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Abstract The topological notion of robustness introduces mathematically rigorous
approaches to interpret vector field data. Robustness quantifies the structural
stability of critical points with respect to perturbations and has been shown to be
useful for increasing the visual interpretability of vector fields. However, critical
points, which are essential components of vector field topology, are defined with
respect to a chosen frame of reference. The classical definition of robustness,
therefore, depends also on the chosen frame of reference. We define a new Galilean
invariant robustness framework that enables the simultaneous visualization of robust
critical points across the dominating reference frames in different regions of the
data. We also demonstrate a strong connection between such a robustness-based
framework with the one recently proposed by Bujack et al., which is based on the
determinant of the Jacobian. Our results include notable observations regarding the
definition of stable features within the vector field data.
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1 Introduction

Motivation. Understanding vector fields is integral to many scientific applications
ranging from combustion to global oceanic eddy simulations. Critical points of a
vector field (i.e., zeros of the field) are essential features of the data and play an
important role in describing and interpreting the flow behavior. However, vector
field analysis based on critical points suffers a major drawback: the interpretation
of critical points depends upon the chosen frame of reference. Just like the velocity
field itself, they are not Galilean invariant. Fig. 1 highlights this limitation, where
the critical points in a simulated flow (the von Karman vortex street) are visible only
when the velocity of the incoming flow is subtracted.

Fig. 1 Visualization of the flow behind a cylinder without (a) and with (b) the background flow
removed, where the colormap encodes the speed of the flow. For comparison, (c) shows the
corresponding Galilean invariant vector field introduced by Bujack et al. which is constructed
from the extrema of the determinant of the Jacobian. The Galilean invariant critical points are
marked with red nodes for vortices/sources/sinks and with blue nodes for saddles. Image courtesy
of Bujack et al. [2]. (d) Galilean invariant vector field constructed from the extended robustness.
The local maxima of the extended robustness field are marked with red nodes.

The extraction of meaningful features in the data therefore depends on a good
choice of a reference frame. Oftentimes, there exists no single frame of reference
that enables simultaneous visualization of all relevant features. For example, it is
not possible to find one single frame that simultaneously shows the von Karmén
vortex street from Fig. 1(b) and the first vortex formed directly behind the obstacle in
Fig. 1(a). To overcome such a drawback, a framework recently introduced by Bujack
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et al. [2] considers every point as critical and locally adjusts the frame of reference
to enable simultaneous visualization of dominating frames that highlight features
of interest. Such a framework selects a subset of critical points based on Galilean
invariant criteria, and visualizes their frame of reference in their local neighborhood.
Galilean invariance refers to the principle that Newton’s laws hold in all frames
moving at a uniform relative velocity. Thus, a Galilean invariant property is one that
does not change when observed in different frames with uniform motion relative to
each other. The extrema of the determinant of the Jacobian are particular examples
of Galilean invariant critical points [2], and they simultaneously capture all relevant
features in the data, as illustrated in Fig. 1(c). The intuition is that the determinant
of the Jacobian determines the type of critical point, and since the Jacobian is
Galilean invariant, its extrema (with a magnitude away from zero) correspond to
stable critical point locations where small perturbations in the field do not change
their types. Such Galilean invariant critical points, in general, do not overlap with
the classical zeros of the vector fields; however, each has a frame of reference in
which it is a zero of the field. Such a perspective is useful in revealing features
beyond those obtainable with a single frame of reference (e.g., Fig. 1(c)).

The topological notion of robustness, on the other hand, considers the stability of
critical points with respect to perturbations. Robustness, a concept closely related to
topological persistence [10], quantifies the stability of critical points, and, therefore,
assesses their significance with respect to perturbations to the field. Intuitively, the
robustness of a critical point is the minimum amount of perturbation necessary to
cancel it within a local neighborhood. Robustness, therefore, helps in interpreting
a vector field in terms of its structural stability. Several studies have shown it to
be useful for increasing the visual interpretability of vector fields [29] in terms of
feature extraction, tracking [25], and simplification [24, 26, 27].

Contributions. In this paper, we present new and intriguing observations
connecting the Jacobian based and robustness based notions in quantifying stable
critical points in vector fields. In particular, we address the following questions:

Can we interpret Galilean invariant vector field analysis based on the determinant

of the Jacobian via the notion of robustness? What are the relations between these

two seemingly different notions? Our contributions are:

e We extend the definition of robustness by considering every point as a critical
point and introduce the notion of the extended robustness field by assigning each
point in the domain its robustness when it is made critical with a proper frame of
reference.

e We prove that the extended robustness satisfies the criterion of Galilean
invariance, where the local maxima of the extended robustness field are the
Galilean invariant critical points.

e We prove, theoretically, that the determinant of the Jacobian is a lower bound for
the extended robustness at the same point.

e We demonstrate, visually, that the extended robustness helps to interpret the
Jacobian-based Galilean invariant vector field analysis, in particular, that the
extrema of the determinant of the Jacobian coincide with the local maxima of
the extended robustness (Fig. 1(c)-(d)).
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2 Related Work

Vector field analysis and reference frames. The analysis of vector fields depends
upon the chosen frame of reference [20, 21, 22], as the observed vector field changes
with changes in frames. In particular, for any one given point, it is always possible
to create a frame of reference where this point becomes critical. Therefore, it is
important to carefully choose a physically meaningful frame for analysis. In this
regard, uniformly moving frames are of particular importance as they preserve many
properties of interest, thus providing a Galilean invariant analysis.

Because of the physical importance of a feature descriptor to be independent
from a Galilean change of frame of reference, many popular vector field feature
detectors are Galilean invariant. In particular, a number of vortex detection
techniques, such as the A;- [18], Q- [17], and A- [8] criterion, compute the Jacobian
of the field, which, being a spatial derivative, discards uniform motion.

Simpler solutions to guarantee Galilean invariance in vector field analysis
involve subtracting the mean vector to highlight the fluctuations in the field. In
recent literature, more advanced techniques have been presented to derive vectors
for subtraction to determine an expressive frame of reference, e.g., from the
Helmholtz-Hodge decomposition [1, 30] or the boundary-induced flow [9]. In
general, Galilean invariant frames have been employed extensively for vector field
analysis [2, 7, 8, 19, 23].

Nevertheless, since Galilean invariance is limited to compensating for uniform
motion, there exist techniques to perform the analysis in more sophisticated frames.
For example, Haller [15] extracted vortices using time-dependent translations and
time-dependent rotations; Giinther et al. [14] described computation of vortices in
rotational frames; Fuchs et al. [13] used time-varying frames built upon the notion
of “unsteadiness”; and Bhatia et al. [1] proposed using new frames to represent
harmonic background flows.

In this work, we consider Galilean invariance to be the key property for defining
robustness for critical points across reference frames and extend the framework by
Bujack et al. [2].

Robustness. The topological notion of robustness is closely related to the
topological persistence [10]. Unlike persistence, which is used extensively for
the analysis and visualization of scalar field data, robustness, first introduced by
Edelsbrunner et al. [11], can be employed for vector field data [6, 12]. Recent
work by Wang et al. [29] assigned robustness to critical points in both stationary
and time-varying vector fields and obtained a hierarchical structural description
of the data. Such a hierarchical description implies simplification strategies that
perform critical point cancellations in both 2D [26, 27] and 3D [24]. The robustness
framework also gives a fresh interpretation of the notion of feature tracking, in
particular, critical point tracking, where robust critical points could provably be
tracked more easily and more accurately in the time-varying setting [25].

Since robustness of critical points is not invariant to reference frames, in our
work, we aim to define a new robustness framework that addresses such a challenge
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and enables the simultaneous visualization of robustness across local, dominating
reference frames.

3 Technical Background

We revisit some technical background before describing our results, namely, the
notions of Galilean invariance, reference frame adjustment, Jacobian-based Galilean
invariant vector fields, and robustness.

Galilean invariance. Let v : R? — R? denote a 2D vector field describing the
instantaneous velocity of a flow. A Galilean transformation of a point x € R? is the
composition of a translation b : R — R? with b = const, and a rigid body rotation
A € SO(2) [2]. A point whose position in the original frame is x, then has the
coordinate in the transformed frame [28] as

X = Ax+b. (1

A vector field v(x) is Galilean invariant (GI) if it transforms under a Galilean
transformation, according to the rule v'(x') = Av(x) [28]. Similarly, a scalar field
s(x) and a matrix field M(x) are called GI if s'(x') = s(x) and M'(x') = AM (x)A~,
respectively.

Reference frame adjustment. Every point in a vector field can be transformed into
a critical point by the addition of a constant vector. For a vector field v : R? — R?
and a point xg € R2, we define the associated vector field Vi R?2 — R? with its
frame of reference based on x( by

Vi (X) 1= v(x) = v(x0). 2)
Such a vector field vy, has a permanent critical point at xp, because vy,(xo) =
v(x0) — v(x0) = 0. For a given position xg € R?, the vector field vy, is GI, because
from V' (x') = dx' /dr @ d(Ax+Db)/dt = Av(x) + b follows v/, (x') @ V() =V (xp) =
0
. . 2
Av(x)+b—Av(xg) — b =A(v(x) —v(xp)) @ Avy, (x).

Jacobian-based Galilean invariant vector fields. Recall v : R? — R? is a 2D vector
field, where v(x) = x = dx/dt = (v{(x),v2(x))". Let J denote the Jacobian of a

velocity field,
gy _ (OV1(x)/0x1 dvi(x)/0xs
T =Vvlx) = <8v2(x)/3x1 3V2(x)/ax2> .

The determinant of the Jacobian, det(J), is shown to be a GI scalar field [2], that
is, detJ'(x’) = det J(x). Such a determinant can be used to categorize first-order
critical points, that is, a negative determinant corresponds to a saddle, whereas a
positive determinant corresponds to a source, a sink, or a vortex.
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A point (xg) € R? is a Jacobian-based Galilean invariant critical point (GICP) of
a vector field v : R* — R? if it is a critical point of the determinant of the Jacobian,
ie., Vdet(J):=Vdet(Vv(xg)) = 0 [2]. Bujack et al. [2] restrict this definition to
the negative minima and the positive maxima of the determinant field. The former
form saddles, whereas the latter form sources/sinks/vortices in the velocity field in
some specific frame of reference. Each GICP comes with its own frame of reference
in which it becomes a classical critical point.

To visualize the GICPs simultaneously, Bujack et al. [2] introduced the notion
of Galilean invariant vector field (GIVF) that is applicable beyond Jacobian-based
GICPs. The basic idea is to construct a derived vector field that locally assumes
the inherent frames of references of each GICP. Such a derived vector field is
constructed by subtracting a weighted average of the velocities of the GICPs,
X1,...,Xp, of the vector field v.

Formally, let v : R2 — R? be a vector field, XlyeuosXp € R2 a set of GICPs, and w;
the weights of a linear interpolation problem Y7, w;(x)v(x;) with weights w; : R? —
R (and a mapping x — w;(x)) that are invariant under Galilean transformation, that
is,

W) = wi(x),

and the weights add up to one, Vx € R? : Y wi(x) =1.Then, the GIVF v: R2 5 R2
is defined by

v(x) == v(x) — iwi(x)v(xi).

In this paper, we use inverse distance weighting with exponent 2. Most commonly
used weights satisfy such a condition such as the ones from constant, barycentric,
bilinear, and inverse distance interpolations [2].

Remark. Locally the transformation in defining a GIVF is a Galilean change
of reference. However depending on the chosen interpolation scheme, the points
between the GICPs are transformed by a mixture of the transformations of their
neighbors. This mixture does not generally result in a Galilean transformation
globally. As aresult, the Jacobian of the GIVF and the original field are not identical.

Although the suggested method does not transform the field through a Galilean
transformation itself, it does not contradict the fact that the GIVF defined above is
invariant with respect to the Galilean transformation [2]. Such a transformed vector
field is GI, because any vector field that differs from the original one through a
Galilean transformation will result in the same GIVF, which means that the GIVF
and the original field would generally not produce the same output. In a nutshell,
the method is GI, but not idempotent.

Robustness. Let f,/ : R? — R? be two continuous 2D vector fields. We define
the distance between the two mappings as d(f,h) = sup,.p2 || f(x) — h(x)||2. The
field & is an r-perturbation of f, if d(f,h) < r. Given f : R* — R?, the robustness
of a critical point of f quantifies its stability with respect to perturbations of the
vector fields [29]. Intuitively, if a critical point has a robustness value of r, then an



Galilean Invariant Vector Field Analysis Based on Extended Robustness 7

(r+ 6)-perturbation  of f exists to eliminate x (via critical point cancellation); and
any (r — 8)-perturbation is not enough to eliminate x.

Mathematically, the robustness of critical points in our setting arises from the
well group theory [12]. Given a mapping f : X — Y between two manifolds and
a point a € Y, the well group theory [12] studies the robustness of the homology
of the pre-image of a, f~!(a) with respect to perturbations of the mapping f.
Roughly speaking, the homology of a topological space X, H.(X), measures its
topological features, where the rank of the 0-, 1- and 2-dimensional homology
groups corresponds to the number of connected components, tunnels, and voids,
respectively. Let a be a point in Y, and let B,(r) be a ball of radius r surrounding
a. Let h be an r-perturbation of f (under some metric). The inclusion map
between subspaces 4~ (a) — f~!(B,(r)) induces a linear map i, : H.(h"'(a)) —
H.(f~'(B.(r))) between their homology groups. The well group W,(r) is defined
as W,(r) = ,imagei,, whose elements belong to the image of each j, for all
r-perturbation & of f. Intuitively, its elements are stable under r-perturbations of
the map.

When a =0, X = Y = R?, £71(0) are the critical points of vector fields on the
plane. Chazal et al. [6] showed that in the case of vector fields, the well group could
be computed from the merge tree of the magnitude of a vector field (i.e., fo = ||f||2,
which is a scalar function). We use the correspondences between critical points and
the elements in the well groups to assign robustness values to the critical points.
The merge tree of fj is constructed by tracking the connected components of its
sublevel sets f~!(—oo, 7] together with their degree information as they appear and
merge by increasing r from 0. Each leaf node in the tree is assigned the degree of
its corresponding critical point (a saddle has a degree of —1, and a source/since
has a degree of +1). Each internal node has a degree the sum of its subtree. The
robustness of a critical point is the height of its lowest degree zero ancestor in the
merge tree, see Wang et al. [29] for details.

4 Theoretical Results

We extend the definition of robustness by considering every point as a critical point.
Formally, let xo € R? be an arbitrary point in a vector field v : R* — R? and R(xo) be
its robustness in the vector field vy, which is associated with the frame of reference
of xp. We define the extended robustness R : R?2 — R of the point xg as the robustness
of the critical point xy € R2 in the vector field Vx,- For a vector field v : RZ — R?,
we call a point a locally robust critical point (LRCP) if it is a local maximum in the
extended robustness field, i.e.,

VR(xo) =0, Hg(xp) <0,

with the vector V denoting the first derivative and the Hessian matrix Hg consisting
of the second partial derivatives.
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The following two theorems are the key theoretical contributions of the paper.

Theorem 1 The extended robustness is a Galilean invariant scalar field. The locally
robust critical points defined above are Galilean invariant.

Proof. We prove the theorem by showing that for the extended robustness R : R —
R, we have R'(x) = R(x). The extended robustness assigns a scalar to every point
xo € R%. Let V/(x') differ from a vector field v : R*> — R? by the transformation
V'(x') = Av(x). The magnitude ||vy, |2 of the GI field vy, from (2) is GI. From A €
SO(2), it follows that

Ve ()2 = [[Avi ()2 = [[vxy () 12- 3)

As a result, the merge trees of vy (xo) and V. , (xj) are isomorphic. Together

with the invariance of the degree of a critical point with respect to orthogonal
transformations, that the extended robustness is GI follows. Since the extrema of
the scalar field are GI and the extended robustness field is GI, it follows that LRCPs
are GI. O

Theorem 2 At any point xg € R?, suppose: (i) Vi - R? — R? is generic and
C2-smooth; (ii) the directional derivative of Vx, i upper bounded by a constant
s (iii) the second (partial) derivative of vy, is upper bounded by a constant &; and

(iv) the absolute value of the determinant of the Jacobian is at least c. Then the
extended robustness at xy is at least 25726
Proof. For any point xo € R?, let f := Vi - R? — R?. Genericity from assumption
(i) of f implies that for the critical point xg of f, there exists a small neighborhood
that contains only xp. First, we show that a lower bound on the absolute value of
the determinant of the Jacobian translates into a lower bound on the magnitude of
the directional derivative of f. Let J be the Jacobian at xo € R? and det(J) be the
determinant of the Jacobian. Assumption (iv) means that |det(J)| > c. Let A; and
A2 (JA1] > |A2|) be the eigenvalues of J. We have,

| det(J)] = [ Aa] > c.

Assumption (ii) means that the directional derivatives of f are upper bounded in
any direction by u, i.e., ||%|| < u for all directions u € S?, which implies that the
absolute values of all eigenvalues are upper bounded by u, i.e., |[A2| < |A| < u.
Hence, |12 > ¢’ = ﬁ

Now, we show that the upper bound on the second derivative implies a lower
bound on robustness. We consider the direction u € S? to be along the eigenvector
associated with A,. At xp, |f(xp)| = 0. Since the magnitude of the directional
derivative at xq is lower bounded by ¢’ and there is an upper bound on the second
derivative, we can bound the neighborhood size where the directional derivative
becomes 0, i.e., how far from xy we must go in order for || f|| to stop growing. Let y
be a point on the boundary of the isolating neighborhood of xy, such that d(y,xp) = €.
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Then the magnitude of the directional derivative is lower bounded by ¢’ — €6 based
on assumption (iii). The change ¢’ — €4 is positive for all € < %. We obtain a lower
bound on the magnitude of the vector field on the boundary of the e-neighborhood
at x via integration. That is, for any y on the boundary of the isolating neighorhood
of X0,

€ )
\f(y)\Z/(; (' —x8)dx=c'e — —. %)

For & < %/ f(€)] is an increasing function in &; hence xy is the only zero
in the neighborhood. To obtain a lower bound on robustness, we lower bound
the magnitude of the function on the boundary of the €-neighborhood (i.e. the
neighborhood where we know that xj is an isolated zero). Substituting € = % = ”%
into Eq. 4 yields the desired lower bound, i.e.,

f(y)] > /S_Lé_i_ﬁ_i 0
yN=¢ 2 w28 2u28?  2u?s’

5 Visualization Results

We demonstrate visually that the extended robustness helps to interpret the
Jacobian-based GIVF analysis. In particular, the extrema of the determinant of the
Jacobian (the Jacobian-based GICPs) often coincide with the local maxima of the
extended robustness (the LRCPs).

Case study I: an analytic vector field. For the first case study illustrated in Fig. 2,
we use an analytic vector field in (f) which contains four standard flow features, sink
(a), center (b), saddle (c) and spiral source (d); each showing a different common
velocity profile overlaid with a sheer flow (e) that makes it impossible to view all
the flow features simultaneously. As illustrated, the GIVF based on the determinant
of the Jacobian (g) simultaneously highlights the Jacobian-based GICPs, which
correspond to the standard flow features described in (a)-(d). On the other hand,
these flow features in (g) coincide with the features surrounding the LRCPs of the
GIVF based on the extended robustness in (h).

Case study II: a sequence of double gyre. We use a formula describing a double
gyre vector field [3] with parameters A = 0.25, @ = 1/10, and an extended domain
[0,6] x [0,1]. Such a dataset is smooth and requires no topological simplification
(see Section 5.1). As shown in Fig. 3(a), one vortex is visible at position (3,0.5)
within the standard frame of reference, and the Jacobian-based GIVF highlights
two vortices within the same region in Fig. 3(b), as shown previously [3]. These
Jacobian-based critical points coincide with the LRCPs obtained via extended
robustness in Fig. 3(c). The separators from the robustness-based GIVF coincide
with the separators from the standard frame of reference, but those from the
Jacobian-based GIVF do not. This observation gives an indication that the two
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Fig. 2 Visualization of an analytic data set (f), which is created by superimposing five analytic
fields (a)-(e). The colormap encodes the speed of the flow. For comparison, (g) shows the
corresponding Galilean invariant vector field introduced by Bujack et al. and constructed from the
extrema of the determinant of the Jacobian. The Galilean invariant critical points are marked with
red nodes for vortices/sinks/sources and with blue nodes for saddles. Image courtesy of Bujack
et al. [2]. (h) The Galilean invariant vector field introduced in this paper is constructed from the
extended robustness. The local maxima of the extended robustness field are marked with red nodes.

Fig. 3 Visualization of a sequence of double gyre. (a) The original flow; the colormap encodes the
speed of the flow. (b) Jacobian-based Galilean invariant vector field with highlighted critical points;
the flow is color-coded by the value of the determinant. (c) Robustness-based Galilean invariant
vector field with highlighted critical points; the flow is color-coded by extended robustness values.
(d) Robustness-based Galilean invariant vector field without contour tree pruning.



Galilean Invariant Vector Field Analysis Based on Extended Robustness 11

vortices detected by both robustness-based and Jacobian-based GIVF are likely
true features, whereas the separators detected by the Jacobian-based GIVF are not
(therefore partially addressing an open question in [3]). Furthermore, we illustrate
the robustness-based GIVFs in Fig. 3(d) without topological simplification (see
Section 5.1 for details).

Fig. 4 Visualization of the swirling jet entering a fluid at rest. (a) The original flow; the
colormap encodes the speed of the flow. (b) Jacobian-based Galilean invariant vector field
with highlighted critical points; the flow is color-coded by the value of the determinant. (c)
Robustness-based Galilean invariant vector field with highlighted locally robust critical pointss;
the flow is color-coded by extended robustness values.

Case study III: swirly jet. Our last case study, illustrated in Fig. 4, focuses on a flow
simulation of a swirling jet entering a fluid at rest. Such a dataset has been previously
studied in the work of Bujack et al. [2]. We demonstrate visually an interpretation of
its corresponding Jacobian-based GIVF with the extended robustness. As shown in
Fig. 4(c), some but not all of the LRCPs are shown to coincide with the critical points
extracted from Jacobian-based GIVF in Fig. 4(b). Such a discrepancy could be
due to numerical issues in computing extended robustness, discretization resolution
and the noisy, non-smooth data domain. How to choose the optimal parameters for
topological simplification (as discussed in Section 5.1), remains an open question
for both Jacobian-based and robustness-based GIVFs.

5.1 Topological Simplification

In our case studies, the extended robustness fields are often noisy, resulting in
many insignificant local maxima. Analogously to Bujack et al. [2], we make use
of the topological simplification tools for scalar fields to reduce the number of
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local maxima to the significant ones. For an introduction to scalar topological
simplification, we recommend the work of Carr et al. and Heine et al. [4, 5, 16].

For a scalar field, a contour is a connected component of a level set, which is the
set of points that all have the same value in the scalar field. If we increase this value,
contours can be created at local minima, join or split at saddles, and be destroyed
at local maxima of the scalar field. The contour tree is an abstraction of the scalar
field that is formed from shrinking each contour to a node in the tree, where each
branch starts and ends at an extremum or a saddle and corresponds to a connected
component in the domain. Each branch of the contour tree comes with three popular
measures: persistence, volume, and hypervolume [5, 16]. Persistence is the maximal
difference of the scalar values of the components of a branch, the volume is the
integral over its affiliated points, and the hypervolume is the integral over the scalar
values. These measures can be used to simplify the contour tree by pruning branches
that do not exceed given thresholds (see Carr et al. [5]).

‘We compute the contour tree of the extended robustness field and prune it with
respect to persistence. The result for case study I can be found in Fig. 5.

Remark. We have demonstrated that the Jacobian-based GICPs in some smooth,
synthetic cases coincide with the LRCPs, whereas in noisy, real-world datasets,
unambiguous equivalence among these points is difficult to find due to the resolution
of the data and the different range of scalar values for topological simplification. In
addition, we conjecture that the determinant of Jacobian could be considered as a
first-order approximation that captures the stabilities of critical points, whereas the
extended robustness captures higher order information; therefore the LRCPs do not
always coincide with the Jacobian-based GICPs.

The best way to select the pruning parameters for simultaneous visualization
of robust critical points in different regions of the data, remains an open question.
We currently use an exploratory process to choose pruning parameters so that the
LRCPs are at a level comparable to the Jacobian-based GICPs.

Fig. 5 Topological simplification of case study I, where the colormap encodes the speed of the
flow. The robustness-based Galilean invariant vector fields before (a) and after (b) simplification
are illustrated, where the locations of extended robustness local maxima are marked in red.
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6 Discussion

Robustness and Jacobian. The Jacobian carries important information about the
local behavior of a vector field, while robustness quantifies their global stability. In
this work, we demonstrate their relations theoretically and visually. Furthermore,
our results inspire discussions regarding different quantifiers of stable features
within the vector field data.

Extended robustness: degeneracies and continuity. In our current framework,
some critical points do not have any cancellation partner, and so have large
robustness values beyond the range of the maximum vector norm in the domain.
This can cause boundary effects in our visualization as some critical points are
detected on the boundary. Furthermore, robustness computation also assumes that
each critical point is isolated within its local neighborhood. Our datasets, however,
contain regions with degenerate critical points where such isolation conditions are
violated (i.e., regions where the determinant of Jacobian switches sign). For the
purpose of visualization, such degeneracies are handled separately.

Small changes to the vector field may introduce partner switches in the merge
tree, which lead to some discontinuities in the current computation of extended
robustness (see Fig. 4(c)). However this does not impact our visualization results
significantly. Ensuring the continuity of the extended robustness remains an open
question.

Other perturbation metrics for robustness. The robustness framework also allows
a certain flexibility in defining perturbation metrics, in the sense that the L., metric
defined in Section 3 could be replaced by other metrics such as the L, metric, which
incorporates both the magnitude of the vectors and the area to capture a quantity
closer to the energy of a perturbation. We will investigate the effect of different
perturbation metrics on the computation of extended robustness and its connection
with the determinant of the Jacobian.
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