(y)) is
equal to the number of intervals in barc(N) which contains y. Furthermore, by the
commutativity of internal morphisms of M , we have that f |im(g) is exactly the internal
morphism φN (y ≤ y′). From this and the rank-nullity theorem, we have:

dim(N(y)) = dim(im(φN (y ≤ y′))) + dim(kerφN (y ≤ y′)).

As rank(g) = dim(N(y)) and dim(ker φN (y ≤ y′) = dim(ker f |im(g)) = dim(ker f ∩
im(g)), we find rank(h) = dim(im(φN (y ≤ y′))). rank(h) is precisely rankN (y ≤ y′),
which is well-known to be the number of bars in barc(N) containing [y, y′]. As a result,
we can compute rankM from mrkM .

Now we show the other claim, that we can compute mrkM from rankM . By the
definition of a constructible bimodule, there are finitely many constant regions for
the rank function in its domain D(R). Taking the unions of the coordinates of the
supremal points for each constant region results in a finite set S under which M is S-
constructible. Hence, from rankM we can find an S under which M is S-constructible.

Now fix a specific S := {s1 < . . . < sn} such that M is S-constructible. Fix some
[s, t) ∈ Dgm, and fix an interval [y, y′) ∈ Dgm. We show that from rankM , we can
determine the multiplicity of the interval [y, y′) in barc(mrkM ([s, t))), denoted for
conciseness as #[y, y′). If s < s1, then by Definition 3.2 we have mrkM ([s, t)) = 0.
Thus, assume s ≥ s1 and define S<, S≤ : R≥s1 ∪ {∞} → S by S<(t) := max{s ∈
S | s < t} and S≤(t) := max{s ∈ S | s ≤ t}.

As a consequence of M being S-constructible, all intervals in barc(mrkM ([s, t)))
are of the form [si, sj) or [si,∞) for some si, sj ∈ S. If [y, y′) = [si, sj), then by the
well-known inclusion-exclusion formula in 1-parameter persistence and the formula in
Equation 1, we compute:

#[si, sj) = rankM ((S≤(s), si), (S<(t), sj−1))− rankM ((S≤(s), si), (S<(t), sj)) (2)

+ rankM ((S≤(s), si−1), (S<(t), sj))− rankM ((S≤(s), si−1), (S<(t), sj−1)),

where sn+1 is any value sn+1 > sn, and s0 is any value s0 < s1. If [y, y
′) = [si,∞),

then analogously we compute:

#[si,∞) = rankM ((S≤(s), si), (S<(t), sn))− rankM ((S≤(s), si−1), (S<(t), sn)).

Therefore, for any [s, t) ∈ Dgm, and [y, y′) ∈ Dgm, we can compute the multiplicity
of [y, y′) ∈ mrkM ([s, t)) from rankM , and so we can compute all of mrkM from
rankM .
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Finally, we discuss the stability of the meta-rank. The meta-rank is stable with
respect to a notion of erosion distance, based on that of Patel [3]. Leading up to
formulating the definition of our erosion distance, we define the notion of truncated
barcode:
Definition 3.9. For ϵ ≥ 0, and I = [s, t) ∈ Dgm, define I[ϵ :] := [s + ϵ, t). For
M : R → vec define the truncated barcode: barcϵ(M) := {I[ϵ :] | I ∈ barc(M)}. If
I = [s, t) ∈ barc(M) has t− s ≤ ϵ, then I has no corresponding interval in barcϵ(M).
Definition 3.10. For M,N : R → vec, we say M ⪯ϵ N if there exists an injective
function on barcodes ι : barcϵ(M) ↪→ barc(N) such that for all J ∈ barcϵ(M), J ⊆
ι(J).

For ϵ ≥ 0, M ∈ Pvec, let M ϵ refer to the ϵ-shift of M [22], with M ϵ(a) := M(a+ϵ)
and φMϵ(a ≤ b) := φM (a + ϵ ≤ b + ϵ). For I = [s, t) ∈ Dgm and a, b ∈ R, let
Iba := [s+ a, t+ b), with the convention ∞+ b := ∞ for any b ∈ R. We now define the
erosion distance:
Definition 3.11. Let M,N : R2 → vec. Define the erosion distance as follows:

dE(mrkM ,mrkN ) := inf{ϵ > 0 | ∀I ∈ Dgm,mrkM (Iϵ−ϵ)
ϵ ⪯2ϵ mrkN (I) and

mrkN (Iϵ−ϵ)
ϵ ⪯2ϵ mrkM (I)}

if the set we are infimizing over is empty, we set dE(mrkM ,mrkN ) := ∞.
Proposition 3.12. dE as defined in Definition 3.11 is an extended pseudometric on
the collection of meta-ranks of constructible bimodules M : R2 → vec.

We compare bimodules M and N using the multiparameter interleaving distance
[22]. The ϵ-shift and the truncation of the barcode in Definition 3.9 are necessary for
stability, due to the interleaving distance being based on diagonal shifts of bimodules,
whereas the meta-rank is based on horizontal maps instead of diagonal ones. We have
the following:
Theorem 3.13. For constructible M,N : R2 → vec, we have:

dE(mrkM ,mrkN ) ≤ dI(M,N)

For the proofs of Proposition 3.12 and Theorem 3.13, see Appendix A.1.

4 Meta-Diagram

We use the Möbius inversion formula from Patel [3] on the meta-rank function to get
a meta-diagram. This formula involves negative signs, so we need a notion of signed
persistence modules. Our ideas are inspired by the work of Betthauser et al. [23], where
we consider breaking a function into positive and negative parts.
Definition 4.1. A signed 1-parameter persistence module is an ordered pair (M,N),
where M,N : Z → vec are 1-parameter persistence modules. M is the positively signed
module, and N is the negatively signed module.
Definition 4.2. View Pvec as a commutative monoid with operation ⊕ given by
[M ]⊕ [N ] := [M ⊕N ], and identity element [0]. Define SPvec to be the Grothendieck
group of Pvec.
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Fig. 5 Illustration of the barcodes for M,N ∈ Pvec and M +N,M −N ∈ SPvec. For M +N and
M −N , a red interval is positively signed and a blue interval is negatively signed.

Each element of SPvec is an isomorphism class of ordered pairs [([M+], [M−])].
From the completeness of barcodes for 1-parameter persistence modules, we assume
without loss of generality thatM± := ⊕I∈barc(M±)k

I and drop the internal equivalence
class notation to write an element of SPvec as [(M+,M−)]. Proposition 4.3 allows
us to make a canonical choice of representative for each element of SPvec:
Proposition 4.3. Let A ∈ SPvec. Then there is a unique representative A =
[(M+,M−)] with barc(M+) ∩ barc(M−) = ∅.

Proof. First, we establish the existence of such a pair (M+,M−). Suppose A ∈ SPvec
has a representative (M+

1 ,M−
1 ), with J := barc(M+

1 )∩barc(M−
1 ) ̸= ∅. Define M+

2 :=
⊕I∈barc(M+

1 )\JkI , M−
2 := ⊕I∈barc(M−

1 )\JkI , and V := ⊕I∈JkI . Consider M+
1 ⊕M−

2 ⊕
V and M+

2 ⊕ M−
1 ⊕ V . By construction, both of these have barcode barc(M+

1 ) ∪
barc(M−

1 ), where ∪ is the multiset union. Hence, these two modules are isomorphic.
As a result, in SPvec, we have [(M+

1 ,M−
1 )] = [(M+

2 ,M−
2 )], and by construction

(M+
2 ,M−

2 ) is a representative with barc(M+
2 ) ∩ barc(M−

2 ) = ∅.
Now we establish the uniqueness of the pair (M+,M−). Suppose that

[(M+
1 ,M−

1 )] = [(M+
2 ,M−

2 )], barc(M+
1 )∩barc(M−

1 ) = ∅, and barc(M+
2 )∩barc(M−

2 ) =
∅. It is a simple algebraic fact that for two 1-parameter persistence modules M
and N , barc(M ⊕ N) = barc(M) ∪ barc(N), where ∪ is the multiset union. By
definition of [(M+

1 ,M−
1 )] = [(M+

2 ,M−
2 )], there must exist a 1-parameter persis-

tence module V such that M+
1 ⊕ M−

2 ⊕ V ∼= M+
2 ⊕ M−

1 ⊕ V . This implies that
barc(M+

1 )∪barc(M−
2 ) = barc(M+

2 )∪barc(M−
1 ). By our assumptions on intersections,

this implies that barc(M+
1 ) = barc(M+

2 ) and barc(M−
1 ) = barc(M−

2 ), which means
(M+

1 ,M−
1 ) = (M+

2 ,M−
2 ). Therefore, this is the unique representative satisfying our

intersection criterion.

As a result of Proposition 4.3, when convenient, we represent an element of SPvec
uniquely by the sum of barcodes of this special representative, as in the following
example:
Example 4.4. Consider [(N+, N−)] ∈ SPvec where barc(N+) = {[0, 4], [1, 3], [2, 4]}
and 2barc(N−) = {[1, 3], [3, 4]}. By Proposition 4.3, [(N+, N−)] is uniquely repre-
sented by [(M+,M−)] with barc(M+) = {[0, 4], [2, 4]} and barc(M−) = {[3, 4]}. In
practice, we will denote this element of SPvec as [0, 4] + [2, 4] − [3, 4] ∈ SPvec. If
M,N ∈ Pvec, denote by M +N the element [(M ⊕N, 0)] ∈ SPvec, and denote by
M −N the element [(M,N)] ∈ SPvec. For an illustration, see Figure 5.
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With this notion of signed persistence module in hand, we now use a modified
version of the Möbius inversion formula from [3] to define a meta-diagram:
Definition 4.5. Let M : R2 → vec be S-constructible. Define the horizontal meta-
diagram to be the function mdgmM : Dgm → SPvec via the Möbius inversion
formula:

mdgmM,x([si, sj)) := mrkM,x([si, sj))−mrkM,x([si, sj+1))

+mrkM,x([si−1, sj+1))−mrkM,x([si−1, sj))

mdgmM,x([si,∞)) := mrkM,x([si,∞))−mrkM,x([si−1,∞))

where s0 is any value s0 < s1 and sn+1 is any value sn+1 > sn. For any other
[s, t) ∈ Dgm, set mdgmM,x([s, t)) := 0. Define the vertical meta-diagram by replacing
each instance of x above with y.

We henceforth let mdgm refer to the horizontal meta-diagram of M , dropping the
subscript when there is no confusion. The following Möbius inversion formula describes
the relation between the meta-rank and meta-diagram. It is the direct analogue of [3,
Theorem 4.1].
Proposition 4.6. For [s, t) ∈ Dgm, we have:

mrk([s, t)) =
∑

I∈Dgm
I⊇[s,t)

mdgm(I)

Proof. Suppose s = si < t = sj . Then we have:

∑
I∈Dgm
I⊇[s,t)

mdgm(I) =

n∑
k=j

i∑
h=1

mdgm([sh, sk)) +

i∑
h=1

mdgm([sh,∞))

=

n∑
k=j

i∑
h=1

(
mrk([sh, sk))−mrk([sh, sk+1))

+mrk([sh−1, sk+1))−mrk([sh−1, sk))
)

+

i∑
h=1

(
mrk([sh,∞))−mrk([sh−1,∞))

)
=

n∑
k=j

(
mrk([si, sk))−mrk([si, sk+1))

)
+mrk([si,∞))

= mrk([si, sj))
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Now suppose s = si < t = ∞. We have:

∑
I∈Dgm
I⊇[s,t)

mdgm([si,∞)) =

i∑
h=1

mdgm([sh,∞))

=

i∑
h=1

(
mrk([sh,∞))−mrk([sh−1,∞))

)
= mrk([si,∞))

Proposition 4.7. For M,N : R2 → vec, we have:

mdgmM ⊕mdgmN = mdgmM⊕N ,

where mdgmM ⊕mdgmN : Dgm → SPvec is defined by

(mdgmM ⊕mdgmN )([s, t)) := [mdgmM ([s, t))+ ⊕mdgmN ([s, t))+,

mdgmM ([s, t))− ⊕mdgmN ([s, t))−].

Proposition 4.7 allows us to compute meta-diagrams straightforwardly if we have
an indecomposable decomposition of a module. In particular, by Proposition 4.8
and Corollary 4.9, meta-diagrams are simply computable for rectangle decomposable
modules.
Proposition 4.8. Suppose M = kR is an R2-indexed interval module supported on
the right-open rectangle R, with lower-left corner (s, t) and upper-right corner (s′, t′).
We have:

mdgmM ([a, b)) =

{
[t, t′) if a = s and b = s′;

0 otherwise.

Proof. First, note that M is constructible, over some set S = {s1 < . . . < s4} of size
no more (but potentially less than) three, with S consisting of s, s′, t, and t′. It is
straightforward to compute the following:

mrk([a, b)) =

{
[t, t′) if s ≤ a ≤ b < s′;

0 otherwise,

as im(a ≤ b) is either the image of [t, t′) under the identity, or trivial.
Assume without loss of generality that s = sa and s′ = sb. If a, b /∈ S × S,

then immediately mdgm([a, b)) = 0 by definition. To compute the remainder of
the meta-diagram, for each pair si < sj , we need to compute the four meta-ranks
mrk([si, sj)), mrk([si, sj+1)), mrk([si−1, sj+1)), and mrk([si−1, sj)). We now break
into cases based on where si, sj are, the domains and codomains of the image maps ϕ
in the meta-rank definition:

13



• Case 1: si < s. All four meta-ranks are trivial since the domains Msi , Msi−1 are
trivial modules. Hence, mdgm([si, sj)) = 0.

• Case 2: sj > s′. All four meta-ranks are trivial since the codomains Msj , Msj+1 are
trivial modules, and mdgm([si, sj)) = 0.

• Case 3: si = s, s < sj < s′. We have mrk([si, sj)) = [t, t′), mrk([si, sj+1)) = [t, t′),
mrk([si−1, sj+1) = 0 and mrk([si−1, sj)) = 0, so mdgm([si, sj)) = 0.

• Case 4: s < si < s′, sj = s′. We have mrk([si, sj)) = [t, t′), mrk([si, sj+1)) = 0,
mrk([si−1, sj+1)) = 0 and mrk([si−1, sj)) = [t, t′), so mdgm([a, b]) = 0.

• Case 5: s < si < sj < s′. All four meta-ranks are [t, t′), so mdgm([si, sj)) = 0.
• Case 6: si = s, sj = s′. We have mrk([si, sj)) = [t, t′), mrk([si, sj+1)) = 0,
mrk([si−1, sj+1)) = 0 and mrk([si, sj+1)) = 0, so mdgm([si, sj)) = [t, t′).

This exhausts the cases for positions of si and sj relative to s and s′, and so we are
done.

Corollary 4.9. Let M = ⊕R∈barc(M)k
R be rectangle decomposable. Then the interval

[t, t′) appears in mdgm([s, s′)) with multiplicity n if and only if the right-open rect-
angle with lower-left corner (s, t) and upper right corner (s′, t′) appears in barc(M)
with multiplicity n.
Remark 4.10. In the classical persistence diagram, a point (b, d) above the diagonal
corresponds to a persistent feature which is born at b and dies at d. The meta-diagram
can be visualized as a “diagram of diagrams” as illustrated in Figure 2 and exemplified
in Section 5.2. We refer to the diagram on the left of Figure 2 with which we select an
interval to evaluate a meta-diagram as the “outer diagram” and the diagram(s) on the
right of a meta-diagram evaluated at a specific interval(s) in the outer diagram as an
“inner diagram”. In light of Proposition 4.8 and Corollary 4.9, we offer the following
intuition for points in these diagrams. A point (b, d) in the outer diagram corresponds
to a persistent feature which is born at b and dies at d with respect to the x direction,
and a point (b, d) in an inner diagram corresponds to a persistent feature which is
born at b and dies at d with respect to the y direction.

4.1 Equivalence With Rank Decomposition via Rectangles

For M : R2 → vec, the rank decomposition by rectangles contains the same informa-
tion as the rank invariant, which by Proposition 3.8 contains the same information as
the meta-rank. We now show one can directly go from the meta-diagram to the rank
decomposition:
Proposition 4.11. Let M : R2 → vec be constructible. Define as follows:

R :=
⋃

I∈Dgm

 ⋃
[a,b)∈mdgmM (I)

I × [a, b)

 ,

S :=
⋃

I∈Dgm

 ⋃
−[a,b)∈mdgmM (I)

I × [a, b)

 ,

where all unions are the multiset union. Then (R,S ) is a rank decomposition for M .
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Proof. It suffices to show that for all w1 := (x1, y1) ≤ w2 := (x2, y2) ∈ R2,
rankM (w1, w2) = rankkR(w1, w2)− rankkS (w1, w2). Suppose w1 ≤ w2 ∈ R2 as above.
By Proposition 3.8,

rankM (w1, w2) = #{[bi, di) ∈ mrkM ([x1, x
′
2)) s.t. bi ≤ y1 ≤ y2 < di},

where for notational simplicity, x′
2 := S>(x2).

Now fix [b, d) such that b ≤ y1 ≤ y2 < d. By Proposition 4.6, we have:

#{[b, d) ∈ mrkM ([x1, x
′
2))} = #

[b, d) ∈
∑

I∈Dgm
I⊇[x1,x

′
2)

mdgmM (I)


=

#

[b, d) ∈
∑

I∈Dgm
I⊇[x1,x

′
2)

mdgm+
M (I)


−

#

[b, d) ∈
∑

I∈Dgm
I⊇[x1,x

′
2)

mdgm−
M (I)




By Proposition 4.8 and Corollary 4.9, the term #

[b, d) ∈
∑

I∈Dgm
I⊇[x1,x

′
2)

mdgm+(I)

 is

the number of times I × [b, d) appears in R across all I ⊇ [x1, x
′
2), and the term

#

[b, d) ∈
∑

I∈Dgm
I⊇[x1,x

′
2)

mdgm−(I)

 is the number of times I×[b, d) appears in S across

all I ⊇ [x1, x
′
2).

Thus, we see that rankM (w1, w2) is equal to the number of rectangles in R con-
taining w1 and w2 minus the number of rectangles in S containing w1 and w2. From
the definition of rectangle module and the fact that rank commutes with direct sums,
the first term is rank(kR)(w1, w2) and the second term is rank(kS )(w1, w2), and so
we get:

rankM (w1, w2) = rankkR(w1, w2)− rankkS (w1, w2)

4.2 Stability of Meta-Diagrams

We now state a stability result for meta-diagrams. We need to modify the notion of
erosion distance to do so, as meta-diagrams have negatively signed parts. We proceed
by adding the positive part of one meta-diagram to the negative part of the other.
This idea stems from Betthauser et al.’s work [23], and was also used in the stability
of rank decompositions in [16].
Definition 4.12. For M,N : R2 → vec, define PN(M,N) : Dgm → vec as

PN(M,N)([s, t)) := mdgm+
M ([s, t)) +mdgm−

N ([s, t))
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PN(M,N)([s, t)) is a non-negatively signed 1-parameter persistence module for all
[s, t) ∈ Dgm, allowing us to make use of the previous notion of ⪯ϵ (Definition 3.10)
to define an erosion distance for meta-diagrams. Unlike meta-ranks which have a

continuous support, a meta-diagram is only supported on
(
S
)2

for some finite S ⊂ R.
As a result, we first modify the notion of erosion distance to fit the discrete setting.

Define maps S≥, S≤ : R∪{∞} → S by S≥(x) := min
{
s ∈ S |x ≥ s

}
and S≤(x) :=

max
{
s ∈ S |x ≤ s

}
, or some value less than s1 if this set is empty. We say S is evenly-

spaced if there exists c ∈ R such that si+1 − si = c for all 1 ≤ i ≤ n − 1. In the
following, fix an evenly-spaced finite S ⊂ R.
Definition 4.13. For S-constructible M,N : R2 → vec, define the erosion distance:

dSE(mdgmM ,mdgmN ) := inf{ϵ ≥ 0 | ∀s ≤ t ∈ S,

PN(M,N)([S≤(s− ϵ), S≥(s+ ϵ))ϵ ⪯2ϵ PN(N,M)([s, t)) and

PN(N,M)([S≤(s− ϵ), S≥(s+ ϵ))ϵ ⪯2ϵ PN(M,N)([s, t))}

Proposition 4.14 follows analogously to Proposition 3.12:
Proposition 4.14. dSE as defined in Definition 4.13 is an extended pseudometric on
the collection of meta-diagrams of S-constructible modules M : R2 → vec.

We have the following stability result for meta-diagrams,
Theorem 4.15. For S-constructible M,N : R2 → vec, with S evenly-spaced, we have

dSE(mdgmM ,mdgmN ) ≤ dI(M,N).

For the proof of Theorem 4.15, as well as a more general stability result when S is
not evenly-spaced, see Appendix A.2.

5 Algorithm

In this section, we provide an algorithm to compute the meta-rank and meta-diagram
for a module over a finite grid in Z2. The input to this algorithm is a simplex-wise
bifiltration:
Definition 5.1. Let n ∈ Z, and [n] denote the poset {1, . . . , n} with the usual order.
Let K be a simplicial complex, and sub(K) denote all subsets of K which are them-
selves simplicial complexes. A filtration is a function F : [n] → sub(K) such that for
a ≤ b, F (a) ⊆ F (b). We say a filtration is simplex-wise if for all 1 ≤ a ≤ n− 1, either
F (a+ 1) = F (a) or F (a+ 1) = F (a) ∪ {σ} for some σ ∈ K \ F (a). In the latter case,

we denote this with F (a)
σ−→ F (a + 1). We say σ ∈ sub(K) arrives at a if σ ∈ F (a)

and σ /∈ F (a− 1).
Define Pn := [n]× [n] equipped with the product order. A bifiltration is a function

F : Pn → sub(K). We say a bifiltration is simplex-wise if for all (a, b) ∈ Pn, for
(x, y) = (a + 1, b) or (a, b + 1), if (x, y) ∈ Pn, then either F ((x, y)) = F ((a, b)), or

F ((a, b))
σ−→ F ((x, y)) for some σ /∈ F ((a, b)).

Applying homology to a bifiltration yields a bimodule defined on Pn. Our theoret-
ical background in previous sections focused on the case of bimodules defined over R2.
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The same ideas and major results follow similarly for a module defined over Pn. We
quickly highlight the differences in definitions when working with modules defined on
Pn. The following definitions are re-phrasings of the horizontal meta-rank and hori-
zontal meta-diagram for modules indexed over Pn, but as before, the statements are
directly analogous in the vertical setting. Let Int([n]) refer to all intervals of [n], which
consists of {[a, b] | a ≤ b, a, b ∈ [n]}.
Definition 5.2. For M : Pn → vec, define the meta-rank, mrkM : Int([n]) → Pvec
by

mrkM ([s, t]) := [im(ϕx(s ≤ t))]

Definition 5.3. For M : Pn → vec, define the meta-diagram, mdgmM : Int([n]) →
SPvec as follows: if 1 < s ≤ t < n, define:

mdgmM ([s, t]) := mrkM ([s, t])−mrkM ([s, t+ 1])

+mrkM ([s− 1, t+ 1])−mrkM ([s− 1, t]),

mdgmM ([s, n]) := mrkM ([s, n])−mrkM ([s− 1, n]),

mdgmM ([1, t]) := mrkM ([1, t])−mrkM ([1, t+ 1]), and

mdgmM ([1, n]) := mrkM ([1, n]).

5.1 Overview of the Algorithm

Henceforth, assume F : Pn → sub(K) is a simplex-wise bifiltration. The input to our
algorithm is such an F , and the output is the meta-rank and meta-diagram of the
bimodule bimodule M := ⊕k≥0Hk(F ). The output meta-rank and meta-diagram are
stored as a list of lists, where an index in the outer list corresponds to an interval
[s, t] ∈ Int([n]), and an inner list consists of all intervals in the (signed) persistence
diagram corresponding to the meta-rank or meta-diagram evaluated at a specific
[s, t] ∈ Int([n]).

Step one of our algorithm is to compute the rank invariant of M . We can do so
using existing algorithms [16, 24] which rely on the vineyards approach [10] to compute
ranks between all pairs of points a ≤ b ∈ Pn by sweeping through a collection of paths,
at least one of which must contain a and b. This step is well-known to have a time
complexity O(n4).

Step two of our algorithm iterates over all pairs [s, t], [a, b] ∈ Int([n]). For each pair
[s, t], [a, b], we compute the cardinality of [a, b] ∈ mrkM ([s, t]) directly via Equation 2.
With the above notation, there are O(n2) possible intervals [s, t], and for a fixed
[s, t] there are O(n2) possible intervals [a, b]. Computing the cardinality of [a, b] ∈
mrkM ([s, t]) via Equation 2 is O(1), so the complexity of Step two is O(n4).

Step three of our algorithm is computing mdgmM directly from mrkM via the
formula in Definition 5.3. As the size of mrkM is at most O(n4), by the definition it
is clear that the time complexity of computing mdgmM is also O(n4).

At the end of our algorithm, mrkM and mdgmM are output as nested lists. Steps
one, two, and three each take O(n4) time, so putting them together we have:
Theorem 5.4. The meta-rank and meta-diagram can be computed from a simplex-wise
bifiltration over Pn in O(n4) time.
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Fig. 6 The figure 8 with 31 points in R2.

5.2 Visualization Example

Let (X, dX) be a discretized figure eight seen in Figure 6, with dX the Euclidean
metric inherited from R2.

Let f : X → R be the height function, i.e. f(x, y) = y. We compute the meta-
rank and meta-diagram of the homology (in all degrees) of the Vietoris-Rips function
bifiltration with respect to X and f .

We select the first point (interval) in the outer diagram at which the eval-
uated meta-diagram is nonzero for one-dimensional homology, with the resulting
meta-diagram visualized in Figure 7. This point in the outer diagram is at roughly
(≈ −0.29, 2), indicating that at x ≈ −0.29, enough of the bottom circle in the figure 8
has entered into the filtration to allow the one-dimensional homology class to appear
in Vietoris-Rips persistence. The fact that the right endpoint of this interval is 2
indicates that this one-dimensional persistence feature born when the height param-
eter reaches ≈ −0.29 persists for the remainder of the bifiltration in the x direction.
On the right of Figure 7, we see the simplicial complex of the bifiltration when the
one-dimensional homology class first appears.

If we evaluate mdgmM at the next point to the right in the outer diagram, the
resulting inner diagram is visualized in Figure 8. We see the positively signed point
in one-dimensional homology has the same death coordinate, but is born earlier. This
is because as more of the circle is added, the one-simplex along the top of the circle
which completes the loop arrives at an earlier Vietoris-Rips threshold. This can be
seen in the simplicial complex of the bifiltration when the one-dimensional homology
class appears, plotted on the right side of Figure 8. Again, the fact that the right
endpoint of this interval in the outer diagram is 2 indicates that this persistence class
persists for the remainder of the filtration in the x direction. The negative point in
blue indicates that this one-dimensional feature corresponds to the same feature we
saw previously at height ≈ −0.29, but that the persistence of this feature has increased
as more points from X were allowed in the filtration.
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Fig. 7 The first-dimensional homology class of the bottom circle first appears at height ≈-.29.
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Fig. 8 As more of the bottom circle enters into the bifiltration, the persistence increases.

If we continue and evaluate mdgmM at the next point to the right in the outer
diagram at (0, 2), the inner diagram updates, with the result seen in Figure 9. Now
that all the points in the bottom circle have arrived in the bifiltration, we see that
persistence of the one-dimensional homological feature corresponding to this circle is
maximized. On the right, we see the simplicial complex of the bifiltration when the
one-dimensional homology class appears. Again, the negative point in blue represents
that the positively signed point corresponds to the same one-dimensional homology
feature we saw previously, but that as more points were added into the bifiltration the
persistence of this feature grew.

In Figure 10, Figure 11, and Figure 12, we see a similar phenomenon with tracking
the one-dimensional persistence feature corresponding to the top circle of the figure
8 as we allow more points into the bifiltration with the increasing height function
parameter. In each figure, on the right hand side is a visualization of the simplicial
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Fig. 9 As the entire bottom circle enters into the bifiltration, the one-dimensional homological
feature corresponding to the bottom circle achieves its maximum persistence.
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Fig. 10 The first-dimensional homology class of the top circle first appears at height ≈-.29.

complex when the one-dimensional persistence feature first arrives in the bifiltration
at the height value corresponding to the lower endpoint of the outer diagram point.

6 Discussion

We conclude with some open questions and threads of future research. First, we would
like to extend our approach to the d-parameter setting. We expect that a proper
extension would satisfy relationships with the rank invariant and rank decompositions
similar to Proposition 3.8 and Proposition 4.11. Such an extension would also lead to a
“recursive” formulation of the persistence diagram of diagrams illustrated in Figure 2.

The algorithm we introduce may be limited in applications due to its O(n4) run-
time. A further line of research is looking to develop other algorithms. One particular
approach of interest is to use recent work on computing image persistence by Bauer
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Fig. 11 As more of the top circle enters into the bifiltration, the persistence increases.
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Fig. 12 As the entire figure 8 enters into the bifiltration, the one-dimensional homological feature
corresponding to the top circle achieves its maximum persistence.

and Schmahl [15] to compute mrkM (I) independently for all I ∈ Int([n]) indepen-
dently. While this approach would almost certainly be slower running on one serial
process, it is highly parallelizable, and may be faster in practice than the algorithm
we introduce in Section 5.

Lastly, there have been multiple recent works that use algorithmic ideas from 1-
parameter persistence to compute invariants in the multiparameter setting [9, 14, 25].
We wish to explore in what ways these approaches can create new algorithms
or improve upon existing ones for computing the invariants of multi-parameter
persistence modules.

Acknowledgments. We thank the anonymous reviewers for their valuable feed-
back, and Dmitriy Morozov for alerting us of an error in a previous version of our
manuscript published in the 39th International Symposium on Computational Geom-
etry (SoCG 2023). NC is partially supported by NSF CCF 1839356 and NSF DMS

21



1547357. TD is partially supported by NSF CCF 2049010 and DMS 2301360. FM is
partially supported by BSF 2020124, NSF CCF 1740761, NSF CCF 1839358, and NSF
IIS 1901360. BW is partially supported by NSF DMS 2301361, NSF IIS 2145499, NSF
IIS 1910733, and DOE DE SC0021015.

Data Availability Statement. Data sharing not applicable to this article as no
real-world datasets were generated or analyzed during the current study.

Appendix A Detailed Proofs on Stability Results

A.1 Details for Meta-Rank Stability

Proof of Proposition 3.12. Symmetry is clear from the definition of dE. It remains to
check the triangle inequality. Suppose M,N,L : R2 → vec are such that ∀I ∈ Dgm,
mrkM (Iϵ1−ϵ1)

ϵ1 ⪯2ϵ1 mrkN (I) and mrkN (Iϵ1−ϵ1)
ϵ1 ⪯2ϵ1 mrkM (I). Also, suppose ∀I ∈

Dgm, mrkN (Iϵ2−ϵ2)
ϵ2 ⪯2ϵ2 mrkL(I) and mrkL(I

ϵ2
−ϵ2)

ϵ2 ⪯2ϵ2 mrkN (I).

Fix any I ∈ Dgm. It is clear that (Iϵ1−ϵ1)
ϵ2
−ϵ2 = Iϵ1+ϵ2

−ϵ1−ϵ2 , and so we have:

mrkM (Iϵ1+ϵ2
−ϵ1−ϵ2)

ϵ1+ϵ2 ⪯2(ϵ1+ϵ2)⪯ mrkN (Iϵ2−ϵ2)
ϵ2 ⪯2ϵ2 mrkL(I)

and similarly with the roles of M and L reversed. Hence, dE(mrkM ,mrkL) ≤ ϵ1+ ϵ2,
as desired.

The following Lemma is useful in the proof of Theorem 3.13:
Lemma A.1. Let M : R → vec be a persistence module, with barcode barc(M), and
let ϵ > 0. Define M [ϵ :] : R → vec as follows: for a ≤ b ∈ R,

M [ϵ :](a) := {x ∈ M(a) | ∃x′ ∈ M(a− ϵ) s.t. φM (a− ϵ ≤ a)(x′)}

M [ϵ :](a ≤ b) := M(a ≤ b)|M [ϵ:](a≤b)

Then M [ϵ :] : R → vec is a well-defined persistence module, and barcϵ(M) =
barc(M [ϵ :]).

Proof of Lemma A.1. Let M = ⊕I∈Ik
I , and {etI}t∈R

I∈I be such that {etI}I∈I is a basis
for M(t) for all t. Further, require eti ̸= 0 ⇐⇒ t ∈ I, and φM (s ≤ t)(esI) = etI .
The intuition is that each element etI ∈ M(t) is either 0 or a basis for the summand
kI(t) of M(t). We call such a set {etI}t∈R

I∈I a persistence basis. From the definition,

etI ̸= 0 ∈ M [ϵ :](t) if and only if etI ̸= 0 ∈ M(t) and et−ϵ
I ̸= 0 ∈ M(t − ϵ). Thus, if

{etI1 , . . . , e
t
In
} is a basis for M(t), then a subset of these will be a basis for M [ϵ :](t).

For a ≤ b ∈ R, to see that φM (a ≤ b)|M [ϵ:](a) maps M [ϵ :](a) into M [ϵ :](b), we

can consider the mapping on basis elements. If eaI ̸= 0 ∈ M [ϵ :](a), then ea−ϵ
I ̸= 0 ∈

M(a− ϵ). It follows that

φM (a ≤ b)(eaI ) = φM (b− ϵ ≤ b)(φM (a− ϵ ≤ b− ϵ)(ea−ϵ
I ))

and so φM (a ≤ b)|M [ϵ:](a)(M [ϵ :](a) ⊆ M [ϵ :](b), and so M [ϵ :] is a well-defined
persistence module.
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Now we show that barcϵ(M) = barc(M [ϵ :]). Suppose I = [s, t) ∈ barcϵ(M). Then
I corresponds uniquely to an interval [s−ϵ, t) ∈ barc(M). Suppose M = ⊕I∈Ik

I . This
interval in barc(M) corresponds uniquely to a specific sequence, namely for a fixed I ∈
I, a sequence of nonzero elements {eaI}a∈[s−ϵ,t), with eaI ∈ M(a) = 0 for a /∈ [s− ϵ, t).

It is straightforward to check that if {etI}t∈R
i∈I is a persistence basis for M , then {e′tI }t∈R

I∈I
is a persistence vector basis for M [ϵ :], where e′tI = etI ∈ M [ϵ :](t) ⇐⇒ etI ̸= 0 ∈ M(t)
and et−ϵ

I ̸= 0 ∈ M(t − ϵ). Otherwise, e′tI := 0. This means e′aI ̸= 0 ∈ M(a) if and
only if eaI ̸= 0 ∈ M(a) and ea−ϵ

I ̸= 0 ∈ M(a − ϵ) ⇐⇒ a ∈ I. Thus, this sequence
{eaI}a∈[s,t) corresponds uniquely to an interval [s, t) ∈ barc(M [ϵ :]). So we have every
interval [s, t) ∈ barcϵ(M) corresponds uniquely to an interval in barc(M [ϵ :]), so
barcϵ(M) ⊆ barc(M [ϵ :]).

To see the reverse containment, if I = [s, t) is an interval in barc(M [ϵ :]), then
we can reverse the previous argument to see that this corresponds uniquely to a
sequence of nonzero elements {eaI}a∈[s−ϵ,t) in M . This corresponds uniquely to an
interval [s−ϵ, t) in barc(M), which corresponds to an interval [s, t) ∈ barcϵ(M). Hence,
barc(M [ϵ :]) ⊆ barcϵ(M), and so barc(M [ϵ :]) = barcϵ(M), as desired.

Proof of Theorem 3.13. Suppose ϵ ≥ 0 and f : M → N ϵ and g : N → M ϵ are an
interleaving pair with ϵ = (ϵ, ϵ). Fix S so that M and N are both S-constructible. Let
I = [s, t) ∈ Dgm. Assume initially that t /∈ S and t+ ϵ /∈ S, these cases will be dealt
with at the end.

By the definition of constructibility, we can replace [s,∞) with [s, c) for some
c ≥ sn (recall sn is the maximal element in S), so we will show the result under the
assumption [s, t) ∈ Dgm, with t < ∞, t /∈ S, and t+ ϵ /∈ S.

Under our assumption, mrkM (I) = [im(ϕM
x (s ≤ t))], and mrkN (Iϵ−ϵ) =

[im(ϕN
x (s− ϵ ≤ t+ ϵ))]. Denote by f ′ the restriction of f to im(ϕM

x (s ≤ t)). Note that
f ′ maps into N t+ϵ

x . We claim that im(ϕN
x (s− ϵ ≤ t+ ϵ))[2ϵ :] ⊆ im(f ′).

To see this, let a ∈ R, and let x ∈ im(ϕN
x (s − ϵ ≤ t + ϵ))ϵ[2ϵ :](a). By definition,

this means there exists x′ ∈ im(ϕN
x (s− ϵ ≤ t+ ϵ))(a− ϵ) such that φN ((t+ ϵ, a− ϵ) ≤

(t+ϵ, a+ϵ))(x′) = x. Further, there is an x′′ ∈ Ns−ϵ
x (a−ϵ) such that φN ((s−ϵ, a−ϵ) ≤

(t+ ϵ, a− ϵ))(x′′) = x′. Set y := φM ((s, a) ≤ (t, a))(g(x′′)). From this definition, it is
clear that y ∈ im(ϕM

x (s ≤ t)). By the interleaving condition between f and g, we have:

f ′(y) = f ′(φM ((s, a) ≤ (t, a))(g(x′′))

= f ′(g(φN ((s− ϵ, a− ϵ) ≤ (t− ϵ, a− ϵ))(x′′)

= φN ((t− ϵ, a− ϵ) ≤ (t+ ϵ, a+ ϵ))(φN ((s− ϵ, a− ϵ) ≤ (t− ϵ, a− ϵ))(x′′))

= φN ((t+ ϵ, a− ϵ) ≤ (t+ ϵ, a+ ϵ))(φN ((s− ϵ, a− ϵ) ≤ (t+ ϵ, a− ϵ))(x′′))

= φN ((t+ ϵ, a− ϵ) ≤ (t+ ϵ, a+ ϵ))(x′) = x

As a result, we have a surjective map f ′ : im(ϕM
x (s ≤ t)) → im(f ′), and an injective

inclusion of persistence modules ι : im(ϕN
x (s− ϵ ≤ t+ ϵ))[2ϵ :] ↪→ im(f ′). By [26] these

maps induce injective maps on barcodes χf ′ : barc(im(f ′)) ↪→ barc(mrkM ([s, t))) and
χι′ : barc(mrkN ([s − ϵ, t + ϵ)))ϵ[2ϵ :]) ↪→ barc(im(f ′)). By Lemma A.1, we can view
χι as a map with domain barc2ϵ(mrkN ([s− ϵ, t+ ϵ))ϵ).
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Define χ := χf ′ ◦χι : barc2ϵ(mrkN ([s−ϵ, t+ϵ))ϵ) → mrkM ([s, t)). This is injective
as it is a composition of injections. For all J ∈ barc2ϵ(mrkN ([s− ϵ, t+ ϵ))ϵ), we have
χ(J) = χf ′(χι(J)) ⊆ χι(J) ⊆ J . Thus, mrkN (Iϵ−ϵ) ⪯2ϵ mrkM (I). The argument is
symmetric when swapping M and N , so we are done with this case.

If t ∈ S, then we can replace t in all the above arguments with t − δ for some
δ small enough such that t − δ + ϵ /∈ S, and the above arguments follow to show
mrkN (Iϵ−ϵ) ⪯2ϵ mrkM (I).

Lastly, if t + ϵ ∈ S, then im(ϕN
x (s − ϵ ≤ t + ϵ)) = mrkN ([s − ϵ, t + ϵ′)) for all

ϵ′ = ϵ+δ, δ > 0 sufficiently small. Thus, the above arguments give us mrkN (Iϵ
′

−ϵ′) ⪯2ϵ′

mrkM (I) for all such ϵ′, and when taking the infimum in Definition 3.11, we get
dE(mrkM ,mrkN ) ≤ ϵ, as desired.

A.2 Details Meta-Diagram Stability

Proof of Theorem 4.15. To show this, we show dSE(mdgmM ,mdgmN ) ≤
dE(mrkM ,mrkN ) and then invoke Theorem 3.13. Let ϵ ≥ 0 and suppose that
for all [s, t) ∈ Dgm, we have mrkM ([s − ϵ, t + ϵ))ϵ ⪯2ϵ mrkN ([s, t)), and
mrkN ([s − ϵ, t + ϵ))ϵ ⪯2ϵ mrkM ([s, t)). Fix [si, sj) ∈ Dgm. By our assumption, we
have the following four injective maps:

χ1 : barc(mrkM ([si − ϵ, sj + ϵ)))ϵ[2ϵ :] → barc(mrkN ([si, sj)))

χ2 : barc(mrkM ([si−1 − ϵ, sj+1 + ϵ)))ϵ[2ϵ :] → barc(mrkN ([si−1, sj+1)))

χ3 : barc(mrkN ([si−1 − ϵ, sj + ϵ)))ϵ[2ϵ :] → barc(mrkM ([si−1, sj)))

χ4 : barc(mrkN ([si − ϵ, sj+1 + ϵ)))ϵ[2ϵ :] → barc(mrkM ([si, sj+1)))

Let sa := S≤(si−ϵ) and sb := S≥(sj+ϵ). Suppose c := si+1−si (which by assumption
is constant for any 1 ≤ i ≤ n−1). We then have sa−1 = sa−c ≤ si−ϵ−c = si−1−ϵ. Sim-
ilarly, we have sb+1 ≥ sj+1 + ϵ. This implies, for example, that mrkM ([sa−1, sb+1)) ⪯
mrkM ([si−1 − ϵ, sj+1 + ϵ)), and a similar statement holds for the domains of the
other three maps χ′

i above. Thus, by composing each maps χi above with the map
guaranteed by the definition of ⪯, we can define:

χ′
1 : barc(mrkM ([sa, sb)))

ϵ[2ϵ :] → barc(mrkN ([si, sj)))

χ′
2 : barc(mrkM ([sa−1, sb+1)))

ϵ[2ϵ :] → barc(mrkN ([si−1, sj+1)))

χ′
3 : barc(mrkN ([sa−1, sb)))

ϵ[2ϵ :] → barc(mrkM ([si−1, sj)))

χ′
4 : barc(mrkN ([sa, sb+1)))

ϵ[2ϵ :] → barc(mrkM ([si, sj+1)))

The multiset union of the four barcodes in the domains form the barcode of
PN(M,N)([S≤(si−ϵ), S≥(sj+ϵ))ϵ[2ϵ :] = PN(M,N)([sa, sb)))

ϵ[2ϵ :], and the multiset
union of the four barcodes in the codomains form the barcode of PN(N,M)([si, sj)).
Hence, we can let χ : barc(PN(M,N))([sa, sb))

ϵ[2ϵ :] → barc(PN(N,M))([si, sj)) be
the disjoint union of χ′

i for 1 ≤ i ≤ 4. As each χ′
i is injective and has χ′

i(J) ⊆ J , these
properties will hold for χ as well.
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Remark A.2. We can remove the condition S is evenly-spaced, but there is a price to
pay for doing so. If S is not evenly-spaced, let irreg(S) := (max1≤i≤n−1 si+1 − si) −
(min1≤i≤n−1 si+1 − si). We can define erosion distance as before, removing only the
evenly-spaced condition. In this setting, the stability result appears as:
Theorem A.3. Suppose M,N : R2 → vec are S-constructible. Then we have:

dSE(mdgmM ,mdgmN ) ≤ dI(M,N) + irreg(S)

Note that irreg(S) = 0 if and only if S is evenly-spaced, so this result generalizes
Theorem 4.15. The main issue when S is not evenly-spaced is that we could have
sa−1 > si−1− ϵ, which causes the proof of Theorem 4.15 to fail. However, the additive
term irreg(S) accounts for this. In particular, set sa := S≤(si − ϵ − irreg(S)), ca :=
sa − sa−1 and ci := si − si−1. By definition, ci − ca ≤ irreg(S), so we have:

sa−1 = sa − ca ≤ si − ϵ− irreg(S)− ca ≤ si − ϵ− ci = si−1 − ϵ

Similarly, setting sb := S≥(sj + ϵ + irreg(S)) we get sb+1 ≥ sj+1 + ϵ. The proof of
Theorem A.3 then follows similarly to that of Theorem 4.15, upon using our new
definitions for sa and sb.
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functions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 2(4),
340–368 (1964)

[3] Patel, A.: Generalized persistence diagrams. Journal of Applied and Computa-
tional Topology 1(3), 397–419 (2018)

[4] Clause, N., Kim, W., Memoli, F.: The discriminating power of the generalized
rank invariant. arXiv preprint arXiv:2207.11591 (2022)

[5] Kim, W., Mémoli, F.: Generalized persistence diagrams for persistence mod-
ules over posets. Journal of Applied and Computational Topology 5(4), 533–581
(2021)

[6] McCleary, A., Patel, A.: Edit distance and persistence diagrams over lattices.
SIAM Journal on Applied Algebra and Geometry 6(2), 134–155 (2022)

[7] Botnan, M.B., Lebovici, V., Oudot, S.: On rectangle-decomposable 2-parameter
persistence modules. Discrete & Computational Geometry, 1–24 (2022)

25



[8] Asashiba, H., Escolar, E.G., Nakashima, K., Yoshiwaki, M.: On approxima-
tion of 2 d persistence modules by interval-decomposables. arXiv preprint
arXiv:1911.01637 (2019)

[9] Morozov, D., Patel, A.: Output-sensitive computation of generalized persistence
diagrams for 2-filtrations. arXiv preprint arXiv:2112.03980 (2021)

[10] Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updat-
ing persistence in linear time. In: Proceedings of the Twenty-second Annual
Symposium on Computational Geometry, pp. 119–126 (2006)

[11] Cerri, A., Fabio, B.D., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multi-
dimensional persistent homology are stable functions. Mathematical Methods in
the Applied Sciences 36(12), 1543–1557 (2013)

[12] Lesnick, M., Wright, M.: Interactive visualization of 2-D persistence modules.
arXiv preprint arXiv:1512.00180 (2015)

[13] Buchet, M., Escolar, E.G.: Every 1D persistence module is a restriction of some
indecomposable 2D persistence module. Journal of Applied and Computational
Topology 4, 387–424 (2020)

[14] Dey, T.K., Kim, W., Mémoli, F.: Computing generalized rank invariant for 2-
parameter persistence modules via zigzag persistence and its applications. In:
38th International Symposium on Computational Geometry, SoCG 2022, June
7-10, 2022, Berlin, Germany. LIPIcs, vol. 224, pp. 34–13417 (2022)

[15] Bauer, U., Schmahl, M.: Efficient computation of image persistence. arXiv
preprint arXiv:2201.04170 (2022)

[16] Botnan, M.B., Oppermann, S., Oudot, S.: Signed barcodes for multi-parameter
persistence via rank decompositions. In: 38th International Symposium on Com-
putational Geometry (SoCG 2022) (2022). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik

[17] Landi, C.: The rank invariant stability via interleavings. In: Research in Compu-
tational Topology, pp. 1–10. Springer, ??? (2018)

[18] McCleary, A., Patel, A.: Bottleneck stability for generalized persistence diagrams.
Proceedings of the American Mathematical Society 148(733) (2020)

[19] Botnan, M., Lesnick, M.: Algebraic stability of zigzag persistence modules.
Algebraic & geometric topology 18(6), 3133–3204 (2018)

[20] Azumaya, G.: Corrections and supplementaries to my paper concerning krull-
remak-schmidt’s theorem. Nagoya Mathematical Journal 1, 117–124 (1950)

[21] Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence

26



modules. Journal of Algebra and its Applications 14(05), 1550066 (2015)

[22] Lesnick, M.: The theory of the interleaving distance on multidimensional per-
sistence modules. Foundations of Computational Mathematics 15(3), 613–650
(2015)

[23] Betthauser, L., Bubenik, P., Edwards, P.B.: Graded persistence diagrams and
persistence landscapes. Discrete & Computational Geometry 67(1), 203–230
(2022)

[24] Morozov, D.: Homological Illusions of Persistence and Stability

[25] Hickok, A.: Computing persistence diagram bundles. arXiv preprint
arXiv:2210.06424 (2022)

[26] Bauer, U., Lesnick, M.: Induced matchings and the algebraic stability of persis-
tence barcodes. Journal of Computational Geometry 6(2), 162–191 (2015)

27


	Introduction
	Preliminaries
	Meta-Rank
	Meta-Diagram
	Equivalence With Rank Decomposition via Rectangles
	Stability of Meta-Diagrams

	Algorithm
	Overview of the Algorithm
	Visualization Example

	Discussion
	Acknowledgments
	Data Availability Statement


	Detailed Proofs on Stability Results
	Details for Meta-Rank Stability
	Details Meta-Diagram Stability


