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Abstract A key challenge in the study of a time-varying vector fields is to resolve
the correspondences between features in successive time steps and to analyze the
dynamic behaviors of such features, so-called feature tracking. Commonly tracked
features, such as volumes, areas, contours, boundaries, vortices, shock waves and
critical points, represent interesting properties or structures of the data. Recently,
the topological notion of robustness, a relative of persistent homology, has been in-
troduced to quantify the stability of critical points. Intuitively, the robustness of a
critical point is the minimum amount of perturbation necessary to cancel it. In this
chapter, we offer a fresh interpretation of the notion of feature tracking, in particu-
lar, critical point tracking, through the lens of robustness. We infer correspondences
between critical points based on their closeness in stability, measured by robustness,
instead of just distance proximities within the domain. We prove formally that ro-
bustness helps us understand the sampling conditions under which we can resolve
the correspondence problem based on region overlap techniques, and the unique-
ness and uncertainty associated with such techniques. These conditions also give
a theoretical basis for visualizing the piecewise linear realizations of critical point
trajectories over time.

1 Introduction

A number of techniques have been proposed to define, extract and track features
from vector field data [22, 26]. There are many different types of tracked features
including volumes, contours, and vortices, which represent interesting properties or
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structures of the vector fields. In this chapter, we restrict ourselves to critical points
[36, 37, 35, 12, 19, 13, 26] and sublevel sets. Feature tracking, which is initially
inspired by object tracking in computer vision [42], has been intensively researched
where most techniques could be classified into three categories [26]. The first ap-
proach does not rely on temporal interpolation but focuses on feature extractions
at individual time slices and subsequently feature matching via region correspon-
dences or attribute correspondences [22]. Correspondences could be found based
on distance proximity [16, 28], attribute similarity [28], or spatial overlap of fea-
tures [31, 30, 32], or alternatively, using prediction and verification [23, 24, 25, 29].
Level sets components volume overlap has been proposed in tracking contour tree
evolution [34] and contour tree matching [20]. The second approach is based on
temporal interpolation and considers time as an additional dimension of the space-
time domain. Iso-surfaces are extracted and tracked in 4D space-time in scalar field
[40, 17], and for vortex tracking in scale space [1]. Topological structures, such as
Reeb graphs [8, 39], and Jacobi sets [7], could be employed in feature tracking (and
specifically critical point tracking [8]). Temporal linear interpolation in combina-
tion with critical points tracking in 2D and 3D flow fields have been developed in
[37, 12]. The third approach represents the dynamic behavior of features as stream-
lines of a higher-dimensional vector field, called feature flow fields [35, 41], with
combinatorial extensions developed in [18, 26]. Critical points are tracked by com-
puting streamlines using combinatorial feature flow fields [26], whose importance
measure, referred to as integrated persistence, combines spatial persistence of a crit-
ical point along its temporal dimension.

Among these various feature tracking approaches, tracking the temporal evolu-
tion of critical points (and their corresponding sublevel sets) plays an important
role in understanding the behavior of time-varying vector fields. Recently, the topo-
logical notion of robustness [11, 5, 6], a relative of persistent homology, has been
introduced to quantify the stability of critical points [5, 38]. Intuitively, the robust-
ness of a critical point is the minimum amount of perturbation necessary to cancel
it. It has been shown to be useful for vector field analysis, visualization [38] and
simplification [33]. The work in [27] also strongly advocated the need for impor-
tance measures for critical points and proposed such a measure closely related to
persistence. Although robustness is also closely related to persistence, in the sense
that the robustness of features in level and interlevel sets, quantified through well
groups, can be read off the persistence diagram of the function [2]; however in more
general settings the reduction from robustness to persistence is not known and the
authors in [11] have conjectured that robustness may sit somewhere between the
1-parameter notion of persistence and its multi-parameter generalization [3].

In this chapter, we offer a fresh interpretation of the notion of feature tracking,
in particular, critical point tracking, through the lens of robustness. We obtain our
theoretical results by relating critical points tracking with their stability. That is, in a
nutshell, stable critical points could be tracked more easily and more accurately. We
prove formally that robustness can help us understand the sampling conditions under
which we can resolve the correspondence problem based on commonly used region
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correspondence techniques. (e.g. [31, 32, 30, 34, 20]). It also gives a theoretical basis
for visualizing the piecewise-linear (PL) realizations of critical point trajectories.

2 Background

We provide the relevant background for well groups [5, 6] and degree theory. In
particular, we review the notion of static robustness and its properties explicitly
stated in [38]. The main components for proving our results rely on these properties,
as well as the Stability Theorem of Well Diagrams.
Degrees. In a 2D vector field, the degree of a critical point x, denoted as deg(x),
equals its Poincaré index. Sources and sinks have a degree of +1 while saddles have
a degree of −1. A path-connected component C in the domain that encloses a set
of critical points {xi} has a degree that sums the degrees of the individual critical
points: deg(C) = ∑i deg(xi). For the formal definition of the degree of a continuous
mapping see [14] (page 134) and [6].
Merge tree. Given a continuous 2D vector field f : R2 → R2, we define a scalar
function f0 : R2→R such that the value at each point x ∈R2 is the Euclidean norm
of the vector field at x, f0(x) = || f (x)||2. Let Fr = f−1

0 (−∞,r] be the sublevel set
of f0 for some r ≥ 0. A value r > 0 is a regular value of f0 if Fr is a 2-manifold,
and for all sufficiently small ε > 0, f−1

0 [r− ε,r+ ε] deformation retracts to f−1
0 (r);

otherwise it is a critical value. We further assume f0 has a finite number of critical
values and f has finite number of critical points (that is, the number of components
in F0 is finite).

We construct a merge tree (or a join tree [4]), which tracks the (connected) com-
ponents of Fr as they appear and merge, as we increase r from 0 (or −∞). This
corresponds to the 0-dimensional persistent homology [9] of the sublevel set filtra-
tion of f0. The leaves of the tree represent the creation of a component while the
root represents the entire domain of f0. An internal node represents the merging of
two or more components. We then assign an integer to each node in the tree that
record the degree of the corresponding component in the sublevel set. The degree of
any such component is determined by the sum of degrees of the critical points lying
in it [5].
Well groups and well diagrams. To understand the concepts of well groups and
well diagrams first introduced in [10], we need to introduce our particular notion
of vector field perturbation. Let f ,h : R2→ R2 be two continuous 2D vector fields.
A continuous mapping h is an r-perturbation of f , if the distance between the two
mappings d( f ,h) := supx∈R2 || f (x)−h(x)||2 ≤ r.

As we track the connected components over a filtration (the sublevel set of f0)
at each value of r, we are computing the 0-dimensional homology groups over a
field. These groups are vector spaces whose ranks equal the number of components
presented in the associated sublevel sets. Furthermore, if h is an r-perturbation of
f , then H0 = h−1(0) is a subspace of Fr. The 0-dimensional homology groups
are denoted as H(H0) and H(Fr). The subspace relation induces a linear map
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jh : H(H0)→ H(Fr) between the two vector spaces. The well group, U(r), is the
subgroup of H(Fr), whose elements belong to the image of each jh, for all r-
perturbation h of f [5]. That is, U(r) =

⋂
h im jh. Intuitively, an element in U(r) is

considered a stable element in H(Fr) if it does not disappear with respect to any per-
turbation. The rank of U(0) is the number of critical points of f . A point r ∈ (0,∞)
belongs to the well diagram of f0, Dgm( f0), with multiplicity k if the rank of the
well group drops by k at r [5]. For reasons of stability, the point 0 is counted with
infinite multiplicity. The point ∞ is counted with multiplicity k if for all sufficiently
large values of r, the rank of U(r) is k. An algorithm to compute the well diagram is
suggested by the Equivalence Theorem [5]. It states that, if r is a regular value of f0,
then the rank of the well group U(r) is the number of components C of Fr such that
deg(C) 6= 0. We demonstrate by an example below that the constructed augmented
merge tree is sufficient to derive its corresponding well diagram.
Stability of well diagrams. We now introduce the notion of stability for the
well diagrams. Let f ,g : R2 → R2 be two vector fields. Construct a bijection
µ : Dgm( f0)→Dgm(g0) that maps the kth highest point in Dgm( f0) to the kth high-
est point in Dgm(g0). Since the point 0 in each well diagram has an arbitrary multi-
plicity, by choosing the appropriate multiplicities for 0, µ becomes a bijection. The
bottleneck distance between Dgm( f0) and Dgm(g0) is W∞(Dgm( f0),Dgm(g0)) =
supa∈Dgm( f0) |a−µ(a)|. The Stability Theorem of Well Diagrams [11] states that the
bottleneck distance between two well diagrams is bounded by the distance between
the mappings, that is, W∞(Dgm( f0),Dgm(g0))≤ d( f ,g).
Static robustness and its properties. The static robustness of a critical point is
the height of its lowest degree zero ancestor in the merge tree [5, 38]. The static
robustness quantifies the stability of a critical point with respect to perturbations of
the vector fields through the following lemmas first introduced in [38]. Both lemmas
are illustrated in Figure 1.

x

C ✓ Fr+� f h

(a)

x

f hC ✓ Fr��

(b)

Fig. 1 Illustrations for (a) Lemma 1 and (b) Lemma 2.

Lemma 1 (Critical Point Cancellation [38]). Suppose a critical point x of f has
static robustness r. Let C be the connected component of Fr+δ containing x, for an
arbitrarily small δ > 0. Then, there exists an (r+δ )-perturbation h of f , such that
h−1(0)∩C = /0 and h = f except possibly within the interior of C.
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Lemma 2 (Degree and Critical Point Preservation [38]). Suppose a critical point
x of f has static robustness r. Let C be the connected component of Fr−δ con-
taining x, for some 0 < δ < r and r− δ being a regular value. Then for any ε-
perturbation h of f where ε ≤ r−δ , the sum of the degrees of the critical points in
h−1(0)∩C is deg(C). Furthermore, if C contains only one critical point x, we have
deg(h−1(0)∩C) = deg(x). In other words, there is no ε-perturbation (ε ≤ r− δ )
that could cancel the critical point in C; that is, x is preserved.

Example. We illustrate the above concepts through an example shown Figure 2
adapted from [38]. A 2D vector field f (on the left) contains four critical points, a
sink x1 (red), a source x3 (green), and two saddles x2 and x4 (blue). Its corresponding
mapping f0 has three critical values, denoted as r1,r2 and r3, respectively. The merge
tree (on the right) tracks the components of the sublevel sets Fr as they appear and
merge, as r increases from 0. We use α , β , γ etc. to represent components of certain
sublevel sets at the critical values. At r = 0, four components α1 to α4 appear that
correspond to the four critical points. At r = r1, components represented by α1 and
α2 merge into a single component represented by β1, which has degree zero. The
number of components with non-zero degree drops from four to two, this is reflected
by two points in the well diagram Dgm( f0) with value r1. Then at r = r3 the number
of components with non-zero degree drops from two to zero, this corresponds to two
points in Dgm( f0) with value r3. By definition, the static robustness of the critical
points x1, x2, x3, and x4 are r1, r1, r3, and r3, respectively.

3 Critical Point and Sublevel Set Tracking Through the Lens of
Robustness

In practice, we do not have access to a continuous time-varying 2D vector field,
but rather a dataset consists of a discrete number of snapshots at different points
in time. This means that to track vector fields features (i.e. critical points and sub-
level sets) we must first resolve the correspondence problem. That is, determining
the correspondences between the critical points and sublevel sets in successive time
steps, that actually represent the same object at different times [22]. In this sec-
tion, we prove formally that robustness helps us understand the sampling conditions
under which we can resolve the correspondence problem based on region overlap
techniques, and the uniqueness and uncertainty associated with such techniques.

The stability of well diagrams and the properties associated with (static) ro-
bustness allow us to give a theoretical underpinning to this approach by requiring
that the vector field changes slowly enough and then treating adjacent time steps
as small perturbations of each other. We assume that the underlying time-varying
vector field is c-Lipschitz and that we have an ε-sampling in space and time. It
follows that the vector fields at each time steps are cε-perturbations of each other.
Formally, suppose f : X ⊆ R2 → R2 is a c-Lipschitz function. That is, ∀x,x′ ∈ X,
|| f (x)− f (x′)||2 ≤ c||x− x′||2. Given a triangulation K of X and f valued at its
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Fig. 2 Figure adapted from [38]. Top, vector field f (left) and relations among components of Fr
(right). Bottom, augmented merge tree (left) and its well diagram (right).

vertices, we could linearly interpolate over its simplexes (that is, edges and trian-
gles) resulting in a continuous function f̂ : |K| → R2 [5]. If vertices P in K are
ε-sampling of X (namely, ∀x ∈ X, d(x,P) := infy∈P ||x− y||2 ≤ ε), then we have
∀x ∈ X, || f (x)− f̂ (x)||2 ≤ cε . This observation allows us to move from continuous
to the piecewise-linear (PL) setting by noting that for a c-Lipschitz function, a linear
interpolation between samples results in an error of at most cε from the true under-
lying function. As a consequence of the Stability Theorem of Well Diagrams, we
have,

Lemma 3 (Triangulation Lemma [5]). The bottleneck distance between the well
diagrams of f and the PL interpolation f̂ is bounded by W∞(Dgm f ,Dgm f̂ )≤ cε.

In the time varying setting, to accommodate the additional dimension of time we
make a small change of notation by referring to f : X×R→ R2 as a time-varying
2D vector field over domain X ⊆ R2, where ft(x) = f (x, t) : X→ R2 represents a
2D vector field at time t ∈ R. For notational simplicity we assume we have an ε-
sampling and that the Lipschitz constant is c in the time domain as well. That is,
∀x ∈ X, || ft(x)− ft+ε(x)||2 ≤ cε .
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We now give guarantees on the correspondence of critical points across time
slices with respect to robustness. We assume that we have a PL-interpolation of the
c-Lipschitz time-varying vector field built on certain ε-sample. The proofs do not
depend on this interpolation but rather require a bound on the error from approx-
imating the underlying function. Better interpolation methods will lead to better
approximations and therefore better constants in the theoretical guarantees.

We introduce some additional notation. Recall f : X×R→ R2 is a time-varying
2D vector field over domain X, and ft(x) = f (x, t) : X→ R2 represents a 2D vector
field at time t. A crucial concept is the sublevel set of the Euclidean norm of ft ,
|| ft(x)||2. Let Ct(δ ) = {x ∈ X | || ft(x)||2 ≤ δ} denote its sublevel set for any δ >
0 whose degree is non-zero, see Figure 3(a). If we consider a specific connected
component of Ct(δ ), we denoted it by Ci

t(δ ). Furthermore, let zt = Ct(0) = {x ∈
X | || ft(x)||2 = 0} represent the set of critical points. When considering a single
critical point in the set we will add an index to the notation (e.g. zi

t ). We begin

Ct(�)

+1 �1
+1

+1 +1�1

ft ft+✏

Ct+✏(�)

(a) (b)

Ct(�)

ft

Fig. 3 (a) Definition of Ct(δ ): sublevel set with non-zero degree. (b) Illustration for Lemma 4.

our discussion of correspondence by making the following observation: the critical
points with high robustness in two adjacent time steps must be contained in the
interior of the intersection of the corresponding sublevel sets. Formally,

Lemma 4 (Critical Points Containment). For two adjacent time steps of the
vector field ft , ft+ε : X → R2, the critical points in both time steps belong to
int(Ct(δ )∩Ct+ε(δ )) for all δ > cε .

Proof. The lemma is illustrated in Figure 3(b). Consider Ct(δ ), the sublevel set
of ft , where δ > 0. By the Lipschitz assumption, ∀x ∈ X, || ft(x)− ft+ε(x)||2 ≤
cε . It follows that ∀δ > cε , the critical points in ft , zt = Ct(0) ⊆ Ct+ε(cε) ⊂
Ct+ε(δ ), and the critical point in ft+ε , zt+ε = Ct+ε(0) ⊆ Ct(cε) ⊂ Ct(δ ). On the
other hand, zt = Ct(0) ⊂ Ct(δ ) and zt+ε = Ct+ε(0) ⊂ Ct+ε(δ ). Hence, zt ,zt+ε ⊆
int(Ct(δ )∩Ct+ε(δ )).

Lemma 4 states that critical points are contained in intersections across time
steps. While this is an important observation, it does not imply correspondence. The
argument we would ultimately like to make is that we can find correspondences
between two adjacent time slices represented by a (bounded)-homotopy. Recall a
homotopy between two continuous functions that map between topological spaces,
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ft , ft+ε : X→ R2, is defined to be a continuous function H : X× [0,1]→ R2, such
that ∀x ∈ X, H(x,0) = ft(x) and H(x,1) = ft+ε(x). We then use hs(x) = H(x,s) :
X→ R2 (s ∈ [0,1]) to represent intermediate time slices. Such a homotopy is δ -
bounded (or has a maximum deformation of at most δ ), if ∀x ∈X and ∀s,s′ ∈ [0,1],
||hs(x)−hs′(x)||2 ≤ δ . Figure 4(a) gives an illustration.

ft ft+✏

[0, 1]
(a) (b)

ft ft+✏

[0, 1]

hs0(x)

hs hs0

hs(x)
 �

Fig. 4 Illustrations of (a) bounded-homotopy and (b) δ -tube.

In order to obtain a correspondence, we will need to impose some further con-
ditions. First we formally define a correspondence. A δ -correspondence between a
pair of critical points is defined such that there exists a δ -bounded homotopy which
maps the points to each other. Formally, there is a δ -correspondence between critical
points p ∈ zt and q ∈ zt+ε if there exists a δ -bounded homotopy H between ft and
ft+ε , such that H−1(0) contains a continuous path embedded in X× [0,1]⊂R3 that
connects p with q. We refer to such a path as the critical path. A construction we
will make use of is the straight-line homotopy. For two functions, ft , ft+ε : X→R2,
we define their straight-line homotopy as

ft+sε(x) = hs(x) = (1− s) ft(x)+ s ft+ε(x) 0≤ s≤ 1, ∀x ∈ X (1)

First, we examine a simple situation, which we refer to as the unique intersection.
We assume a component at time t intersects with only one component at time t + ε

and vice versa. Formally we say that, for a single component Ci
t(δ ) in Ct(δ ), there

exists only a single component C j
t+ε(δ ) in Ct+ε(δ ) such that they intersect; and for

C j
t+ε(δ ), the only component it intersects in Ct(δ ) is Ci

t(δ ).

Lemma 5 (Critical Points Correspondence Under Unique Intersection). For
δ > cε , let Ci

t(δ ) and C j
t+ε(δ ) be components of the δ -sublevel sets with a unique

intersection. If there exists a unique δ -robust critical point in each component, de-
noted as x and y respectively, then they are in correspondence.

The lemma is illustrated in Figure 5(a). The main idea behind its proof is to construct
a (δ +cε)-bounded homotopy that maps x to y by considering tubular neighborhood
surrounding the parametrized curve connecting x and y as shown in Figure 5(b).

Proof. Let I =Ci
t(δ )∩C j

t+ε(δ ) and U =Ci
t(δ )∪C j

t+ε(δ ). Suppose I 6= /0. Sup-
pose both points x and y are δ -robust, that is, they have static robustness greater or
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ft+✏

Cj
t+✏(�)

y

ft

Ci
t(�)

x

x

y

ft ft+✏

[0, 1]
(a) (b)

Fig. 5 (a) Illustration of Lemma 5 and (b) the main idea behind its proof.

equal to δ . First, based on the unique intersection condition, by Lemma 4, both x and
y are contained in I . Second, we claim that U \Ci

t(δ ) (and U \C j
t+ε(δ ) symmet-

rically) contains no critical points. Suppose there is a critical point x′ ∈ U \Ci
t(δ ),

since x′ /∈ Ci
t(δ ), then either (a) x′ ∈ Ci′

t (δ ) for some i′ 6= i, or (b) || ft(x′)||2 > δ .
(a) is impossible as it violates the unique intersection condition. For (b), based
on Lipschitz condition and the reverse triangle inequality, we have || ft+ε(x′)||2 ≥
|| ft(x′)||2−|| ft(x′)− ft+ε(x′)||2 > δ − cε > 0. Hence x′ cannot be a critical point.

For the rest of the proof, we need to show that x and y are in correspondence,
by constructing the desired homotopy. We also claim that such a homotopy is (δ +
cε)-bounded. First, we construct a critical path. Since both x,y ∈U , there exists a
parametrized continuous curve γ in U that connects these two points. That is, γ :
[0,1]→X where γ(0) = x and γ(1) = y. Such a curve could be “lifted” to X× [0,1]
by defining a parametrized curve γ∗ : [0,1]→ X× [0,1] where γ∗(t) = γ(t)× t, for
0≤ t ≤ 1. This constitutes the desired critical path between x and y in H−1(0)⊂R3.
Our goal now is to define a continuous homotopy based on such a critical path. Such
a process is shown in Figure 6(a).

x

y

�⇤

Ns
� N

U U

ft ft+✏

(a) (b)

Ns

�⇤

N

fs
fs

p

q
r

fs(q) = (1 � s)ft(q) + sft+✏(q)

fs(r) = �((1 � s)ft(q) + sft+✏(q))

fs(p) = 0z
�z

Fig. 6 (a) Constructing the homotopy for correspondence H : X× [0,1]→ R2. Here we show two
time slices at t and t + ε . U ⊂ X is represented as a rectangle. The path between critical points x
and y is γ ⊂ U . It is “lifted” to a parametrized curve γ∗ ⊂ X× [0,1] ⊂ R3, with N as its tubular
neighborhood. (b) Spatial interpolation within Ns that linearly interpolate between its boundary
and its center. λ is the scaling parameter used in the interpolation, where 0≤ λ ≤ 1.

Second, we consider a tubular neighborhood N ⊂R3 of γ∗. Such a neighborhood
intersects each time slice X×s at Ns, ∀s∈ [0,1], where Ns⊂X contains a zero center
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that is the intersection between γ∗ and the time slice. We introduce a spatial interpo-
lation within each Ns that linearly interpolate between its boundary and the center.
This is shown in Figure 6(b). Third, we are ready to construct the desired homotopy
with guaranteed continuity. To do so, we rewrite the straight-line homotopy for a
fixed z ∈X as αz(s) : [0,1]→R2, where αz(s) = (1− s) ft(z)+ s ft+ε(z). We further
define a curve βz for a fixed z ∈ X, such that, βz : [0,1]→ z× [0,1]. We define our
homotopy H : X× [0,1]→ R2 as follows. ∀z ∈ X: (a) If βz does not intersect N or
it only intersects N on its boundary point (non-transversal intersection), we use the
straight-line homotopy, that is, H(z,s) = αz(s) for 0 ≤ s ≤ 1; (b) If βz intersects N
transversally (by entering N at time s′ and existing N at time s′′), then H(z,s) is de-
fined to be αz(s) for s∈ [0,s′]∪ [s′′,1], otherwise, it respects the spatial interpolation
within the interior of N for s ∈ (s′,s′′). In case (a) and (b), the maximum deforma-
tion at any point z ∈X during the homotopy is at most cε and (δ +cε) respectively.
Finally, since x and y are the only δ -robust critical points within their respective
components, the uniqueness conditions imply that this is the only possible choice of
correspondence.

Remark 1. Much of the complication in constructing the above homotopy is dealing
with the tubular neighborhoods to ensure the mapping is continuous. and there-
fore a homotopy. It is important to note that although the maximum deformation of
such a homotopy is bounded, its Lipschitz constant is not. Controlling the Lipschitz
constant of such a homotopy is a far more difficult problem. We merely impose a
Lipschitz constant on the time-varying vector field to ensure validity of the approx-
imation, whereas here we demonstrate the existence of a possible correspondence.

Now we extend the above lemma to cases without the uniqueness intersection as-
sumptions. We make the following claim regarding many-to-many correspondences
among critical points with large robustness. We consider the following statement
a major contribution in rethinking and treating correspondence problem under the
robustness framework. The key point is that we relax the uniqueness condition on
the intersections. With this we lose the guarantee on uniqueness of the map, but we
show that for any choice among possible correspondences, there exists a homotopy.

Lemma 6 (Robust Critical Points Correspondence). There exists a (δ + cε)-
bounded homotopy between δ -robust critical points between time slices, from which
a correspondence could be obtained.

The idea is the behind the proof is illustrated in Figure 7. Here, we consider case
(a) where the sublevel sets have unique intersection, however there may be mul-
tiple δ -robust critical points in each component; and case (b) where the sublevel
sets do not have unique intersection. In case (a), we choose the desired correspon-
dence by constructing the critical paths which are no longer unique. In case (b), we
require that a path exists between critical points. There are many choices of cor-
respondences (under the restriction that the corresponding points are distinct), our
proposed homotopy construction works for any of them.
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Case (a) Case (b)

ft ft+✏

[0, 1]

Fig. 7 Illustration of the main proof idea behind Lemma 6.

Proof. In case (a), suppose we still have unique intersection condition, however
there exist multiple δ -robust critical points in each component. All the arguments
from Lemma 5 hold except now we must first choose the desired correspondences
by constructing critical paths (which are no longer unique). We also need to add
some discussions, since for a fixed choice of correspondences, we have multiple
critical paths and their corresponding tubular neighborhoods. In generic situations,
we suppose all such critical paths with arbitrarily small tubular neighborhoods do
not intersect during the construction of the homotopy. Therefore although the con-
structed homotopy might be more complicated (where βz for a fixed z may intersect
multiple neighborhoods), it remains continuous and bounded.

In case (b), suppose the unique intersection condition no longer holds. In the
construction of the above homotopy, we require only that a path γ exists (in the union
of components, i.e. U ) between critical points. Without the uniqueness assumption,
we have many choices of correspondences, and the homotopy construction works
for any of them (under the restriction that the corresponding points are distinct). To
complete the proof, we need only to check that a path γ exists, such that, ∀x ∈ γ ,
|| ft(x)||2 ≤ (δ + cε) and || ft+ε(x)||2 ≤ (δ + cε). This follows from the Lipschitz
assumptions.

Robustness also provides guarantees on the critical paths, that is, trajectories of
critical points trace over time. To make a precise statements, we define the notion of
δ -tube and its PL counterpart. A δ -tube is a (connected) component in the collection
of δ -sublevel sets between two adjacent discrete time steps based on straight-line
homotopy. Let Cs(δ ) be connected components of the δ -sublevel set at time s. Sup-
pose ft and ft+ε are two adjacent time steps. A δ -tube is defined as a component
in

⋃
s∈[t,t+ε]Cs(δ ). This is illustrated in Figure 4(b). Given the i-th δ -tube between

times t and t + δ , without loss of generality, we denote each of its time slice as
Ci

s(δ ). Note that splitting and merging is possible with a given δ -tube.
A PL δ -tube is similarly defined but is based on the straightline homotopy of PL

interpolations at each time step. Correspondingly, each of its time slice is denoted
as Ĉi

s(δ ), for t ≤ s ≤ t + ε . The following lemma states conditions under which a
δ -tube contains a critical path.
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Lemma 7 (Critical Paths Containment). For a c-Lipschitz time-varying vector
field and any δ > cε , if a critical path between two δ -robust critical points ex-
ists, it will be completely contained within a δ -tube between the two time slices ft
and ft+ε .

Proof. The lemma is illustrated the same way as in Figure 5(b). Suppose a critical
path γ leaves the i-th δ -tube at some time s (t ≤ s ≤ t + ε). This implies that there
exists a critical point p ∈ zs that continuously moves outside of the δ -tube at time
s. This means p /∈Ci

s(δ ), therefore fs(p) ≥ δ . There are two cases: (a) the critical
point re-enters the i-th δ -tube at time s′ and stays inside the tube until time t + ε;
and (b) the critical point enters a different δ -tube (i.e. the j-th δ -tube) at time s′ and
never returns back to the i-th δ -tube, where s < s′ < t + ε .

In case (a), we consider the particular scenario where (s′− s) approaches zero,
by the Lipschitz assumption, p ∈ Ci

t(c(s− t)) and p ∈ Ci
t+ε(c(t + ε − s)). Based

on Lemma 4, p ∈ Ci
t(c(s− t))∩Ci

t+ε(c(t + ε − s)). The Lipschitz condition also
implies that the function value at p based on straight-line homotopy at time s is,
fs(p)≤min{2c(s−t),2c(t+ε−s)}. The above upper bound achieves its maximum
when s = t + ε/2, where fs(p)≤ cε . Since δ > cε , this contradicts the assumption
that fs(p)≥ δ . So case (a) is not possible.

In case (b), suppose the critical point leaves Ci
s(δ ) and enters C j

s′(δ ), where s< s′.
Lemma 4 implies the critical point belongs to Ci

s(δ )∩C j
s′(δ ), and in addition, it

belongs to any Ci
s(δ )∩C j

s′(δ ) as (s′− s) approaches zero. This contradicts the fact
that Ci

s(δ ) and C j
s′(δ ) originate from non-intersecting δ -tubes. Therefore case (b)

does not hold either.

Corollary 1 (PL Critical Paths Containment). For a c-Lipschitz time-varying vec-
tor field and any δ > cε , if a critical path between two δ -robust critical points exists,
it will be completely contained within a PL (δ +cε)-tube between the two time slices
ft and ft+ε .

Proof. This follows directly from Lemma 7, since Ci
s(δ )⊆ Ĉi

s(δ + cε) for all s and
i. Therefore since the critical path is included in the δ -tube, it follows that it is
included in the PL (δ + cε)-tube.

To prove the above inclusion, this property holds at the end points (s = t and
s = t + ε) of the straight-line homotopy based on the c-Lipschitz assumption and
ε-sampling. Because the straight-line homotopy is a convex combination of the end
points, it holds at any point in between as well.

Remark 2. The above lemmas prove that regardless of the (possibly unknown) un-
derlying changes of the vector field, the critical paths of the vector fields for robust
critical points are contained inside some δ -tubes, which implies that the straight-line
homotopy roughly captures the behavior of the critical paths.
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Now we have addressed critical points correspondences and critical paths con-
tainments, we would like to address the problem of sublevel set correspondence, as
shown in the following lemma and illustrated in Figure 8(a)-(b) where critical point
x in ft corresponds to y in ft+ε .

Lemma 8 (Sublevel Set Unique Correspondence). For δ > cε , suppose Ci
t(δ ) and

C j
t+ε(δ ) are two components of Ct(δ ) and Ct+ε(δ ) respectively such that their in-

tersection contains critical points. If there are no merge events in [δ − cε,δ + cε]
(within the merge trees) between times t and t + ε , the map induced between these
pairs of components is unique. In other words, the correspondences between con-
nected components in Ct(δ ) and Ct+ε(δ ) whose intersections contain critical points
are unique.

ft ft+✏

Ct(�)
Ct+✏(�)

� � c✏
� + c✏

x

y
Ci

t(0)

Ci
t(� � c✏)

(a)

(c) (b)

Cj
t+✏(c✏)

Cj
t+✏(�)

Fig. 8 (a)-(b): Illustration of Lemma 8. (c) Diagram in its proof.

Proof. Since there are no merge events in [δ −cε,δ +cε] between times t and t+ε ,
components can neither merge nor split apart. First we show that each connected
component Ci

t(δ ) has intersection with at least one connected component C j
t+ε(δ ).

For every i, there exists a j such that we can obtain the diagram in Figure 8 (c), where
all the maps are inclusions. Three of these inclusions are obvious. We prove the in-
clusion exists for Ci

t(δ−cε)→C j
t+ε(δ ). Suppose there exists a point p∈Ci

t(δ−cε)

but p /∈ C j
t+ε(δ ). This implies that ft+ε(p) > δ and ft(p) ≤ δ − cε . This violates

the Lipschitz assumption at p. The above diagram implies that for every i, there ex-
ists a j such that Ci

t(δ )∩C j
t+ε(δ ) 6= /0, and their intersection contains critical points

(referred to as non-zero intersections). Thus there is a possible correspondence be-
tween these two components. To show such a correspondence is unique, we claim
that if there were additional intersections, i.e., with a connected component Ck

t+ε(δ ),
this would imply a merge/splitting event in the required interval (between C j

t+ε(δ )

and Ck
t+ε(δ )). Assume that both C j

t+ε(δ ) and Ck
t+ε(δ ) have a non-zero intersection

with Ci
t(δ ), it follows by Lipschitz assumptions that there exists a path γ ⊂ Ci

t(δ )

connecting C j
t+ε(δ ) and Ck

t+ε(δ ), such that ∀x ∈ γ , || ft+ε(x)||2 ≤ δ + cε . However
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this implies that the two components merge in the interval [δ − cε,δ + cε] which
contradicts our assumption. Therefore, we conclude there cannot be two compo-
nents C j

t+ε(δ ) and Ck
t+ε(δ ) with a non-zero intersection with Ci

t(δ ), making the
map unique.

4 Experiments

We demonstrate robustness-based critical point tracking on three real world datasets,
which are extracted from consecutive time slices of 2D time-varying vector fields.
The first two datasets, OceanA and OceanB, come from top layers of the 3D sim-
ulation of global oceanic eddies [21] for 350 days in the year 2002. We extracted
tiles from this simulation data, representing the flow in the central Atlantic Ocean
for OceanA (resolution 60× 60), south Atlantic Ocean for OceanB (resolution
100×100), and construct standard triangulations on the point samples. We use time
slices #21310 and #21311 for OceanA, and #20710 and #20711 for OceanB. Our
third dataset CombustionC is taken from the simulation of homogeneous charge
compression ignition (HCCI) engine combustion [15]. The domain has periodic
boundary and is represented as a 640×640 regular grid. The 2D time-varying vector
field consists of 299 time-steps with a time interval of 10−5 seconds. We selected
time slices #173 and #174 from this data.

The critical points correspondences based on robustness are shown in Figure 9.
Suppose we use PL interpolation between time slices. Our theoretical results rely
on the quantity cε , which depends on our prior knowledge of the datasets, or some
form of estimation.

First, suppose cε is equal to the magnitude of the maximum observed differ-
ence in the vector fields of the two adjacent time slices t1 and t2, δ = supx || ft1(x)−
ft2(x)||2. That is, let cε = δ . For OceanA (a)-(b), we illustrate the components of
the sublevel set at cε that contains critical points. Since cε is relatively large, based
on Lemma 5, the components (pointed by white solid arrows) in (a)-(b) have unique
intersection and each contains a single critical point, therefore these critical points
correspond to one another. On the other hand, the blue points in t1 and t2 could
all potentially map to one another, creating a many-to-many correspondence sce-
nario. It appears that the single yellow point in t1 could potentially map to any of
the three points in t2 based on region overlap (or distance proximity, if all three
yellow points are moved even closer in distance). However, this is not true as we
investigate further in OceanA(c)-(d) by showing the components of the sublevel set
at the robustness values of each critical point. It is interesting to point out that the
points (pointed by white arrows) end up matching to each other uniquely based on
Lemma 5 since their robustness values are higher than cε , while the two unmatched
points (in the black components) are considered newly appeared. A similar situa-
tion occurs in OceanB(a)-(b). High robustness points have unique correspondences
(pointed by solid white arrows) and many low robustness points are matched un-
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(d) #21711

(c) #21710

#21310(a) #21310(c) #21310(e)

#21311(b) #21311(d) #21311(f)

(a) #21710 (e) #21710

(b) #21711 (f) #21711

#173

(a)

#174

(b)

Fig. 9 Tracking critical points correspondences based on robustness for OceanA (top), OceanB
(middle) and CombustionC (bottom). In each pair of pictures between time slices (e.g. (a) vs (b),
(c) vs (d), (e) vs (f)), the corresponding points are shown by the same color.
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der many-to-many (usually pair-to-pair) scenarios. Newly appeared critical points
(pointed by a hollow white arrow) at t2 are not matched and are shown in black.
In CombustionC(a)-(b), cε is quite small, therefore almost all points have unique
matches except for two low robustness pairs which are matched as pairs (pointed
by the hollow white arrows). Second, we can also measure the difference in vector
fields between t1 and t2 in local regions. We compute δ ∗ = supx∈Ω || ft1(x)− ft2(x)||2
for some Ω in the local neighborhoods of some critical points. Suppose the critical
points in the local regions Ω has robustness values higher than cε , then we could
further differentiate some of the many-to-many correspondence scenarios, and cre-
ate unique correspondences. Such conditions are met by OceanA and OceanB, as
shown in Figure 9 OceanA (c)-(d) and OceanB (c)-(d). For example, in the local re-
gions pointed to by the hollow white arrows, the critical points across t1 and t2 obtain
unique correspondences since their robustness values are higher than the amount of
vector field perturbation in their local neighborhoods. These correspondences are
shown without sublevel sets in OceanA (e)-(f) and OceanB (e)-(f) (black marks
points which are not matched). Finally, it is interesting to note that when critical
points leave the boundary or appear near fold bifurcations, they typically do not find
correspondences in the adjacent time slices (e.g. the black points shown in Figure
9).

5 Discussion

Feature tracking, especially critical point tracking, is crucial for understanding the
temporal behavior of time-varying vector fields. The theory of well groups allows
us to make rigorous statements under mild assumptions about the correspondences:
both when they are unique and when possible ambiguities exist. We infer corre-
spondences between critical points based on their closeness in stability, measured
by robustness, instead of just distance proximities within the domain. The correla-
tions among critical points with high robustness values inherently capture some core
structures of the time-varying vector field that is otherwise hidden due to the noise
associated with region correspondence techniques.

The stability of well diagrams and the bijection between the critical points and
the generators of the well groups serve as the motivation for viewing correspondence
through well group theory. First, the well diagrams of a vector field and its PL inter-
polation are close, making it possible to translate the language of well groups from
smooth to the PL setting in practice. Second, the bottleneck matching between two
well diagrams constructed from two temporally adjacent vector fields gives a bijec-
tive mapping between generators of the well groups (which are also the generators
of the 0-homology groups).

We show that robust generators are in some sense spatially stable, (namely, the
generators must lie in the intersection of the connected components at the two time
slices), and therefore there exist correspondences which respect the underlying ge-
ometry. The correspondences are not always unique since there may be several pos-
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sible mappings between the generators of the robust well groups and the robust
critical points. Static robustness captures this ambiguity making it possible to give
sufficient conditions on the uniqueness of correspondences. On the other hand, we
constructively show that whenever ambiguity exists, any of the possible correspon-
dences are valid choices. This brings up many interesting questions. For example,
does other criteria exist to choose the best correspondence from the set of possi-
ble correspondences? This may depend on the distance between the critical points,
preservation of the topological skeletons, etc.

One future research direction is the constructions of different homotopy. The
current construction, while bounded, is not guaranteed to be Lipschitz. It remains an
open question how to construct a homotopy with a controlled Lipschitz constant. A
second direction is the application of these methods to three dimensional and higher
dimensional vector field data. The theorems and proofs are general and generalize
to higher dimensions with minimal modification. Finally, the robustness framework
gives correspondences a natural sense of scale: if we allow larger perturbations,
more correspondences are possible. A natural question which arises is how to best
visualize possible correspondences in a clear and intuitive way.
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