
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 1

Geometry-Aware Merge Tree Comparisons for
Time-Varying Data with Interleaving Distances

Lin Yan, Talha Bin Masood, Farhan Rasheed, Ingrid Hotz, Bei Wang

Abstract—Merge trees, a type of topological descriptors, serve to identify and summarize the topological characteristics associated
with scalar fields. They have great potential for analyzing and visualizing time-varying data. First, they give compressed and
topology-preserving representations of data instances. Second, their comparisons provide a basis for studying the relations among
data instances, such as their distributions, clusters, outliers, and periodicities. A number of comparative measures have been
developed for merge trees. However, these measures are often computationally expensive since they implicitly consider all possible
correspondences between critical points of the merge trees. In this paper, we perform geometry-aware comparisons of merge trees
using labeled interleaving distances. The main idea is to decouple the computation of a comparative measure into two steps: a labeling
step that generates a correspondence between the critical points of two merge trees, and a comparison step that computes distances
between a pair of labeled merge trees by encoding them as matrices. We show that our approach is general, computationally efficient,
and practically useful. Our framework makes it possible to integrate geometric information of the data domain in the labeling process.
At the same time, the framework reduces the computational complexity since not all possible correspondences have to be considered.
We demonstrate via experiments that such geometry-aware merge tree comparisons help to detect transitions, clusters, and
periodicities of time-varying datasets, as well as to diagnose and highlight the topological changes between adjacent data instances.

Index Terms—Merge trees, merge tree metrics, topological data analysis, topology in visualization

F

1 INTRODUCTION

T HE effective visualization of large and complex scientific data
is an essential component of a modern analytics workflow.

The key ingredients of this workflow are the identification, track-
ing, and comparison of features expressing essential structures
in the data. To this end, topological data analysis has proven
to provide fundamental tools for visual data analysis in terms
of abstraction and summarization. Topological descriptors for
scalar field data, such as persistence diagrams, barcodes, merge
trees, contour trees, Reeb graphs, and Morse–Smale complexes,
are among the most widely used applied topological tools in
visualization. These descriptors have great potential for analyzing
and visualizing time-varying data. First, they give compressed
and topology-preserving representations of data instances. Second,
their comparisons provide a basis for studying the relations among
data instances, such as their distributions, clusters, outliers, and
periodicities; see the work of Yan et al. [1] for a recent survey.

In this paper, we are interested in merge trees, which are
topological descriptors that record the connectivity among the
sublevel sets of scalar fields. Merge trees have seen many applica-
tions in science and engineering, including cyclone tracking [2],
burning structure analysis [3], and symmetry extraction in mate-
rials science [4], [5], to name a few. To employ merge trees for
time-varying data or ensembles, a key challenge is to choose an
appropriate similarity or distance measure for their comparisons.
A number of comparative measures have been developed for

• Lin Yan and Bei Wang are with the University of Utah. E-mails:
lynne.h.yan@gmail.com, beiwang@sci.utah.edu.

• Talha Bin Masood, Farhan Rasheed, and Ingrid Hotz are with Linköping
University. E-mails: talha.bin.masood@liu.se, farhan.rasheed@liu.se, in-
grid.hotz@liu.se.

Manuscript received xx; revised xx.

merge trees in the literature (see Sect. 2 and [1]), of which many
effectively “forget” about the geometric information from the data
domain in the comparative process.

We take a different perspective to utilize merge trees in
studying time-varying data, and ask the following question: How
can we design a merge tree comparative measure that integrates
geometric information from the data domain? We hypothesize
that by enriching a merge tree with geometrical information, a
comparative measure defined on such enriched merge trees will be
sensitive to local or global geometry and thus become beneficial
for real-world applications where such geometry is important.

Our work is also motivated by the study of information content
within a topological descriptor. A few recent efforts have linked
information theory with topology (e.g., [6], [7], [8]). We are
motivated by the following questions regarding the merge trees:

• How much geometric information could we add to a merge
tree, so as to enrich its information content, while at the
same time improving the comparative process among a
pair of “enriched” merge trees in real-world applications?

• Will geometry-aware comparative measures for a set of
merge trees improve our understanding of the time-varying
data in terms of its distributions, clusters, and outliers?

We further illustrate the above thought process in Fig. 1. Formally,
given a scalar field defined on a connected domain fX : X→ R,
a merge tree records the connectivity of its sublevel sets and is
represented as a pair (T, f), that is, a finite rooted tree T equipped
with a function defined on its vertices f : V (T)→ R; where f
is a restriction of fX to its critical points (see also Sect. 3). As
we move from left to right in Fig. 1, we increase the geometric
content of a topological descriptor for fX. We begin with the
persistence barcode [9] of fX in Fig. 1A. By adding slightly more
geometric information, that is, how bars in the barcode are glued

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 2

fX : X! R
<latexit sha1_base64="VbKQEV00JSLemA/mnquzPizO6Dc=">AAACFHicbVDLSsNAFJ3UV62vqEs3g60gCCXpxseq4MZlFfuAJoTJdNIOnUzCzEQoIR/hxl9x40IRty7c+TdO2uCj9cDAuefey9xz/JhRqSzr0ygtLa+srpXXKxubW9s75u5eR0aJwKSNIxaJno8kYZSTtqKKkV4sCAp9Rrr++DLvd++IkDTit2oSEzdEQ04DipHSkmee1AIvdUKkRr6f9rLsAv4U0FHRd3mT1TyzatWtKeAisQtSBQVanvnhDCKchIQrzJCUfduKlZsioShmJKs4iSQxwmM0JH1NOQqJdNOpqQweaWUAg0joxxWcqr83UhRKOQl9PZmfKOd7ufhfr5+o4MxNKY8TRTiefRQkDGqzeUJwQAXBik00QVhQfSvEIyQQVjrHig7Bnre8SDqNum3V7etGtXlexFEGB+AQHAMbnIImuAIt0AYY3INH8AxejAfjyXg13majJaPY2Qd/YLx/AYypnnQ=</latexit><latexit sha1_base64="VbKQEV00JSLemA/mnquzPizO6Dc=">AAACFHicbVDLSsNAFJ3UV62vqEs3g60gCCXpxseq4MZlFfuAJoTJdNIOnUzCzEQoIR/hxl9x40IRty7c+TdO2uCj9cDAuefey9xz/JhRqSzr0ygtLa+srpXXKxubW9s75u5eR0aJwKSNIxaJno8kYZSTtqKKkV4sCAp9Rrr++DLvd++IkDTit2oSEzdEQ04DipHSkmee1AIvdUKkRr6f9rLsAv4U0FHRd3mT1TyzatWtKeAisQtSBQVanvnhDCKchIQrzJCUfduKlZsioShmJKs4iSQxwmM0JH1NOQqJdNOpqQweaWUAg0joxxWcqr83UhRKOQl9PZmfKOd7ufhfr5+o4MxNKY8TRTiefRQkDGqzeUJwQAXBik00QVhQfSvEIyQQVjrHig7Bnre8SDqNum3V7etGtXlexFEGB+AQHAMbnIImuAIt0AYY3INH8AxejAfjyXg13majJaPY2Qd/YLx/AYypnnQ=</latexit><latexit sha1_base64="VbKQEV00JSLemA/mnquzPizO6Dc=">AAACFHicbVDLSsNAFJ3UV62vqEs3g60gCCXpxseq4MZlFfuAJoTJdNIOnUzCzEQoIR/hxl9x40IRty7c+TdO2uCj9cDAuefey9xz/JhRqSzr0ygtLa+srpXXKxubW9s75u5eR0aJwKSNIxaJno8kYZSTtqKKkV4sCAp9Rrr++DLvd++IkDTit2oSEzdEQ04DipHSkmee1AIvdUKkRr6f9rLsAv4U0FHRd3mT1TyzatWtKeAisQtSBQVanvnhDCKchIQrzJCUfduKlZsioShmJKs4iSQxwmM0JH1NOQqJdNOpqQweaWUAg0joxxWcqr83UhRKOQl9PZmfKOd7ufhfr5+o4MxNKY8TRTiefRQkDGqzeUJwQAXBik00QVhQfSvEIyQQVjrHig7Bnre8SDqNum3V7etGtXlexFEGB+AQHAMbnIImuAIt0AYY3INH8AxejAfjyXg13majJaPY2Qd/YLx/AYypnnQ=</latexit><latexit sha1_base64="VbKQEV00JSLemA/mnquzPizO6Dc=">AAACFHicbVDLSsNAFJ3UV62vqEs3g60gCCXpxseq4MZlFfuAJoTJdNIOnUzCzEQoIR/hxl9x40IRty7c+TdO2uCj9cDAuefey9xz/JhRqSzr0ygtLa+srpXXKxubW9s75u5eR0aJwKSNIxaJno8kYZSTtqKKkV4sCAp9Rrr++DLvd++IkDTit2oSEzdEQ04DipHSkmee1AIvdUKkRr6f9rLsAv4U0FHRd3mT1TyzatWtKeAisQtSBQVanvnhDCKchIQrzJCUfduKlZsioShmJKs4iSQxwmM0JH1NOQqJdNOpqQweaWUAg0joxxWcqr83UhRKOQl9PZmfKOd7ufhfr5+o4MxNKY8TRTiefRQkDGqzeUJwQAXBik00QVhQfSvEIyQQVjrHig7Bnre8SDqNum3V7etGtXlexFEGB+AQHAMbnIImuAIt0AYY3INH8AxejAfjyXg13majJaPY2Qd/YLx/AYypnnQ=</latexit>

(X, fX)
<latexit sha1_base64="XTM2s8DHwludZJon5uJKA7dgRFU=">AAACB3icbVDLSsNAFL2pr1pfUZeCDLZCBSlJN+qu4MZlBfuANoTJdNIOnTyYmQgldOfGX3HjQhG3/oI7/8ZJG1BbDwycOede7r3HizmTyrK+jMLK6tr6RnGztLW9s7tn7h+0ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX2d+554KyaLwTk1i6gR4GDKfEay05JrHlWo/wGrkeWl3eo58N/35Ts8qrlm2atYMaJnYOSlDjqZrfvYHEUkCGirCsZQ924qVk2KhGOF0WuonksaYjPGQ9jQNcUClk87umKJTrQyQHwn9QoVm6u+OFAdSTgJPV2ZLykUvE//zeonyL52UhXGiaEjmg/yEIxWhLBQ0YIISxSeaYCKY3hWRERaYKB1dSYdgL568TNr1mm3V7Nt6uXGVx1GEIziBKthwAQ24gSa0gMADPMELvBqPxrPxZrzPSwtG3nMIf2B8fAPfO5ii</latexit><latexit sha1_base64="XTM2s8DHwludZJon5uJKA7dgRFU=">AAACB3icbVDLSsNAFL2pr1pfUZeCDLZCBSlJN+qu4MZlBfuANoTJdNIOnTyYmQgldOfGX3HjQhG3/oI7/8ZJG1BbDwycOede7r3HizmTyrK+jMLK6tr6RnGztLW9s7tn7h+0ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX2d+554KyaLwTk1i6gR4GDKfEay05JrHlWo/wGrkeWl3eo58N/35Ts8qrlm2atYMaJnYOSlDjqZrfvYHEUkCGirCsZQ924qVk2KhGOF0WuonksaYjPGQ9jQNcUClk87umKJTrQyQHwn9QoVm6u+OFAdSTgJPV2ZLykUvE//zeonyL52UhXGiaEjmg/yEIxWhLBQ0YIISxSeaYCKY3hWRERaYKB1dSYdgL568TNr1mm3V7Nt6uXGVx1GEIziBKthwAQ24gSa0gMADPMELvBqPxrPxZrzPSwtG3nMIf2B8fAPfO5ii</latexit><latexit sha1_base64="XTM2s8DHwludZJon5uJKA7dgRFU=">AAACB3icbVDLSsNAFL2pr1pfUZeCDLZCBSlJN+qu4MZlBfuANoTJdNIOnTyYmQgldOfGX3HjQhG3/oI7/8ZJG1BbDwycOede7r3HizmTyrK+jMLK6tr6RnGztLW9s7tn7h+0ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX2d+554KyaLwTk1i6gR4GDKfEay05JrHlWo/wGrkeWl3eo58N/35Ts8qrlm2atYMaJnYOSlDjqZrfvYHEUkCGirCsZQ924qVk2KhGOF0WuonksaYjPGQ9jQNcUClk87umKJTrQyQHwn9QoVm6u+OFAdSTgJPV2ZLykUvE//zeonyL52UhXGiaEjmg/yEIxWhLBQ0YIISxSeaYCKY3hWRERaYKB1dSYdgL568TNr1mm3V7Nt6uXGVx1GEIziBKthwAQ24gSa0gMADPMELvBqPxrPxZrzPSwtG3nMIf2B8fAPfO5ii</latexit><latexit sha1_base64="XTM2s8DHwludZJon5uJKA7dgRFU=">AAACB3icbVDLSsNAFL2pr1pfUZeCDLZCBSlJN+qu4MZlBfuANoTJdNIOnTyYmQgldOfGX3HjQhG3/oI7/8ZJG1BbDwycOede7r3HizmTyrK+jMLK6tr6RnGztLW9s7tn7h+0ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX2d+554KyaLwTk1i6gR4GDKfEay05JrHlWo/wGrkeWl3eo58N/35Ts8qrlm2atYMaJnYOSlDjqZrfvYHEUkCGirCsZQ924qVk2KhGOF0WuonksaYjPGQ9jQNcUClk87umKJTrQyQHwn9QoVm6u+OFAdSTgJPV2ZLykUvE//zeonyL52UhXGiaEjmg/yEIxWhLBQ0YIISxSeaYCKY3hWRERaYKB1dSYdgL568TNr1mm3V7Nt6uXGVx1GEIziBKthwAQ24gSa0gMADPMELvBqPxrPxZrzPSwtG3nMIf2B8fAPfO5ii</latexit>

f : V (T)! R
<latexit sha1_base64="7lw7aRfZfzUzjWU5qNE8lFDoeFI=">AAACAXicbVC7SgNBFL3rM8bXqo1gM5gIsQm7aXxUARvLKHlBdgmzk9lkyOyDmVkhLLHxV2wsFLH1L+z8G2eTLTTxwMDhnHuZe44XcyaVZX0bK6tr6xubha3i9s7u3r55cNiWUSIIbZGIR6LrYUk5C2lLMcVpNxYUBx6nHW98k/mdByoki8KmmsTUDfAwZD4jWGmpbx6X/WvUrjTPkaMi5ARYjTwvvZ+W+2bJqlozoGVi56QEORp988sZRCQJaKgIx1L2bCtWboqFYoTTadFJJI0xGeMh7Wka4oBKN50lmKIzrQyQHwn9QoVm6u+NFAdSTgJPT2YnykUvE//zeonyL92UhXGiaEjmH/kJRzpsVgcaMEGJ4hNNMBFM34rICAtMlC6tqEuwFyMvk3ataltV+65Wql/ldRTgBE6hAjZcQB1uoQEtIPAIz/AKb8aT8WK8Gx/z0RUj3zmCPzA+fwDGjJUm</latexit><latexit sha1_base64="7lw7aRfZfzUzjWU5qNE8lFDoeFI=">AAACAXicbVC7SgNBFL3rM8bXqo1gM5gIsQm7aXxUARvLKHlBdgmzk9lkyOyDmVkhLLHxV2wsFLH1L+z8G2eTLTTxwMDhnHuZe44XcyaVZX0bK6tr6xubha3i9s7u3r55cNiWUSIIbZGIR6LrYUk5C2lLMcVpNxYUBx6nHW98k/mdByoki8KmmsTUDfAwZD4jWGmpbx6X/WvUrjTPkaMi5ARYjTwvvZ+W+2bJqlozoGVi56QEORp988sZRCQJaKgIx1L2bCtWboqFYoTTadFJJI0xGeMh7Wka4oBKN50lmKIzrQyQHwn9QoVm6u+NFAdSTgJPT2YnykUvE//zeonyL92UhXGiaEjmH/kJRzpsVgcaMEGJ4hNNMBFM34rICAtMlC6tqEuwFyMvk3ataltV+65Wql/ldRTgBE6hAjZcQB1uoQEtIPAIz/AKb8aT8WK8Gx/z0RUj3zmCPzA+fwDGjJUm</latexit><latexit sha1_base64="7lw7aRfZfzUzjWU5qNE8lFDoeFI=">AAACAXicbVC7SgNBFL3rM8bXqo1gM5gIsQm7aXxUARvLKHlBdgmzk9lkyOyDmVkhLLHxV2wsFLH1L+z8G2eTLTTxwMDhnHuZe44XcyaVZX0bK6tr6xubha3i9s7u3r55cNiWUSIIbZGIR6LrYUk5C2lLMcVpNxYUBx6nHW98k/mdByoki8KmmsTUDfAwZD4jWGmpbx6X/WvUrjTPkaMi5ARYjTwvvZ+W+2bJqlozoGVi56QEORp988sZRCQJaKgIx1L2bCtWboqFYoTTadFJJI0xGeMh7Wka4oBKN50lmKIzrQyQHwn9QoVm6u+NFAdSTgJPT2YnykUvE//zeonyL92UhXGiaEjmH/kJRzpsVgcaMEGJ4hNNMBFM34rICAtMlC6tqEuwFyMvk3ataltV+65Wql/ldRTgBE6hAjZcQB1uoQEtIPAIz/AKb8aT8WK8Gx/z0RUj3zmCPzA+fwDGjJUm</latexit><latexit sha1_base64="7lw7aRfZfzUzjWU5qNE8lFDoeFI=">AAACAXicbVC7SgNBFL3rM8bXqo1gM5gIsQm7aXxUARvLKHlBdgmzk9lkyOyDmVkhLLHxV2wsFLH1L+z8G2eTLTTxwMDhnHuZe44XcyaVZX0bK6tr6xubha3i9s7u3r55cNiWUSIIbZGIR6LrYUk5C2lLMcVpNxYUBx6nHW98k/mdByoki8KmmsTUDfAwZD4jWGmpbx6X/WvUrjTPkaMi5ARYjTwvvZ+W+2bJqlozoGVi56QEORp988sZRCQJaKgIx1L2bCtWboqFYoTTadFJJI0xGeMh7Wka4oBKN50lmKIzrQyQHwn9QoVm6u+NFAdSTgJPT2YnykUvE//zeonyL92UhXGiaEjmH/kJRzpsVgcaMEGJ4hNNMBFM34rICAtMlC6tqEuwFyMvk3ataltV+65Wql/ldRTgBE6hAjZcQB1uoQEtIPAIz/AKb8aT8WK8Gx/z0RUj3zmCPzA+fwDGjJUm</latexit>

T
<latexit sha1_base64="VvJvszsCbyzd9P2aay7YDhENX28=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSOxscQISAIXsrfswYa9vcvunAm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekEhh0HW/ncLG5tb2TnG3tLd/cHhUPj7pmDjVjLdZLGPdDajhUijeRoGSdxPNaRRI/hhMbuf+4xPXRsSqhdOE+xEdKREKRtFKD9VWdVCuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOunUa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShDQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwBj6Y0p</latexit><latexit sha1_base64="VvJvszsCbyzd9P2aay7YDhENX28=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSOxscQISAIXsrfswYa9vcvunAm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekEhh0HW/ncLG5tb2TnG3tLd/cHhUPj7pmDjVjLdZLGPdDajhUijeRoGSdxPNaRRI/hhMbuf+4xPXRsSqhdOE+xEdKREKRtFKD9VWdVCuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOunUa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShDQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwBj6Y0p</latexit><latexit sha1_base64="VvJvszsCbyzd9P2aay7YDhENX28=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSOxscQISAIXsrfswYa9vcvunAm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekEhh0HW/ncLG5tb2TnG3tLd/cHhUPj7pmDjVjLdZLGPdDajhUijeRoGSdxPNaRRI/hhMbuf+4xPXRsSqhdOE+xEdKREKRtFKD9VWdVCuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOunUa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShDQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwBj6Y0p</latexit><latexit sha1_base64="VvJvszsCbyzd9P2aay7YDhENX28=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsatSOxscQISAIXsrfswYa9vcvunAm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekEhh0HW/ncLG5tb2TnG3tLd/cHhUPj7pmDjVjLdZLGPdDajhUijeRoGSdxPNaRRI/hhMbuf+4xPXRsSqhdOE+xEdKREKRtFKD9VWdVCuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOunUa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShDQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwBj6Y0p</latexit>

f
<latexit sha1_base64="I073NURdvjsVTMZRSD346RybT8s=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFhPBKtylUbuAjWVE8wHJEfY2c8mSvb1jd08IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzTRBP6IjyUPOqLHSQzWsDsoVt+YuQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814bWfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwB/Q407</latexit><latexit sha1_base64="I073NURdvjsVTMZRSD346RybT8s=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFhPBKtylUbuAjWVE8wHJEfY2c8mSvb1jd08IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzTRBP6IjyUPOqLHSQzWsDsoVt+YuQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814bWfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwB/Q407</latexit><latexit sha1_base64="I073NURdvjsVTMZRSD346RybT8s=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFhPBKtylUbuAjWVE8wHJEfY2c8mSvb1jd08IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzTRBP6IjyUPOqLHSQzWsDsoVt+YuQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814bWfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwB/Q407</latexit><latexit sha1_base64="I073NURdvjsVTMZRSD346RybT8s=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFhPBKtylUbuAjWVE8wHJEfY2c8mSvb1jd08IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzTRBP6IjyUPOqLHSQzWsDsoVt+YuQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814bWfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwB/Q407</latexit>

(T, f)
<latexit sha1_base64="JTHkVINe3mWtIxk1mKzyYygcQA0=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbi3oLePEYIS9IljA7mU2GzM4uM71CCPkILx4U8er3ePNvnCR70MSChqKqm+6uIJHCoOt+OxubW9s7u7m9/P7B4dFx4eS0ZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38/99hPXRsSqgZOE+xEdKhEKRtFK7VK5cR1elfqFoltxFyDrxMtIETLU+4Wv3iBmacQVMkmN6Xpugv6UahRM8lm+lxqeUDamQ961VNGIG3+6OHdGLq0yIGGsbSkkC/X3xJRGxkyiwHZGFEdm1ZuL/3ndFMNbfypUkiJXbLkoTCXBmMx/JwOhOUM5sYQyLeythI2opgxtQnkbgrf68jppVSueW/Eeq8XaXRZHDs7hAsrgwQ3U4AHq0AQGY3iGV3hzEufFeXc+lq0bTjZzBn/gfP4AU4yONA==</latexit><latexit sha1_base64="JTHkVINe3mWtIxk1mKzyYygcQA0=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbi3oLePEYIS9IljA7mU2GzM4uM71CCPkILx4U8er3ePNvnCR70MSChqKqm+6uIJHCoOt+OxubW9s7u7m9/P7B4dFx4eS0ZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38/99hPXRsSqgZOE+xEdKhEKRtFK7VK5cR1elfqFoltxFyDrxMtIETLU+4Wv3iBmacQVMkmN6Xpugv6UahRM8lm+lxqeUDamQ961VNGIG3+6OHdGLq0yIGGsbSkkC/X3xJRGxkyiwHZGFEdm1ZuL/3ndFMNbfypUkiJXbLkoTCXBmMx/JwOhOUM5sYQyLeythI2opgxtQnkbgrf68jppVSueW/Eeq8XaXRZHDs7hAsrgwQ3U4AHq0AQGY3iGV3hzEufFeXc+lq0bTjZzBn/gfP4AU4yONA==</latexit><latexit sha1_base64="JTHkVINe3mWtIxk1mKzyYygcQA0=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbi3oLePEYIS9IljA7mU2GzM4uM71CCPkILx4U8er3ePNvnCR70MSChqKqm+6uIJHCoOt+OxubW9s7u7m9/P7B4dFx4eS0ZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38/99hPXRsSqgZOE+xEdKhEKRtFK7VK5cR1elfqFoltxFyDrxMtIETLU+4Wv3iBmacQVMkmN6Xpugv6UahRM8lm+lxqeUDamQ961VNGIG3+6OHdGLq0yIGGsbSkkC/X3xJRGxkyiwHZGFEdm1ZuL/3ndFMNbfypUkiJXbLkoTCXBmMx/JwOhOUM5sYQyLeythI2opgxtQnkbgrf68jppVSueW/Eeq8XaXRZHDs7hAsrgwQ3U4AHq0AQGY3iGV3hzEufFeXc+lq0bTjZzBn/gfP4AU4yONA==</latexit><latexit sha1_base64="JTHkVINe3mWtIxk1mKzyYygcQA0=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbi3oLePEYIS9IljA7mU2GzM4uM71CCPkILx4U8er3ePNvnCR70MSChqKqm+6uIJHCoOt+OxubW9s7u7m9/P7B4dFx4eS0ZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38/99hPXRsSqgZOE+xEdKhEKRtFK7VK5cR1elfqFoltxFyDrxMtIETLU+4Wv3iBmacQVMkmN6Xpugv6UahRM8lm+lxqeUDamQ961VNGIG3+6OHdGLq0yIGGsbSkkC/X3xJRGxkyiwHZGFEdm1ZuL/3ndFMNbfypUkiJXbLkoTCXBmMx/JwOhOUM5sYQyLeythI2opgxtQnkbgrf68jppVSueW/Eeq8XaXRZHDs7hAsrgwQ3U4AHq0AQGY3iGV3hzEufFeXc+lq0bTjZzBn/gfP4AU4yONA==</latexit>

(T, f, pX)
<latexit sha1_base64="lFSyG3q9vWIt69HMEUaa7On/IPI=">AAAB/3icbVDLSsNAFL3xWesrKrhxE2yFCqUk3ai7ghuXFfqCNoTJdNIOnUzCzEQosQt/xY0LRdz6G+78GydtFtp6YOBwzr3cM8ePGZXKtr+NtfWNza3twk5xd2//4NA8Ou7IKBGYtHHEItHzkSSMctJWVDHSiwVBoc9I15/cZn73gQhJI95S05i4IRpxGlCMlJY887RcaVWDauylgxCpse+nvdnssuyZJbtmz2GtEicnJcjR9MyvwTDCSUi4wgxJ2XfsWLkpEopiRmbFQSJJjPAEjUhfU45CIt10nn9mXWhlaAWR0I8ra67+3khRKOU09PVkFlIue5n4n9dPVHDtppTHiSIcLw4FCbNUZGVlWEMqCFZsqgnCguqsFh4jgbDSlRV1Cc7yl1dJp15z7JpzXy81bvI6CnAG51ABB66gAXfQhDZgeIRneIU348l4Md6Nj8XompHvnMAfGJ8/aWKVCA==</latexit><latexit sha1_base64="lFSyG3q9vWIt69HMEUaa7On/IPI=">AAAB/3icbVDLSsNAFL3xWesrKrhxE2yFCqUk3ai7ghuXFfqCNoTJdNIOnUzCzEQosQt/xY0LRdz6G+78GydtFtp6YOBwzr3cM8ePGZXKtr+NtfWNza3twk5xd2//4NA8Ou7IKBGYtHHEItHzkSSMctJWVDHSiwVBoc9I15/cZn73gQhJI95S05i4IRpxGlCMlJY887RcaVWDauylgxCpse+nvdnssuyZJbtmz2GtEicnJcjR9MyvwTDCSUi4wgxJ2XfsWLkpEopiRmbFQSJJjPAEjUhfU45CIt10nn9mXWhlaAWR0I8ra67+3khRKOU09PVkFlIue5n4n9dPVHDtppTHiSIcLw4FCbNUZGVlWEMqCFZsqgnCguqsFh4jgbDSlRV1Cc7yl1dJp15z7JpzXy81bvI6CnAG51ABB66gAXfQhDZgeIRneIU348l4Md6Nj8XompHvnMAfGJ8/aWKVCA==</latexit><latexit sha1_base64="lFSyG3q9vWIt69HMEUaa7On/IPI=">AAAB/3icbVDLSsNAFL3xWesrKrhxE2yFCqUk3ai7ghuXFfqCNoTJdNIOnUzCzEQosQt/xY0LRdz6G+78GydtFtp6YOBwzr3cM8ePGZXKtr+NtfWNza3twk5xd2//4NA8Ou7IKBGYtHHEItHzkSSMctJWVDHSiwVBoc9I15/cZn73gQhJI95S05i4IRpxGlCMlJY887RcaVWDauylgxCpse+nvdnssuyZJbtmz2GtEicnJcjR9MyvwTDCSUi4wgxJ2XfsWLkpEopiRmbFQSJJjPAEjUhfU45CIt10nn9mXWhlaAWR0I8ra67+3khRKOU09PVkFlIue5n4n9dPVHDtppTHiSIcLw4FCbNUZGVlWEMqCFZsqgnCguqsFh4jgbDSlRV1Cc7yl1dJp15z7JpzXy81bvI6CnAG51ABB66gAXfQhDZgeIRneIU348l4Md6Nj8XompHvnMAfGJ8/aWKVCA==</latexit><latexit sha1_base64="lFSyG3q9vWIt69HMEUaa7On/IPI=">AAAB/3icbVDLSsNAFL3xWesrKrhxE2yFCqUk3ai7ghuXFfqCNoTJdNIOnUzCzEQosQt/xY0LRdz6G+78GydtFtp6YOBwzr3cM8ePGZXKtr+NtfWNza3twk5xd2//4NA8Ou7IKBGYtHHEItHzkSSMctJWVDHSiwVBoc9I15/cZn73gQhJI95S05i4IRpxGlCMlJY887RcaVWDauylgxCpse+nvdnssuyZJbtmz2GtEicnJcjR9MyvwTDCSUi4wgxJ2XfsWLkpEopiRmbFQSJJjPAEjUhfU45CIt10nn9mXWhlaAWR0I8ra67+3khRKOU09PVkFlIue5n4n9dPVHDtppTHiSIcLw4FCbNUZGVlWEMqCFZsqgnCguqsFh4jgbDSlRV1Cc7yl1dJp15z7JpzXy81bvI6CnAG51ABB66gAXfQhDZgeIRneIU348l4Md6Nj8XompHvnMAfGJ8/aWKVCA==</latexit>

(T, f, pX,rfX)
<latexit sha1_base64="N16b/dwfL7CKv7brFfdHFp/Y5Jc=">AAACFXicbVDLSsNAFJ3UV62vqEs3g61QIZSkG3VXcOOyQl/QhDCZTtqhk0mYmQgl9Cfc+CtuXCjiVnDn3zhps9DWAxcO59zLvfcECaNS2fa3UdrY3NreKe9W9vYPDo/M45OejFOBSRfHLBaDAEnCKCddRRUjg0QQFAWM9IPpbe73H4iQNOYdNUuIF6ExpyHFSGnJN61avWOFVuJnboTUJAiywXxuuRwFDMHwj3pZ882q3bAXgOvEKUgVFGj75pc7inEaEa4wQ1IOHTtRXoaEopiRecVNJUkQnqIxGWrKUUSkly2+msMLrYxgGAtdXMGF+nsiQ5GUsyjQnfmRctXLxf+8YarCay+jPEkV4Xi5KEwZVDHMI4IjKghWbKYJwoLqWyGeIIGw0kFWdAjO6svrpNdsOHbDuW9WWzdFHGVwBs5BHTjgCrTAHWiDLsDgETyDV/BmPBkvxrvxsWwtGcXMKfgD4/MHf2qeYQ==</latexit><latexit sha1_base64="N16b/dwfL7CKv7brFfdHFp/Y5Jc=">AAACFXicbVDLSsNAFJ3UV62vqEs3g61QIZSkG3VXcOOyQl/QhDCZTtqhk0mYmQgl9Cfc+CtuXCjiVnDn3zhps9DWAxcO59zLvfcECaNS2fa3UdrY3NreKe9W9vYPDo/M45OejFOBSRfHLBaDAEnCKCddRRUjg0QQFAWM9IPpbe73H4iQNOYdNUuIF6ExpyHFSGnJN61avWOFVuJnboTUJAiywXxuuRwFDMHwj3pZ882q3bAXgOvEKUgVFGj75pc7inEaEa4wQ1IOHTtRXoaEopiRecVNJUkQnqIxGWrKUUSkly2+msMLrYxgGAtdXMGF+nsiQ5GUsyjQnfmRctXLxf+8YarCay+jPEkV4Xi5KEwZVDHMI4IjKghWbKYJwoLqWyGeIIGw0kFWdAjO6svrpNdsOHbDuW9WWzdFHGVwBs5BHTjgCrTAHWiDLsDgETyDV/BmPBkvxrvxsWwtGcXMKfgD4/MHf2qeYQ==</latexit><latexit sha1_base64="N16b/dwfL7CKv7brFfdHFp/Y5Jc=">AAACFXicbVDLSsNAFJ3UV62vqEs3g61QIZSkG3VXcOOyQl/QhDCZTtqhk0mYmQgl9Cfc+CtuXCjiVnDn3zhps9DWAxcO59zLvfcECaNS2fa3UdrY3NreKe9W9vYPDo/M45OejFOBSRfHLBaDAEnCKCddRRUjg0QQFAWM9IPpbe73H4iQNOYdNUuIF6ExpyHFSGnJN61avWOFVuJnboTUJAiywXxuuRwFDMHwj3pZ882q3bAXgOvEKUgVFGj75pc7inEaEa4wQ1IOHTtRXoaEopiRecVNJUkQnqIxGWrKUUSkly2+msMLrYxgGAtdXMGF+nsiQ5GUsyjQnfmRctXLxf+8YarCay+jPEkV4Xi5KEwZVDHMI4IjKghWbKYJwoLqWyGeIIGw0kFWdAjO6svrpNdsOHbDuW9WWzdFHGVwBs5BHTjgCrTAHWiDLsDgETyDV/BmPBkvxrvxsWwtGcXMKfgD4/MHf2qeYQ==</latexit><latexit sha1_base64="N16b/dwfL7CKv7brFfdHFp/Y5Jc=">AAACFXicbVDLSsNAFJ3UV62vqEs3g61QIZSkG3VXcOOyQl/QhDCZTtqhk0mYmQgl9Cfc+CtuXCjiVnDn3zhps9DWAxcO59zLvfcECaNS2fa3UdrY3NreKe9W9vYPDo/M45OejFOBSRfHLBaDAEnCKCddRRUjg0QQFAWM9IPpbe73H4iQNOYdNUuIF6ExpyHFSGnJN61avWOFVuJnboTUJAiywXxuuRwFDMHwj3pZ882q3bAXgOvEKUgVFGj75pc7inEaEa4wQ1IOHTtRXoaEopiRecVNJUkQnqIxGWrKUUSkly2+msMLrYxgGAtdXMGF+nsiQ5GUsyjQnfmRctXLxf+8YarCay+jPEkV4Xi5KEwZVDHMI4IjKghWbKYJwoLqWyGeIIGw0kFWdAjO6svrpNdsOHbDuW9WWzdFHGVwBs5BHTjgCrTAHWiDLsDgETyDV/BmPBkvxrvxsWwtGcXMKfgD4/MHf2qeYQ==</latexit>

B(fX)
<latexit sha1_base64="V6GTFZJZTqmFrVK0WGjMuWBIyGw=">AAACBnicbVDLSsNAFL3xWesr6lKEwVaom5J0o+6KblxWsA9oQ5lMJ+3QyYOZiVBCVm78FTcuFHHrN7jzb5ykWWjrgYEz59zLvfe4EWdSWda3sbK6tr6xWdoqb+/s7u2bB4cdGcaC0DYJeSh6LpaUs4C2FVOc9iJBse9y2nWnN5nffaBCsjC4V7OIOj4eB8xjBCstDc2T6sDHakIwT67TmjdM8q/rJr00Pa8OzYpVt3KgZWIXpAIFWkPzazAKSezTQBGOpezbVqScBAvFCKdpeRBLGmEyxWPa1zTAPpVOkp+RojOtjJAXCv0ChXL1d0eCfSlnvqsrsyXlopeJ/3n9WHmXTsKCKFY0IPNBXsyRClGWCRoxQYniM00wEUzvisgEC0yUTq6sQ7AXT14mnUbdtur2XaPSvCriKMExnEINbLiAJtxCC9pA4BGe4RXejCfjxXg3PualK0bRcwR/YHz+AMfNmKI=</latexit><latexit sha1_base64="V6GTFZJZTqmFrVK0WGjMuWBIyGw=">AAACBnicbVDLSsNAFL3xWesr6lKEwVaom5J0o+6KblxWsA9oQ5lMJ+3QyYOZiVBCVm78FTcuFHHrN7jzb5ykWWjrgYEz59zLvfe4EWdSWda3sbK6tr6xWdoqb+/s7u2bB4cdGcaC0DYJeSh6LpaUs4C2FVOc9iJBse9y2nWnN5nffaBCsjC4V7OIOj4eB8xjBCstDc2T6sDHakIwT67TmjdM8q/rJr00Pa8OzYpVt3KgZWIXpAIFWkPzazAKSezTQBGOpezbVqScBAvFCKdpeRBLGmEyxWPa1zTAPpVOkp+RojOtjJAXCv0ChXL1d0eCfSlnvqsrsyXlopeJ/3n9WHmXTsKCKFY0IPNBXsyRClGWCRoxQYniM00wEUzvisgEC0yUTq6sQ7AXT14mnUbdtur2XaPSvCriKMExnEINbLiAJtxCC9pA4BGe4RXejCfjxXg3PualK0bRcwR/YHz+AMfNmKI=</latexit><latexit sha1_base64="V6GTFZJZTqmFrVK0WGjMuWBIyGw=">AAACBnicbVDLSsNAFL3xWesr6lKEwVaom5J0o+6KblxWsA9oQ5lMJ+3QyYOZiVBCVm78FTcuFHHrN7jzb5ykWWjrgYEz59zLvfe4EWdSWda3sbK6tr6xWdoqb+/s7u2bB4cdGcaC0DYJeSh6LpaUs4C2FVOc9iJBse9y2nWnN5nffaBCsjC4V7OIOj4eB8xjBCstDc2T6sDHakIwT67TmjdM8q/rJr00Pa8OzYpVt3KgZWIXpAIFWkPzazAKSezTQBGOpezbVqScBAvFCKdpeRBLGmEyxWPa1zTAPpVOkp+RojOtjJAXCv0ChXL1d0eCfSlnvqsrsyXlopeJ/3n9WHmXTsKCKFY0IPNBXsyRClGWCRoxQYniM00wEUzvisgEC0yUTq6sQ7AXT14mnUbdtur2XaPSvCriKMExnEINbLiAJtxCC9pA4BGe4RXejCfjxXg3PualK0bRcwR/YHz+AMfNmKI=</latexit><latexit sha1_base64="V6GTFZJZTqmFrVK0WGjMuWBIyGw=">AAACBnicbVDLSsNAFL3xWesr6lKEwVaom5J0o+6KblxWsA9oQ5lMJ+3QyYOZiVBCVm78FTcuFHHrN7jzb5ykWWjrgYEz59zLvfe4EWdSWda3sbK6tr6xWdoqb+/s7u2bB4cdGcaC0DYJeSh6LpaUs4C2FVOc9iJBse9y2nWnN5nffaBCsjC4V7OIOj4eB8xjBCstDc2T6sDHakIwT67TmjdM8q/rJr00Pa8OzYpVt3KgZWIXpAIFWkPzazAKSezTQBGOpezbVqScBAvFCKdpeRBLGmEyxWPa1zTAPpVOkp+RojOtjJAXCv0ChXL1d0eCfSlnvqsrsyXlopeJ/3n9WHmXTsKCKFY0IPNBXsyRClGWCRoxQYniM00wEUzvisgEC0yUTq6sQ7AXT14mnUbdtur2XaPSvCriKMExnEINbLiAJtxCC9pA4BGe4RXejCfjxXg3PualK0bRcwR/YHz+AMfNmKI=</latexit>

A C D EB
Fig. 1. Given a scalar field fX : X→ R, from left to right, we increase
the geometric content of the topological descriptors associated with fX:
(A) the barcode of fX; (B) the “classic” merge tree (T, f); (C) adding the
coordinates of critical points pX of fX; (D) adding the gradient information
∇ fX of fX; (E) the original scalar field data.

together, we obtain the “classic” merge tree of fX, denoted as
(T, f) in Fig. 1B. The connection between barcodes and merge
trees first appeared (rather implicitly) via the Elder Rule in [10,
Page 150], and was further explored in [11], [12], [13]. Although
many existing comparative measures on merge trees rely on such
a classic definition of merge trees, the focus of this paper is to
develop comparative measures on merge trees that encode the
geometry of the data domain. Specifically, we focus on enriching
a merge tree by encoding the coordinates of critical points pX of
fX in Fig. 1C. We also can add the gradient information ∇ fX
in Fig. 1D. Finally, a merge tree can be enriched with the scalar
field fX itself, possibly rendering the tree redundant in Fig. 1E.

Our objective is to perform geometry-aware comparisons of
merge trees. We explore a general notion of merge tree called
the leaf labeled merge tree [14], [15], which is an abstract tree
equipped with a scalar function and a labeling of its leaves. Our
main idea is to decouple the computation of a comparative metric
for a pair of (enriched) merge trees into two steps:

1. A labeling step that generates a correspondence between
the critical points of two merge trees using various geo-
metric information of the data domain;

2. A comparison step that computes distances between pairs
of labeled merge trees represented as matrices.

The labeling step makes it possible to integrate geometric in-
formation of the data domain, such as the locations of critical
points and the gradients of the underlying scalar fields. It also
allows the encoding of application-specific domain knowledge.
Furthermore, it reduces the computational complexity since not all
possible correspondences have to be considered. We provide sev-
eral heuristic strategies for labeling leaves in a merge tree, namely,
tree mapping, Euclidean mapping, and their hybrid mapping. We
also discuss a Morse mapping strategy based on the gradients of
an input scalar field. For the comparison step, we use the labeled
interleaving distance [14], which encodes the labeling information
within matrix representations of merge trees.

Using datasets in scientific simulations, we experimentally
evaluate and compare our framework against well-established
comparative measures for merge trees, using the bottleneck dis-
tance and tree edit distance [16] as the baseline. In summary:

• We provide a general and unifying two-step framework
that supports geometry-aware comparisons of merge trees
for time-varying data;

• We demonstrate that our proposed framework can help
detect transitions, clusters, and periodicities of a time-
varying dataset, as well as to diagnose and highlight the
topological changes between adjacent data instances.

Finally, our framework is open source at https://github.com/
tdavislab/MergeTreeMetric.

2 RELATED WORK

A number of topological descriptors serve to describe and identify
the topological characteristics associated with a data instance
(e.g., a scalar field, a vector field, a tensor field, or a multifield),
see [17] for a survey. In this paper, we focus on merge trees for
scalar fields, which are highly relevant in topology-based feature
tracking (e.g. [18], [19], [20], [21]). They have been used to
identify and track cyclones [2] and bubbles in Raleigh-Taylor
instabilities [22], as well as to analyze burning cells [3] from
combustion simulations.

We explore scalar fields by comparing their corresponding
topological descriptors, which requires a measure of similarity
or dissimilarity between them, see [1] for a survey. For merge
trees and their variants, a number of metrics have been devel-
oped (e.g. [16], [23], [24], [25], [26], [27]). However, many
of these metrics remain theoretical and do not have practical
implementations. The most relevant work is by Sridharamurthy et
al. [16], who introduced an edit distance between merge trees that
admits efficient computation. Their edit distance is defined as the
minimum cost of a set of restricted edit operations (e.g., delete,
insert, and relabel) that transforms one merge tree into another.
Pont et al. [28] extended the above edit distance and introduced a
Wasserstein distance between merge trees for feature tracking and
ensemble clustering.

Enhancing topological trees with geometric information is not
new. For example, Beketayev et al. [29] used geometry informa-
tion for the generation of a topological landscape. They established
a correlation between the representation of a contour tree and
the geometric proximity of the topological features based on
dimension reduction techniques. This representation could be used
for pairwise visual comparison of scalar fields defined over the
same domain. Lohfink et al. [30] introduced the notion of a fuzzy
contour tree, which provides a joint layout of an ensembles of
contour trees. They used a contour tree edit distance to establish a
matching between the nodes and arcs of the tree. Herick et al. [31]
recently introduced a temporally coherent layout of contour trees.
They used a weighted sum of spatial and topological distances to
match topological trees from consecutive time steps.

From a methodological point of view, the works of Gasparovic
et al. [14] and Yan et al. [15] are most relevant to the current
paper. Gasparovic et al. [14] introduced an easily computable
metric called the labeled interleaving distance that can be used
to compare labeled merge trees. Yan et al. [15] adapted such
a distance in practice for computing average merge trees and
visualizing uncertainty. They introduced a few heuristic strategies
that generate correspondences between merge trees, which set the
foundation for the labeling step in our framework. Compared
with [15], we perform a more systematic comparative study
on how geometry-aware comparative measures for merge trees
improve our understanding of time-varying data under various
visualization tasks, including the detection of transitions, clusters,
and periodicities. We further introduce time-varying pivot tree and
dummy vertex strategies, which are shown to be more effective in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 3

the study of the time-varying data, compared with the global pivot
tree and dummy leaf strategies first introduced by Yan et al. [15].

Finally, merge trees and Morse complexes are closed con-
nected in terms of studying time-varying structures. Such con-
nections provide further justifications of using merge trees to infer
the similarity between scalar fields in a time sequence. Tracking
spatiotemporal changes in time-varying scalar fields typically
requires the study of features surrounding critical points in terms
of their appearances, disappearances, merging and splitting. Morse
(and Morse–Smale) complexes are natural topological descriptors
for feature tracking since they induce a domain segmentation
and capture the relative geometric positions of critical points. In
particular, Bremer et al. [32] demonstrated how features identified
by thresholding iso-surfaces can be defined in terms of the Morse
complex. They utilized gradient behavior captured by a Morse
complex to identify features and track these features across time
using a Reeb graph (a variant of the merge tree) constructed in
the space-time domain. A follow-up work by Bremer et al. [33]
utilized hierarchical merge trees (instead of Morse complexes) to
provide flexible feature representations. As discussed in [33], a
Morse complex encodes gradient-based features whereas a merge
tree captures threshold-based ones. Therefore, “a Morse complex
needs a secondary data structure within each Morse cell to encode
feature segmentation, while the merge tree naturally provides
this information” [33]. Merge trees can also be computed more
efficiently than a Morse complex. In summary, merge trees provide
a more concise and effective representation of the topological
relationships among critical points in practice. Thus, introducing
geometry-aware schemes is a natural approach for enhancing the
expressive capability of such merge trees.

3 BACKGROUND

In this section, we review the necessary background on scalar field
topology surrounding the notions of merge trees, labeled merge
trees, and distances between the labeled merge trees.

3.1 Merge Trees and Their Variants

Scalar-field-induced merge trees. Given a scalar field f : X→R
defined on a connected domain X, a (scalar field induced) merge
tree records the connectivity of its sublevel sets. Two points
x,y ∈ X are considered equivalent w.r.t. f , x ∼ y, if they have
the same function value, that is, f (x) = f (y) = a, and if they
belong to the same connected component of the sublevel set
Xa := f−1(−∞,a], for some a ∈ R. A merge tree is the quotient
space X/∼ obtained by gluing together points in X that are
equivalent under the relation ∼. Intuitively, it keeps track of
the evolution of connected components in Xa as a increases;
see Fig. 2B for an example. Specifically, leaves (i.e., nonroot
vertices with degree 1) in a merge tree represent the creation of a
component at a local minimum, internal vertices (of degree ≥ 3)
represent the merging of components, and the root (a degree 1
vertex) represents the entire space as a single component.

Throughout this paper, we denote our data of interest as a
pair (X, f), that is, a connected topological space X together
with a scalar field f : X → R. The quotient space X/∼ is a
new topological space that effectively “forgets” about certain
information regarding the data (X, f) such as the locations of the
critical points and the gradient of f .
Labeled merge trees. In this paper, we work with a more general
notion of merge trees defined below, which can be considered

A C DB
Fig. 2. For the scalar field f in (A): the merge tree of f (i.e., the join tree),
the merge tree of − f (i.e., the split tree), and the contour tree of f are
illustrated in (B), (C), and (D), respectively.

as an abstract tree coupled with a function f on its vertices, while
being oblivious of the possible existence of a scalar field that gives
rise to the merge tree.

Definition 3.1. A merge tree is a pair (T, f) of a finite rooted
tree T with vertex set V (T) and a function f : V (T)→ R∪{∞}
such that (i) adjacent vertices do not have equal function value,
(ii) every nonroot vertex has exactly one neighbor with a higher
function value, and (iii) the root is the only vertex with the value
∞ [14, Def. 2.1].

Def. 3.1 is closely related to that of treegrams [34], which is a
certain generalization of a dendrogram [35]. Specifically, we focus
on the notion of a labeled merge tree. Let [n] denote a set of labels
{1,2, · · · ,n}.
Definition 3.2. A labeled merge tree, denoted as a triple T =
(T, f ,π), consists of a merge tree (T, f) together with a labeling
π : [n]→V (T) that is surjective on the set of leaves [14, Def. 2.2].

π is not required to be injective; thus, a vertex can have multiple
labels. π also allows labels for nonleaves by thinking of these as
degenerate labeled leaves [14]. For this paper, we work with leaf-
labeled merge trees, where L(T) ⊂ V (T) represents leave set of
the tree. Unless otherwise specified, they are referred to as labeled
merge trees for the remainder of the paper. We study the space of
labeled merge trees that share the same label set [n].
Join and split trees. For convenience, we refer to the merge tree
of f as the join tree and the merge tree of − f as the split tree
(following the convention in [36]). A join tree (Fig. 2B) tracks
the connected component of the sublevel sets of f and a split tree
(Fig. 2C) tracks that of the superlevel sets of f . The leaves of a
join tree are local minima of f , and the leaves of a split tree are
local maxima of f . Combining a join tree and a split tree of f
gives rise to its contour tree [36] (Fig. 2D), which captures the
connectivity among level sets. As illustrated in Sect. 5, studying
the join tree or the split tree of time-varying data offers different
perspectives on their topological signatures.
Merge trees and Euclidean distances between vertices. Given
an unlabeled merge tree (T, f), the intrinsic tree distance dt
between pairs of vertices is induced by f : V (T)→ R. For any
pair of vertices x,y ∈V (T), it is defined as

dt(x,y) = | f (x)− f (lca(x,y))|+ | f (y)− f (lca(x,y))|,

where lca(x,y) denotes the lowest common ancestor of x and y in
T . In other words, dt(x,y) captures the shortest path between x and
y measured by function value differences to their lowest common
ancestor.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 4

On the other hand, let τi : |T i| → R2 denote the geometric
embeddings of Ti into the spatial domain (for i = 1,2). The
Euclidean distance de between a pair of vertices x,y ∈ V (T) is
induced by its geometric embedding τ . It is defined as

de(x,y) = ||τ(x)− τ(y)||2.

3.2 Interleaving Distances Between Merge Trees
A number of metrics may be defined on the space of labeled merge
trees. In fact, any metric defined on unlabeled merge trees may be
extended to labeled ones by forgetting the label information, which
likely turns a metric into a pseudometric [14].

For a labeled merge tree, again let lca(x,y) denote the lowest
common ancestor of a pair of vertices. We have lca(x,x) = x. Let
f (lca(x,y)) denote its function value.

The induced matrix of a labeled merge tree T = (T, f ,π),
denoted as M(T, f ,π), is the matrix Mi j = f (lca(π(i),π(j))) [14,
Def. 2.6]. As shown in Fig. 3A-B, the induced matrices of labeled
merge trees T 1 and T 2 with a shared label set [3] := {1,2,3} are
defined as follows:

M1 =

2.0 4.7 5.2
· 3.0 5.2
· · 1.0

 , M2 =

2.0 5.2 5.2
· 3.0 4.7
· · 1.0

 .

1.0

2.0

3.0

4.7
5.2

6.6

1

2

3

1

2

3A B

<latexit sha1_base64="3nUwQSikkvE6nU7WCsjgKYVJoFI=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHZJjHoj8eIRExZIYCXd0oWGbrtpuyZkw2/w4kFjvPqDvPlvLLAHBV8yyct7M5mZFyacaeO6305hY3Nre6e4W9rbPzg8Kh+ftLVMFaE+kVyqbog15UxQ3zDDaTdRFMchp51wcjf3O09UaSZFy0wTGsR4JFjECDZW8qutR686KFfcmrsAWideTiqQozkof/WHkqQxFYZwrHXPcxMTZFgZRjidlfqppgkmEzyiPUsFjqkOssWxM3RhlSGKpLIlDFqovycyHGs9jUPbGWMz1qveXPzP66UmugkyJpLUUEGWi6KUIyPR/HM0ZIoSw6eWYKKYvRWRMVaYGJtPyYbgrb68Ttr1mndVcx/qlcZtHkcRzuAcLsGDa2jAPTTBBwIMnuEV3hzhvDjvzseyteDkM6fwB87nD4m1jdA=</latexit>

T 1
<latexit sha1_base64="3Tg2t1UdbBS75tfj9vqyiuf0YV4=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHZJjHoj8eIRExZIYCXd0oWGbrtpuyZkw2/w4kFjvPqDvPlvLLAHBV8yyct7M5mZFyacaeO6305hY3Nre6e4W9rbPzg8Kh+ftLVMFaE+kVyqbog15UxQ3zDDaTdRFMchp51wcjf3O09UaSZFy0wTGsR4JFjECDZW8qutx3p1UK64NXcBtE68nFQgR3NQ/uoPJUljKgzhWOue5yYmyLAyjHA6K/VTTRNMJnhEe5YKHFMdZItjZ+jCKkMUSWVLGLRQf09kONZ6Goe2M8ZmrFe9ufif10tNdBNkTCSpoYIsF0UpR0ai+edoyBQlhk8twUQxeysiY6wwMTafkg3BW315nbTrNe+q5j7UK43bPI4inME5XIIH19CAe2iCDwQYPMMrvDnCeXHenY9la8HJZ07hD5zPH4s6jdE=</latexit>

T 2

Fig. 3. Labeled merge trees T 1 and T 2 with a shared label set [3] :=
{1,2,3}.

M ∈ Rn×n is symmetric; therefore, it is common to store M
as an upper triangular matrix with n(n+1)/2 nonzero entries. We
use such a convention in our paper. The nonzero terms in M can be
linearized into a vector of length n(n+1)/2, called the cophenetic
vector of T [37].

Turning a labeled merge tree into a matrix (or a vector)
enables us to use distances between matrices (or vectors) to obtain
distances between trees. We work with the cophenetic metrics first
introduced by Cardona et al. [37] for phylogenetic trees.

Definition 3.3. Given two labeled merge trees T 1 = (T1, f1,π1)
and T 2 = (T2, f2,π2) that share the same set of labels [n], the
L∞-, L1-, and L2-cophenetic metrics are defined, respectively, as
distances between their corresponding induced matrices M1 and
M2 [37]:

d∞(T 1,T 2) = ||M1−M2||∞,
d1(T 1,T 2) = ||M1−M2||1,
d2(T 1,T 2) = ||M1−M2||2.

||M||∞, ||M||1 and ||M||2 denote the vector norms, that is,
||M||∞ = maxi j |Mi j|, ||M||1 = ∑i j |Mi j| and ||M||2 =

√
∑i j |Mi j|2.

In other words, the above distances correspond to the L∞, L1,
and L2 distances between the cophenetic vectors of T 1 and T 2,
respectively. d∞, d1, and d2 work only on labeled merge trees since
we need the (same set of) labels to have a well-defined induced
matrix.

d∞ is also referred to as the labeled interleaving distance,
denoted as dI , between a pair of labeled merge trees [14, Def.
2.13] (and subsequently [15, Def. 3.3]), due to its close connection
to the interleaving distance of persistence modules [38], [39].
Such a connection is described explicitly in [40]. The interleav-
ing distance of persistence modules has been adapted to merge
trees [23], [41], Reeb graphs [42], [43], and Reeb spaces [44] via
a category-theoretic perspective [45], [46]. dI has also been used to
compare single-linkage hierarchical clustering [34]. Recent work
has established both theoretical [14] and algorithmic [14], [15]
foundations for the space of merge trees under the interleaving
distances, including computing a form of structural averages for
uncertainty visualization [15]. For the remainder of this paper, we
work with the interleaving distance dI with the understanding that
dI := d∞ for labeled merge trees. For example, as illustrated in
Fig. 3, the interleaving distance dI(T 1,T 2) = ||M1−M2||∞ = 0.5.
One of the main advantages of the labeled interleaving distance dI
is that, as an L∞ type distance, it helps diagnose which entries in
the induced matrices are likely responsible for the given distance,
as shown in Sect. 5.

3.3 Other Distances

We review a few other distance metrics that are applicable for
labeled merge trees. Recall any metric defined on unlabeled merge
trees is applicable by ignoring the labeling.
Bottleneck and 1-Wasserstein distance. Given two persistence
diagrams X1, X2 and a bijection η : X1 → X2, the bottleneck
distance [47] between X1 and X2 is defined as

W∞(X1,X2) = inf
η :X1→X2

sup
x∈X1
||x ∈ η(x)||∞. (1)

The q-Wasserstein distance [10, page 183] is

Wq(X1,X2) =

[
inf

η :X1→X2 ∑
x∈X1

||x ∈ η(x)||q∞

]1/q

. (2)

By definition, Wq becomes W∞ by setting q = ∞. In dimension
zero, which is the concern of this paper, there is a correspondence
between a merge tree T of f and the persistence diagram X of
its sublevel set filtration. Specifically, the branch decomposition
of T of f gives rise to the points in the persistence diagram
of f . More generally, given a merge tree (T, f) in the sense of
Def. 3.1, we could directly define the persistence diagram of the
merge tree, denoted as XT , by treating T as a topological space
and computing the 0-dimensional persistence of its sublevel set
filtration, following a similar construction in [25]. Therefore, we
can define the bottleneck distance between the merge trees as the
bottleneck distance between the persistence diagrams of the merge
trees, that is,

dB(T 1,T 2) =W∞(X1
T ,X

2
T). (3)

Similarity, we work with 1-Wasserstein distance between the
merge trees,

dW (T 1,T 2) =W1(X1
T ,X

2
T). (4)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 5

Edit distance between merge tree. The edit distance between
merge trees [16] is defined as

dE(T 1,T 2) = min
S
{γ(S)}, (5)

where S is a tree edit operation sequence from T 1 to T 2 that in-
cludes edit operations such as “relabel”, “delete”, and “insert”; and
γ is a cost function that assigns a non-negative real number to each
operation. dE is an adaptation of and a significant improvement on
the constrained unordered tree edit distance [48].
Distances between scalar fields. Finally, there are a number of
comparative measures for scalar fields (e.g., [49], [50], [51]).
We are given a pair of scalar fields f1 and f2; each sampled
at N locations {x1, . . . ,xN} ∈ X, forming a vector of length N,
denoted as v1 = (v1

1, . . . ,v
N
1) and v2 = (v1

2, . . . ,v
N
2), respectively.

We work primarily with Euclidean distances between them in the
comparative study, defined as

dF(f1, f2) = ||v1− v2||2.

We compare against three additional distances in Sect. 5.4
that are based on Pearson correlation, gradient, and iso-surfaces,
respectively. First, the Pearson correlation coefficient between v1
and v2 (by treating them as distributions) is defined as

ρ(v1,v2) =
∑

N
i=1(v

i
1− v̄1)(vi

2− v̄2)√
∑

N
i=1(v

i
1− v̄1)2

√
∑

N
i=1(v

i
2− v̄2)2

,

where v̄1 = (1/N)∑
N
i=1 vi

1, v̄2 = (1/N)∑
N
i=1 vi

2. We work with a
normalized Pearson’s distance [51] defined from their correlation
coefficient as

dP(f1, f2) =
1
2
(1−ρ(v1,v2)).

By definition, dP(f1, f2) ∈ [0,1] with dP(f1, f2) = 0 when v1 = v2.
Second, we utilize a gradient-based comparative measure

introduced by Nagaraj et al. [50], which is defined as the
matrix norm of a partial derivative matrix involving the two
fields. Formally, given two scalar fields f1 and f2 defined on a
shared 2D domain X, the matrix of partial derivatives at a point
xi = (xi

1,x
i
2) ∈ X is

J(xi) =

 ∂ f1
∂xi

1
(xi) ∂ f1

∂xi
2
(xi)

∂ f2
∂xi

1
(xi) ∂ f2

∂xi
2
(xi)

 .
Our comparative measure dG is then defined by averaging the
norm of partial derivatives of all N points {x1, . . . ,xN} ∈ X in the
domain,

dG(f1, f2) =
1
N

N

∑
i=1
||J(xi)||.

Finally, we also consider the work by Fofonov and Linsen
[51], who generalized an iso-surface similarity measure. Assuming
the range of f1 and f2 is normalized to [0,1], the distance dS
between them is defined as

dS(f1, f2) = 1− ∑
N
i=1(1−max(vi

1,v
i
2))

∑
N
i=1(1−min(vi

1,v
i
2))

.

By definition, dS(f1, f2) ∈ [0,1], with dS(f1, f2) = 0 when v1 = v2.

4 GEOMETRY-AWARE MERGE TREE METRICS

Most of the merge tree metrics described in Sect. 2 are unaware
of the geometric information from the data domain, such as the
locations of the critical points or the gradient of the scalar field.
These metrics are defined over the space of unlabeled merge trees.
To define a geometry-aware metric, we consider a more general
space that allows for encoding such information. A suitable space
is the space of labeled merge trees reviewed in Sect. 3. Our two-
step framework for merge tree comparisons includes:

1. Labeling. This step generates a correspondence between
the critical points of two merge trees by encoding the geo-
metric information of the data domain. We describe several
labeling strategies – namely, tree mapping, Euclidean
mapping, and hybrid mapping – based on topological and
geometric information of the scalar fields, respectively.

2. Comparison. This step transforms labeled merge trees into
their induced matrices, and computes distances between
labeled merge trees by computing distances between their
corresponding induced matrices.

In this section, we describe the labeling step in detail. Suppose we
are given a time-varying dataset consisting of l instances of scalar
fields defined over a common domain with their corresponding
merge trees. There are two requirements to transfer a set of
unlabeled merge trees into labeled ones. First, we need to assign a
common set of labels between leaves of merge trees, that is, to find
leaf correspondences that capture properties of the data domain;
see Sect. 4.1. Second, we need to ensure the induced matrices of
labeled merge trees are comparable. We introduce dummy vertices
and dummy leaves to the trees to ensure that the resulting induced
matrices are the same size. The dummy leaf strategy was first
introduced in [15]; we perform a more systematic study of both
strategies in Sect. 4.2. Finally, we introduce the notion of a time-
varying pivot tree, which is shown to be effective to capture
topological transitions in a time-varying setting; see Sect. 4.3.

4.1 Labeling Strategies

Our leaf labeling strategies take as input a pair of unlabeled merge
trees T 1 and T 2 that arise from a pair of 2D scalar fields f1 and
f2. We consider a tree mapping strategy, a Euclidean mapping
strategy, and a hybrid mapping strategy, where the hybrid mapping
strategy generalizes the other two strategies.

Given an unlabeled merge tree (T, f), recall that the intrinsic
tree distance between a pair of vertices x and y in the tree is
denoted by dt , and the Euclidean distance between their geometric
embeddings is denoted by de. dt and de capture the topological
and geometric relation between x and y, respectively. To achieve
a balance between topology and geometry, we define a hybrid
distance as

dh(x,y) = λ ·dt +(1−λ) ·de,

for 0 ≤ λ ≤ 1. dh generalizes both dt and de. For λ = 1, dh = dt
and for λ = 0, dh = de. We thus focus on describing the hybrid
mapping strategy, which finds a minimum cost matching between
leaves based on their similarities among their dh distances to other
vertices in the tree.
Initial label assignment. Given a pair of unlabeled merge trees
T 1 and T 2, let V (T 1) and V (T 2) denote their respective vertex
sets, and L(T 1) and L(T 2) their leaf sets. The goal of an initial
label assignment between L(T 1) and L(T 2) is to utilize topology,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 6

geometry, or prior knowledge of the data to establish initial
correspondences (labels) between subsets of the leaves that share
high similarities. These initially matched labels serve as “anchors”
during the labeling process, where distances to these anchors are
used to assess topological and geometric similarities among the
remaining unlabeled leaves.

We use geometric proximities of critical points in the domain
under the Euclidean distance as an example. To define a shared
label set, the tree with a larger number of leaves is chosen as
the pivot tree Tp. The leaves of Tp give rise to a pivot label set,
denoted Sp := [n], where n = |L(Tp)|. Let πp : Sp→ L(Tp) denote a
labeling of the pivot tree; w.l.o.g., assume Tp = T 1 and π1 is its leaf
labeling. This label set is assigned to L(T 2) via π2 : Sp → L(T 2)
with a minimum weight matching described below.

To initialize a labeling of L(T 2), we assign a subset of labels
in Sp to L(T 2) based on Euclidean distances between L(T 2) and
L(T 1) in the embeddings. To do so, we construct a weighted,
complete bipartite graph between L(T 1) and L(T 2) where the
weight wxy between x ∈ L(T 1) and y ∈ L(T 2) is their Euclidean
distance in the domain; wxy = de(τ1(x),τ2(y)). To solve an assign-
ment problem of this bipartite graph, we find a matching with a
maximum number of edges in which the sum of edge weights is
as small as possible, which gives rise to an initial label assignment
of leaves in T 2.

1.0

2.0

3.0

4.0

1.0

2.0

3.0

4.0

1.0

2.0

3.0

4.0

1.0

2.0

3.0

4.0

Fig. 4. A labeling of leaves in T 2 (C) against a pivot tree T 1 (A) under the
tree mapping strategy, using dummy leaves (E) or dummy vertices (F).

We illustrate this initial label assignment in Fig. 4. We start
with a pair of merge trees T 1 and T 2 that arise from a pair of
scalar fields. Since |L(T 1)| = 4 > |L(T 2)| = 3, T 1 in Fig. 4A is
chosen to be the pivot tree, which gives rise to a pivot label set
Sp = {1,2,3,4}, see Fig. 4B. Leaves of T 2 (Fig. 4C) obtain their
initial labels {1,2,4} by solving the above assignment problem,
since the respective leaves are close to one another in the domain;
see Fig. 4D. Thus, there is an unmatched label U1 = {3} for T 1.

4.2 Dummy Leaves and Dummy Vertices

In general, after the initial label assignment, there may be un-
matched labels in the pivot tree; for example, the label {3} remains
unmatched for T 2 in Fig. 4D. The next step is to create dummy
labels on T 2 to ensure that it uses the entire pivot label set. We
introduce both dummy leaf and dummy vertice strategies. The
former allows dummy labels only on the leaves, whereas the latter
allows dummy labels on the interior of edges.

Dummy leaves. The dummy leaf strategy [15] finds an assignment
for each unmatched label in the pivot tree T 1 by duplicating leaves
in T 2. It uses a greedy assignment strategy based on the pairwise
distance matrices. The main idea is to find a leaf in T 2 that has a
local structure most similar to an unmatched leaf in T 1.

Using the example from Fig. 4E, T 1 has an unmatched label 3.
The dt -based pairwise distance matrix between unmatched labels
({3}) and matched labels in T 1 {1,2,4} is D1 =

(
5.0 5.0 3.0

)
.

The dt based pairwise distance matrix of T 2 encodes distances
between leaves {1,2,4} and matched labels {1,2,4}, forming

D2 =

0.0 3.0 6.0
3.0 0.0 5.0
6.0 5.0 0.0

. To find a leaf in T 2 that has the most

similar local structure to the unmatched label 3 in T 1, rows from
D1 and D2 are compared, which leads to a matching of leaf 3 in T 1

to leaf 4 in T 2. T 2 now contains one leaf with two labels {3,4};
see Fig. 4E.
Dummy vertices. The dummy leaf strategy is well-suited to gen-
erate smooth transitions between merge trees [15], but it leads to
instabilities in the distance computation. Therefore, we describe a
second strategy that adds dummy vertices internal to the branches,
which can also be interpreted as adding a branch with zero length.
Thus, this strategy ensures that the dummy vertex does not change
the tree structure of T 2. To determine the branch in T 2 where we
add a dummy vertex, a pairwise distance matrix for all candidates
is computed and compared to the distances in T 1.

Let us revisit the example in Fig. 4F. A dummy vertex with a
label 3 is added to T 2 with the same scalar value as the leaf 3 of T 1.
This dummy vertex has three candidates, which are highlighted by
dashed circles in Fig. 4F. The dt -based pairwise distance matrix
between these candidates and matched labels {1,2,4} in T 2 is

D2 =

1.0 2.0 5.0
3.0 0.0 5.0
5.0 4.0 1.0

. Compared with D1 =
(
5.0 5.0 3.0

)
,

the third candidate has the local structure most similar to leaf 3 of
T 1. The result is shown in Fig. 4F, where we add a dummy vertex
on the branch of leaf 4 in T 2.
Induced matrices. After the labeling step, we transform a pair
of unlabeled merge trees T 1 and T 2 to a pair of labeled merge
trees T 1 and T 2. We can transfer T 1 and T 2 to induced matrices
M1 and M2 according to the label assignment, as shown in Fig. 4.
The pivot label set then gives rise to the rows and columns of an
induced matrix. These induced matrices are shown below for the
example in Fig. 4B and Fig. 4E, where labels for T 2 are obtained
using a dummy leaf strategy:

M1 =


1.0 3.0 4.0 4.0

1.0 4.0 4.0
2.0 3.0

1.0

 ,M2 =


1.0 3.0 4.0 4.0

2.0 4.0 4.0
1.0 1.0

1.0

 .

If we apply a dummy vertex strategy to T 2, as shown in Fig. 4F,
the induced matrix is

M2 =


1.0 3.0 4.0 4.0

2.0 4.0 4.0
2.0 2.0

1.0

 .

4.3 Time-Varying Pivot Tree

So far we have described strategies to find a leaf-leaf correspon-
dence between a pair of unlabeled merge trees. When moving to

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 7

0

10 11

2 31

7

8 9

5 64

0
1,2

0
1

2
0

1

2

0
1

2

1

0,2
0,2

1

0,2

1 1

0

2

1

0

2 1

0

2

0

1,2

0
1,2

Fig. 5. MovingGaussian dataset with a hybrid mapping strategy and a time-varying pivot tree. Left: 12 time steps of scalar fields are visualized
together with the labeled split trees. Middle and right: distance metrics for dF , dB, dW , dE , and dI , respectively, where the zoomed-in version of dI
highlights clusters among the data instances.

a time-varying dataset containing a large number of merge trees,
this strategy is, however, no longer sufficient. We need to have a
shared label set for all trees, which leads to comparable induced
matrices with the same size. Therefore, a pivot tree selection plays
an important role, which is discussed below.
Global pivot tree. The first method, introduced in [15], is a direct
extension of the strategy from the matching of two trees described
in Sect. 4.1 to many trees. It selects a global pivot tree as a tree
with the largest number of leaves among all input trees. This tree
defines the global label set, and we assign labels to all the other
trees using the label set from the pivot tree. A major limitation
of this approach is the implicit assumption that similarity is a
transitive property, which could lead to artifacts for large numbers
of trees within a time-varying dataset.
Time-varying pivot tree. To overcome this problem, we introduce
a new, time-varying pivot tree strategy. The labels are propagated
from one tree to the next, capturing temporal changes in a time-
varying dataset.

The strategy works as follows: Given a set of merge trees
{T 0,T 1, . . . ,T l} that arises from a time-varying dataset, let Tp :=
T i (for some i) be an initial pivot tree with the largest n number
of leaves, thus defining the label set [n]. To assign labels to T i−1

that immediately precedes T i, we use T i as the pivot; thus, T i−1

inherits labels from T i. To assign labels to T i−2, we use T i−1 as its
pivot instead. In general, T j will be the pivot tree for T j−1 when
j ≤ i, whereas T j will be the pivot tree for T j+1 when j ≥ i. In
a nutshell, the labels are inherited sequentially as we go through
the dataset forward and backward from the initial pivot tree in a
time-ordered way. Such a strategy works well with time-varying
datasets, as demonstrated in Sect. 5.1 and Sect. 5.2.
Pivot-free strategy. The time-varying pivot tree has its advantages
and disadvantages. It is desirable for feature tracking within a
time-varying dataset, thus supporting the detection of transitions

and clusters in real-world datasets; see Sect. 5.1 and Sect. 5.2.
However, if the goal is to detect periodicities within time-varying
datasets, we will need to effectively “ignore” geometric depen-
dencies among adjacent time instances and treat these instances
independently, which leads to an alternative pivot-free strategy.
That is, we treat each time instance independently and compute
interleaving distances between pairs of instances without requiring
a pivot tree or a shared label set across all input trees. In practice,
this strategy works reasonably well if we assume the label sets are
of roughly the same size; we give an example in Sect. 5.3.

4.4 A Simple Example

To illustrate our analysis pipeline, we give a simple example
involving a synthetic time-varying dataset, referred to as the
MovingGaussian dataset. This dataset is generated as a mixture
of Gaussian functions centered at seven anchor points in a 2D
domain. One of the anchor points (the starred point in Fig. 5
left) performs a circular motion in the domain, while the rest
remain stationary. This dataset contains 12 time steps modeled
as scalar fields. We compute their corresponding split trees. We
include pairwise distance matrices under dI , dF , dB, dW , and dE ,
respectively (see Fig. 5 right). With the MovingGaussian dataset,
we demonstrate how geometric information coupled with topology
helps to reveal its clustering structure, using hybrid mapping,
dummy leaves, and time-varying pivot tree strategies. For all our
experiments, unless otherwise specified, we set λ = 0.5 for a
hybrid mapping strategy; see Sect. 4.5 for a discussion.

Geometric information and a time-varying pivot tree are the
two key elements for tracking the moving Gaussian function.
As shown in Fig. 5 left (time steps 0 to 11), using a hybrid
mapping strategy, our method successfully tracks a moving Gaus-
sian function centered at the starred critical point. This critical
point with label 2 performs a counterclockwise circular motion: it

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 8

Hybrid mapping Tree mapping Euclidean mapping Hybrid mapping Hybrid mapping Hybrid mapping

Dummy leaf Dummy leaf Dummy leaf Dummy vertex Dummy leaf Dummy leaf

Time-varying pivot tree Time-varying pivot tree Time-varying pivot tree Time-varying pivot tree Global pivot tree Pivot-free

A C D E FB
Fig. 6. MovingGaussian dataset with different labeling strategies. Top: combinations of labeling strategies. Middle: pairwise distances matrices for
dI . Bottom: MDS projections of all time steps.

merges with local maximum with labels 0 and 1 at time steps 4
and 10, respectively, and splits with them at time steps 1 and 7,
respectively. A hybrid mapping considers the geometric positions
of critical points in the domain. Therefore, for adjacent instances,
stationary critical points are more likely to be mapped with each
other.

Furthermore, as shown in Fig. 5 right, in comparison with
other distance metrics (dF , dB, dW , and dE), the labeled interleav-
ing distance dI matrix detects three dominant clusters (bounded by
purple, orange, and white squares). These clusters are calculated
by DBSCAN clustering algorithm (eps=4 and min sample=2)
from scikit-learn Python library using precomputed distance ma-
trix dI . These clusters are the results of critical points merging and
splitting in the time-varying data. In particular, the interactions of
the local maximum 2 with other local maxima 0 and 1 at time
steps 1, 4, 7, and 10 directly cause the topological transitions of
the underlying split trees.

We now illustrate the time-varying pivot tree strategy. In this
experiment, we pick T 1 as the initial pivot tree since T 1 has the
largest number of leaves. Then T 0 and T 2 inherit labels from T 1.
After that, T 2 becomes the pivot tree for T 3, and T 3 will inherit
labels from T 2 and become the pivot tree for T 4, and so forth.
If T p is the initial pivot tree, T i will be pivot tree for T i+1 when
i≥ p, whereas T i will be the pivot tree for T i−1 when i≤ p. The
benefit of using the time-varying pivot tree is that such a labeling
strategy can propagate both geometric and topological information
corresponding to temporal changes. If we used a global pivot tree
strategy from [15], T 1 is the only pivot tree, and current labeling
results will change, especially when time instances are far from
the global pivot tree temporally. For example, labeling T 7 and T 8

using T 1 as a pivot tree will be different with the current labeling
result, no matter which mapping strategy we choose.

4.5 Labeling Strategy Selection
We end this section by discussing the labeling strategy selection.
We revisit the MovingGaussian example in Sect. 4.4 and explore
how dI changes across different labeling strategies. We start with

the dI matrix in Fig. 5, which is calculated using hybrid mapping
(λ = 0.5), dummy leaf, and time-varying pivot tree strategies; see
also Fig. 6A. We conduct experiments by replacing one strategy
at a time.

For the hybrid mapping, we perform a number of experiments
by varying the λ parameter for λ ∈ [0,0.2,0.4,0.6,0.8,1.0]. dI for
MovingGaussian remains the same for λ ∈ [0,0.5] (Fig. 6A), and
for λ ∈ [0.6,1.0] (Fig. 6B). By default, we set λ = 0.5 to strike a
balance between geometric and topological information.

Fig. 6 shows dI distance matrices under different mapping
strategies, and their MDS projections colored by DBSCAN clus-
tering result (eps= 0.15 and min sample=2). We notice that Eu-
clidean mapping in (C) leads to the same dI as the hybrid mapping
with λ = 0.5 in (A), since both of them detect a moving Gaussian
function in the domain. Compared with the dummy vertex strategy
(D), the dummy leaf strategy (A) is more sensitive to structural
transition than the dummy leaf strategy, where (A) produces three
clusters and (D) produces two.

Regarding pivot tree selection, our time-varying pivot tree
strategy in (A) works better than global pivot tree strategy in (E)
for a time-varying dataset, since the former propagates labels from
one tree to the next, which accommodates the inherent temporal
nature of time-varying data. Pivot-free strategy in (F) also works
fairly well in detecting structural transition and clusters; cf. Fig. 6F
and Fig. 6A.

5 EXPERIMENTAL RESULTS

In this section, we demonstrate via experiments that geometry-
aware merge tree comparisons based on the interleaving distance
help detect transitions, clusters, and periodicities of time-varying
datasets, as well as to diagnose and highlight the topological
changes between adjacent instances.

In Sect. 5.1 and Sect. 5.2, we use split trees instead of join
trees, which encode local maxima. The maxima of the velocity
magnitude field in a flow dataset are chosen as features of
interest as they distinguish regions of high flow compared to the
background. In the flow datasets used in our experiments, such

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 9

67, 6853, 54

Fig. 7. Geometry-aware merge tree comparisons for a time-varying CornerFlow dataset. Left two columns: selected scalar fields with their zoomed-
in views, where local minimum are in blue, saddles are in white, local maximum are in red. Right top: pairwise distance matrices for dF , dB, dW , dE ,
and dI . Right bottom: dI transition curve. Arrows in dI and its transition curve highlight selected structural transitions.

maxima also approximate very well the regions with high vorticity.
In Sect. 5.3, we conduct experiments based on both join trees and
split trees to capture differences in the behavior of local extrema.

The labeling strategies for each dataset can be found in
Table 1. The most common approach we employ combines hybrid
mapping, dummy vertex, and time-varying pivot tree strategies.
We use a hybrid mapping with λ = 0.5 to strike a balance between
geometric and topological information. We choose a dummy leaf
strategy with a small dataset MovingGaussian for a more obvious
clustering pattern. However, for datasets that are much larger
than the MovingGaussian, a dummy vertex strategy is better at
detecting structural transitions and clusters since it is less sensitive
and does not focus on spurious features. A time-varying pivot
tree generally outperforms a global pivot tree for time-varying
data in detecting structural transitions and clusters. For periodicity
detection, a pivot-free strategy appears to be better than a time-
varying pivot tree, as mentioned in Sect. 4. Therefore, we use a
pivot-free strategy for the VortexStreet dataset; see a detailed
comparison between pivot-free strategy and time-varying pivot
tree in Sect. 5.3.

Dataset Mapping Dummy label Pivot tree
MovingGaussian hybrid dummy leaf time-varying

CornerFlow hybrid dummy vertex time-varying
HeatedFlow hybrid dummy vertex time-varying
RedSea hybrid dummy vertex time-varying
Wing hybrid dummy vertex time-varying

VortexStreet hybrid dummy vertex pivot-free

TABLE 1
Labeling strategies for each dataset.

5.1 Detect and Diagnose Structural Transitions

We demonstrate our method for detecting structural transitions us-
ing two flow datasets: the CornerFlow and HeatedFlow datasets.

Corner Flow dataset. We first demonstrate our method us-
ing the 2D Cylinder Flow Around Corners dataset (https://cgl.
ethz.ch/research/visualization/data.php), which we refer to as the
CornerFlow dataset. This dataset arises from the simulation of a
viscous 2D flow around two cylinders [52], [53]. The channel
into which the fluid is injected is bounded by solid walls. A
vortex street is initially formed at the lower left corner, which then
evolves around the two corners of the bounding walls. We generate
a set of split trees from the vertical component of the velocity
vector fields based on 94 time instances – they correspond to
steps 801-894 from the original 1500 time steps. These instances
describe the formation of a one-sided vortex street on the upper
right corner; see Fig. 7 left, which visualizes the scalar fields
associated with time steps 53, 54, 67, and 68.

To separate signals from noise, we apply persistence simplifi-
cation [54] to the split trees of all instances with a persistence
threshold of 0.2. In particular, to guide the selection of the
persistence threshold, we employ a set of persistence graphs, each
representing the number of critical point pairs as a function of
persistence [55]. The shape of the persistence graph, in particular,
a plateau, indicates a stable range of scales to separate noise from
signals in the persistence graph [56], [57]. We demonstrate such a
simplification process in Fig. 10, where time instance 54 is shown
before and after persistence simplification; the persistence thresh-
old is chosen approximately due to the variabilities across time
instances. We also provide dI distance matrices across multiple
persistence thresholds (Fig. 10 bottom). These matrices exhibit

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 10

153, 15451, 52 75,76

Fig. 8. HeatedFlow dataset: geometry-aware merge tree comparisons. Left two columns: selected scalar fields with their zoomed-in views, where
local minimum are in blue, saddles are in white, local maximum are in red. Right top: zoomed-in views for the selected scalar fields responsible for
light cross lines at instance 75 on dI . Right middle: pairwise distance matrices for dF , dB, dW , dE , and dI , respectively. Right bottom: dI transition
curve. Arrows in dI and its transition curve highlight detected structural transitions.

𝜆 = 0 𝜆 = 0.2 𝜆 = 0.4 𝜆 = 0.6 𝜆 = 0.8 𝜆 = 1.0

Fig. 9. Pairwise dI distance matrices for the CornerFlow dataset with varying λ .

0 0.2 0.4 0.6

Fig. 10. CornerFlow dataset. Top left: time instance 54 before (top) and
after (bottom) persistence simplification. Top right: a set of persistence
graphs used to guide the simplification process. Bottom: pairwise inter-
leaving distance matrices dI with persistence thresholds at 0 (i.e., no
simplification), 0.2, 0.4, and 0.6.

different block structures since dI are sensitive to the appearances
and disappearances of critical points due to persistence simplifica-
tion. However, we can still observe common trends among these
matrices: (1) a higher persistence threshold leads to fewer critical
points, which leads to fewer block structures in dI matrices; (2)
the overall block structures associated with persistence thresholds
0.2, 0.4, and 0.6 are quite similar, indicating a certain amount of
robustness w.r.t. persistence simplification.

Our framework analyzes structural transitions via the pairwise
distance matrices. For this experiment, we use hybrid mapping,
dummy vertex, and time-varying pivot tree strategies. Fig. 9
illustrates our parameter selection of λ ∈ [0,0.2,0.4,0.6,0.8,1.0].
Specifically, dI does not change much within a certain range: dI
looks similar for λ = 0,0.2, and for λ = 0.6,0.8,1.0.

As shown in Fig. 7 middle, our framework using the interleav-
ing distance dI captures two obvious structural transitions among
adjacent instances, 53→ 54 and 67→ 68. There appear to be clear
block structures within the dI matrix, where the above transitions
are highlighted by arrows at the corners of these blocks. We also
use a curve that captures interleaving distance dI between adjacent

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 11

time steps, referred to as the dI transition curve; see Fig. 7
right bottom. This curve records the interleaving distance between
instances i and i+ 1 (0 ≤ i < 94), and highlights positions where
obvious structural transitions occur.

Under the diagnostic setting, we locate critical points in the
domain that are responsible for the dI distance between adjacent
instances. A close inspection of this time-varying dataset then
reveals that from step 53 to 54, a pair of critical points x and y
(enclosed by orange spheres) disappears (Fig. 7 top left). Similarly,
from step 67 to 68, another pair of critical points u and v (enclosed
by orange spheres) disappears. Therefore, dI highlights structural
transitions in the time-varying data, whereas in comparison, only
the bottleneck distance dB is able to capture the same 53→ 54
transition in its matrix representation (Fig. 7 white arrow in dB).
Heated Flow dataset. We give another example using a
2D Heated Cylinder with a Boussinesq Approximation dataset
(https://cgl.ethz.ch/research/visualization/data.php), denoted as
the HeatedFlow dataset. This dataset comes from the simulation
of a 2D flow generated by a heated cylinder using the Boussinesq
approximation [53], [58]. It shows a time-varying turbulent plume
containing numerous small vortices.

We convert each time instance of the flow into a scalar field
using the magnitude of the velocity vector. We then generate a
set of split trees from these scalar fields based on 300 time steps,
corresponding to steps 1000-1299 from the original 2000 time
steps. This dataset captures the evolution of small vortices over
time. We use hybrid mapping, dummy vertex, and time-varying
pivot tree strategies, and apply simplification with a persistence
threshold of 0.06.

The results are shown in Fig. 8. We observe two visible
structural transitions based on dI between steps 51 → 52 and
153→ 154 (indicated by white and orange arrows in dI and its
transition curve, respectively). Under the diagnostic setting, the
structural transition 51→ 52 is caused by the disappearance of
a pair of critical points x and y at step 51 (highlighted by green
bubbles). The transition 153→ 154 is a result of the disappearance
of the pair u and v at step 153.

Two additional structural transitions are detected at 74→ 75
and 75→ 76, as indicated by the yellow arrow in the dI matrix
of Fig. 8. Since instance 75 appears to be an outlier under dI
among its neighboring instances, the dI transition curve shows
high values at i= 75 and 76, which indicates interleaving distances
between instances 74 and 75 and between instances 75 and 76.
However, a closer inspection indicates that such a transition is,
in fact, an artifact as a result of persistence simplification, which
leads to structural changes of the simplified split trees. We will
discuss such artifacts further in Sect. 6.

5.2 Detect Clusters
Our method using the interleaving distance helps to cluster time
instances based on their structural differences. We demonstrate the
utility of the method using 2D simulations of the Red Sea and a
dataset generated from the Gerris flow solver.
Red Sea dataset. The RedSea dataset originates from the IEEE
Scientific Visualization Contest 2020 (https://kaust-vislab.github.
io/SciVis2020/), and is generated using a high-resolution MITgcm
(Massachusetts Institute of Technology general circulation model),
together with remote sensing satellite observations. It is used to
study the circulation dynamics and eddy activities of the Red Sea
(see [59], [60], [61]). For the experiment, we use the velocity mag-
nitude fields of a particular dataset (named 001.tgz) with 60 time

steps. We generate split trees from the 2D slices perpendicular to
the z-axis (z = 1). For this experiment, we use hybrid mapping,
dummy vertex, and time-varying pivot tree strategies.

We run the DBSCAN clustering algorithm from scikit-learn
Python library using precomputed distance matrix dI with eps=0.2
and min sample=2, and find four clusters of data instances
in Fig. 11. dI shows that the scalar fields share similar structures
from instances 0-6 (in orange square), 9-27 (in white square), 28-
54 (in red square), and 55-59 (in magenta square). Instances 7 and
8 are identified as outliers under this parameter setting. We show
the MDS projection of all instances based on the dI metric and
colored by the DBSCAN clustering result, together with selected
scalar fields from each cluster in Fig. 11.

Taking a closer look at the corresponding split trees in Fig. 12,
each cluster of data instances shares a similar tree structure,
especially for some instances in the red cluster (e.g., see instances
40, 45, and 50). In this experiment, dB and dW also show some
clustering patterns; however, in comparison, dI offers a clearer
and more informative clustering pattern.
Wing dataset. The Wing dataset is generated using the software
Gerris flow solver (http://gfs.sourceforge.net/). We use its demo
flow simulation example involving the “starting vortex”, which is
a vortex that forms in the fluid near the trailing edge of an aerofoil
(wing) as it is accelerated from rest in a fluid. For our simulation,
we set the angle of the aerofoil with respect to the fluid as 20◦ and
generate 40 time steps. The scalar field of interest is the velocity
magnitude.

For this experiment, we use hybrid mapping, dummy vertex,
and time-varying pivot tree strategies. As shown in Fig. 13, we
compute various distance matrices based on the split trees com-
puted for the velocity magnitude field. All the trees are simplified
at a simplification threshold of 0.13.

We demonstrate DBSCAN clustering result using dI in Fig. 13
(eps=0.8 and min sample=2). The dI matrix detects five clusters
of data instances: 1-16 (in blue square), 17-26 (in orange square),
27-28 and 33-35 (in green square), 29-32 (in purple square), and
36-40 (in red square). Instance 0 is marked as an outlier. The
MDS projection of all data instances using dI further highlights
the clustering structures among the scalar fields at different time
steps. Whereas dB, dW , and dE also capture some clustering
structures in this time-varying dataset, dI gives rise to clusters
that appear to be more separable and visually differentiable.
Moreover, based on inspection of the velocity magnitude fields
shown in Fig. 13 left, it is apparent that the five clusters separate
the time steps into clusters with similar vortex structures. For
example, the major change between the orange and green clusters
is the appearance of a strong vortex on the top of the wing in the
green cluster. Similarly, notice the two strong vortices in the time
steps corresponding to the purple cluster. As one of those vortices
exits the domain in the subsequent time steps, the instances are
grouped into a different cluster marked as red.

5.3 Detect Periodicities
Finally, we demonstrate our framework in detecting periodicities
using the classic 2D von Kárman vortex street dataset, which
we refer to as the VortexStreet dataset. We consider the region
of vortex shedding behind the cylinder, and use the velocity
magnitude field for comparison as used earlier by Sridharamurthy
et al. [16].

We use hybrid mapping, dummy vertices, and pivot-free strate-
gies. As shown in Fig. 14 left, using either the join or split tree, dB,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 12

MDS using
Fig. 11. RedSea dataset: detect clusters. Left three columns: selected scalar fields drawn from each of the four clusters. Fourth column and second
row: MDS projection of all time steps using the dI metric. Rest of the images: pairwise distance matrices for dF , dB, dW , dE , and dI , respectively.
Colored boxes in dI highlight the four detected clusters.

1 3 5

16 20 24

40 45 50

55 57 59

Fig. 12. RedSea dataset: abstract split trees for selected time steps, cf. Fig. 11.

dW , and dE all show a periodicity of length 37. The interleaving
distance, dI , captures the same length of periodicity using the
join tree. However, using the split tree, we detect a periodicity
of length 75 using dI . Such a longer periodicity coincides with
the periodicity detected using dF . This periodicity can be justified
where both dI and dF consider more geometric information in
the domain, in comparison with other metrics. We also include
curves that record distances based on split trees (using dI , dF , dB,
dW , and dE metrics) between instance 0 and all other instances to
show such periodicity patterns; see Fig. 14 middle.

Furthermore, as shown in Fig. 15, the positions of local max-
ima (red points) change more drastically every 37 time steps, in
comparison with the positions of local minima (blue points). This
finer difference is captured by the split tree version of dI ; where

neither dB, dW , nor dE capture this difference in the behavior of
the local extrema.

In this experiment, as mentioned in Sect. 4, a pivot-free map-
ping strategy works better than a time-varying pivot tree strategy in
detecting periodicities. We compare the above results with those
obtained using a time-varying pivot tree. Fig. 15 shows labeled
local maxima from the scalar fields associated with time steps 1,
37, and 75. Scalar fields at time steps 1 and 75 have similar merge
trees w.r.t. the locations of critical points. Therefore, they have low
distance values under dF and dI , dB, dW , and dE in our previous
experiment. However, these critical points obtain different labels
using a time-varying pivot tree. Since a time-varying pivot tree
helps labels propagate from one tree to the next, labeling under
this setting indicates that vortices in the VortexStreet dataset

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 13

𝑑!

𝑑" 𝑑# 𝑑$ 𝑑%

5

11

21

25

27

34

30

32

38

40

MDS using 𝑑!

Fig. 13. Wing dataset: detect clusters. Left column and top two rows: selected scalar fields drawn from each of the five clusters. Right column
and third row: MDS projection of all the time steps using the dI metric. Rest of the images: pairwise distance matrices for dF , dB, dW , dE , and dI ,
respectively. Colored boxes in dI highlight the five detected clusters.

Periodicity: 75

75 37

3737

75

75

Fig. 14. The VortexStreet dataset. Left: distance matrices for dF and dI , dB, dW , and dE , using both join and split trees, respectively. Middle: Distance
to instance 0 curves using split tree and under dI , dF , dB, dW , and dE metrics. Notice that dF and dI have a periodicity of length 75, and the others
show a periodicity of length 37. Right: dI distance matrix and distance to instance 0 curve using split tree with a time-varying pivot tree.

move with almost constant speed to the right; see critical points
in white circles in Fig. 15. Therefore, the time-varying pivot tree

strategy is better at capturing or inheriting temporal changes, but
has poorer performance in detecting periodicities. Fig. 14 right

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 14

1

37

75

26 22 21 19 17 15 13 11 9 7 5 3 1

26 22 21 19 17 15 13 11 9 7 5 3 1

26 22 21 19 17 15 13 9 1 7 5 3

Fig. 15. Selected scalar fields together with some labeling results for
the VortexStreet dataset under a hybrid mapping strategy and a time-
varying pivot tree.

𝑑! 𝑑" 𝑑#
Fig. 16. From left to right: pairwise distance matrices using dP, dG, and
dS, respectively for the CornerFlow (1st row), RedSea (2nd row), and
VortexStreet (3rd row) datasets.

shows the results (dI) under a time-varying pivot tree strategy,
where the periodic pattern is less obvious.

5.4 Other Scalar Fields Comparative Measures

As reviewed in Sect. 3.3, there are a number of comparative
measures for scalar fields in addition to the Euclidean distance
dF (as shown in Fig. 7, Fig. 8, Fig. 11, and Fig. 13, and Fig. 14,
respectively). The pairwise distance matrices for dP, dG, and dS
are shown in Fig. 16 for three of our datasets. Compared with dI
in Fig. 7 and Fig. 11, these distance matrices do not contain clear
block structures to highlight structural transitions and clusters for
the CornerFlow and RedSea datasets.

For the VortexStreet dataset, dP, dG, and dS capture a peri-
odicity of length 75, since they all consider geometric information
in the domain as dF . However, interestingly, dG — which encodes
average gradient behavior across the domain — also captures a
(weak) periodicity pattern of length 37 that is aligned with the
one captured by merge trees. We thus investigate this periodicity
further. As shown in Fig. 17, we visualize the norm of partial
derivatives ||J|| across the domain (i.e., ||J(xi)|| for all xi ∈ X)
between time instances 0 and 37, 0 and 75, 37 and 75, respectively.
Instances 0 and 75 are shown in Fig. 17 (middle) to be very similar
in terms of gradient behaviors, in particular, with values closer to

(37,75)

(0,75)

(0,37)

Fig. 17. The gradient-based comparative measure introduced by Na-
garaj et al. [50] for the VortexStreet dataset. From top to bottom: ||J||
between instances 0 and 37, 0 and 75, 37 and 75, respectively.

zero in regions that are at a distance from the cylinder. These two
instances are also shown to be similar to instance 37 in Fig. 17
(top and bottom). We observe that instances 0 and 75 are slightly
closer (dG = 0.02886) than 0 and 37 (dG = 0.02954), explaining
the weakly observed periodicity.

6 CONCLUSION AND DISCUSSION

In this paper, we introduce a systematic way to integrate geometric
information for comparing merge trees. Given a pair of merge
trees that arise from scalar fields, our main idea is to decouple
the computation of a distance measure into two steps: a labeling
step that generates a correspondence between critical points of
the merge trees, and a distance computation step that computes
the labeled interleaving distance between a pair of labeled merge
trees by encoding them as matrices. To encode geometric infor-
mation, we introduce a hybrid strategy during the labeling step
that considers the intrinsic tree distances between critical points
and/or the Euclidean distances between their locations in the data
domain. We demonstrate that our approach can be used to detect
clusters, structural transitions, and periodicity in a way that is
either comparable or complementary to existing approaches. There
are many directions for future research.
Improved efficiency and robustness. Naively computing the
labeled interleaving distance dI requires access to all entries in
the induced matrix, which takes O(n2) time (n being the number
of labels). Developing a more scalable computation would be
interesting, possibly taking inspirations from [62].

In addition, the labeled interleaving distance coupled with
various labeling strategies has strengths and weaknesses. The
strategy is shown to detect periodicity that is more sensitive to the
underlying geometry, and it enjoys a certain amount of robustness
due to its stability properties. However, at the same time, it is not
as robust as some other metrics when the underlying data contain
a large amount of noise and a large number of features; improving
its robustness is left for future work.
Integration of domain knowledge. Our two-step comparative
process opens doors to the integration of domain knowledge. The
labeling process can be easily extended to not only integrate
geometric information from the data domain but also to encode
information from its underlying applications. In particular, domain
knowledge will be useful during the initial label assignment
described in Sect. 4.1.
Other geometry-based labeling strategies. The hybrid labeling
strategy based on the tree distance and/or the Euclidean distance
between critical points is just one example among many possible
geometry-aware labeling strategies. For example, we could adapt

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 15

a strategy called Morse mapping that has been used for tracking
critical points [18]. Given a pair of merge trees T 1 and T 2, the
Morse mapping strategy facilitates the gradient flow derived from
the scalar fields to define a forward T 1→ T 2 and a backward T 2→
T 1 mapping. The forward and backward assignment builds on
the partition of the domain provided by the Morse complex [63],
which represents the gradient behavior of the scalar field of the
data domain. See Fig. 18 for an example of a Morse complex of a
2D scalar field.

A B

<latexit sha1_base64="M4/VdjHPOTlnqRrmwEY57UNDvDM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiJ4k4MVjRPOAZAmzk95kyOzsMjMrhpBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7stP5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8i4p7Vy3VrrM48nACp3AOHlxCDW6hDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDnXCNVg==</latexit>x

Fig. 18. Given the 2D function f , (a) shows the stable manifolds forming
the Morse complex of f , and (b) shows the unstable manifolds forming
the Morse complex of − f ; the green cell surrounding the critical point p
is an unstable manifold of p.

Let ∇ f denote the gradient of a Morse function f : X→R. An
integral line at a regular point is a maximal path whose tangent
vectors agree with the gradient [63]. The function increases along
an integral line, which begins and ends at critical points. The stable
manifold (or unstable manifold) surrounding a critical point x
includes x itself and all regular points whose integral lines end (or
originate) at x [10, Chap. VI, page 131]. The stable and unstable
manifolds of x are denoted as S(x) and U(x), respectively. To
define the Morse mapping strategy, we use the unstable manifolds
surrounding the local minima of the scalar field (Fig. 18b), which
correspond to leaves in the merge tree.

Suppose we are given a pair of merge trees T 1 and T 2 that arise
from a pair of scalar fields. Let x ∈V (T 1) and x′ ∈V (T 2) denote
a pair of leaves (local minima of the underlying scalar fields). Let
U(x), U(x′) denote their respective unstable manifolds. We say x
is forward mapped to x′ if x∈U(x′) and x′ is backward mapped to
x if x′ ∈U(x), denoted as x→ x′ and x← x′, respectively. In other
words, we check to see which unstable manifold a leaf belongs to
would determine the label assignment. As illustrated in Fig. 19E-F,
given a pair of merge trees T 1 and T 2 (Fig. 19A-B) that arise from
scalar fields (Fig. 19C-D), the local minimum x of T 1 is forward
mapped to z′ since x ∈U(z′), whereas z′ is backward mapped to x
since z′ ∈U(x).

This strategy leads to three categories of matched leaf pairs:
double connected pairs, which result in a joint label; and forward
and backward connected pairs, which generate a novel label and
introduce a dummy node in one of the trees. For example, x and
z′ form a double connected pair in Fig. 19.

Finally, Fig. 19 further illustrates that different mapping strate-
gies between two merge trees result in different label assignments.
In this example, merge trees T 1 and T 2 arise from two synthetic
2D scalar fields generated as mixtures of Gaussians. T 1 (Fig. 19A)
contains three leaves that correspond to local minima x,y,z in the
domain (Fig. 19C). T 2 (Fig. 19B) contains three leaves that corre-
spond to local minima x′,y′,z′ (Fig. 19C). Using the tree mapping
strategy, we obtain a bijective mapping x↔ x′, y↔ y′, and z↔ z′

(cf., Fig. 19A-B). Using the Euclidean mapping strategy, we obtain
a different bijective mapping due to proximity, x↔ y′, y↔ z′,
and z↔ x′ (cf., Fig. 19C-D). Finally, using the Morse mapping,
we obtain sets of forward (x→ z′, y→ y′, and z→ x′, Fig. 19F)
and backward (x← z′, y← y′, and z← x′, Fig. 19E) mappings,
forming double connected pairs. Understanding such differences
is important in choosing the appropriate strategies for particular
datasets, which remains an open question.

<latexit sha1_base64="M4/VdjHPOTlnqRrmwEY57UNDvDM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiJ4k4MVjRPOAZAmzk95kyOzsMjMrhpBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7stP5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8i4p7Vy3VrrM48nACp3AOHlxCDW6hDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDnXCNVg==</latexit>x

<latexit sha1_base64="TIlm2KF56wRjQcTuIsYYUw4JJbs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxoq2FNpTNdtIu3WzC7kYIpT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg8kS9CM6lDzkjBor3Vezar9ccWvuHGSVeDmpQI5mv/zVG8QsjVAaJqjWXc9NjD+hynAmcFrqpRoTysZ0iF1LJY1Q+5P5qVNyZpUBCWNlSxoyV39PTGikdRYFtjOiZqSXvZn4n9dNTXjlT7hMUoOSLRaFqSAmJrO/yYArZEZkllCmuL2VsBFVlBmbTsmG4C2/vEra9Zp3UXPv6pXGdR5HEU7gFM7Bg0towC00oQUMhvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8AnvWNVw==</latexit>y

<latexit sha1_base64="sH/pzjRl+ux8pwy082H45QwkTKI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiJ4k4MVjRPOAZAmzk95kyOzsMjMrxJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7stP5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8i4p7Vy3VrrM48nACp3AOHlxCDW6hDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDoHqNWA==</latexit>z
<latexit sha1_base64="1+yUMbfiDmO3gP2/559fWZPp/nI=">AAAB63icbVBNSwMxEJ2tX7V+VT16Cbaip7JbED1JwYvHCvYD2qVk02wbmmSXJCuWpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etXWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJreZ33mkSrNIPphpTH2BR5KFjGCTSdWn8+qgXHFr7hxolXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n81tn6MwqQxRGypY0aK7+nkix0HoqAtspsBnrZS8T//N6iQmv/ZTJODFUksWiMOHIRCh7HA2ZosTwqSWYKGZvRWSMFSbGxlOyIXjLL6+Sdr3mXdbc+3qlcZPHUYQTOIUL8OAKGnAHTWgBgTE8wyu8OcJ5cd6dj0VrwclnjuEPnM8f/jeNhw==</latexit>

x0

<latexit sha1_base64="kLqeWUKHbHmh7J4VjnLK4ND696M=">AAAB63icbVBNS8NAEJ34WetX1aOXxVb0VJKC6EkKXjxWsB/QhrLZbtqlu5uwuxFC6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzgpgzbVz321lb39jc2i7tlHf39g8OK0fHHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6V3ud5+o0iySjyaNqS/wWLKQEWxyqZZe1IaVqlt350CrxCtIFQq0hpWvwSgiiaDSEI617ntubPwMK8MIp7PyINE0xmSKx7RvqcSCaj+b3zpD51YZoTBStqRBc/X3RIaF1qkIbKfAZqKXvVz8z+snJrzxMybjxFBJFovChCMTofxxNGKKEsNTSzBRzN6KyAQrTIyNp2xD8JZfXiWdRt27qrsPjWrztoijBKdwBpfgwTU04R5a0AYCE3iGV3hzhPPivDsfi9Y1p5g5gT9wPn8A/72NiA==</latexit>

y0

<latexit sha1_base64="cbVade8OgihJlnaqOjJLwbVFyCs=">AAAB63icbVBNSwMxEJ2tX7V+VT16Cbaip7JbED1JwYvHCvYD2qVk02wbmmSXJCvUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etXWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJreZ33mkSrNIPphpTH2BR5KFjGCTSdWn8+qgXHFr7hxolXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n81tn6MwqQxRGypY0aK7+nkix0HoqAtspsBnrZS8T//N6iQmv/ZTJODFUksWiMOHIRCh7HA2ZosTwqSWYKGZvRWSMFSbGxlOyIXjLL6+Sdr3mXdbc+3qlcZPHUYQTOIUL8OAKGnAHTWgBgTE8wyu8OcJ5cd6dj0VrwclnjuEPnM8fAVKNiQ==</latexit>

z0

<latexit sha1_base64="M4/VdjHPOTlnqRrmwEY57UNDvDM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiJ4k4MVjRPOAZAmzk95kyOzsMjMrhpBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7stP5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8i4p7Vy3VrrM48nACp3AOHlxCDW6hDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDnXCNVg==</latexit>x

<latexit sha1_base64="TIlm2KF56wRjQcTuIsYYUw4JJbs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxoq2FNpTNdtIu3WzC7kYIpT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg8kS9CM6lDzkjBor3Vezar9ccWvuHGSVeDmpQI5mv/zVG8QsjVAaJqjWXc9NjD+hynAmcFrqpRoTysZ0iF1LJY1Q+5P5qVNyZpUBCWNlSxoyV39PTGikdRYFtjOiZqSXvZn4n9dNTXjlT7hMUoOSLRaFqSAmJrO/yYArZEZkllCmuL2VsBFVlBmbTsmG4C2/vEra9Zp3UXPv6pXGdR5HEU7gFM7Bg0towC00oQUMhvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8AnvWNVw==</latexit>y

<latexit sha1_base64="sH/pzjRl+ux8pwy082H45QwkTKI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiJ4k4MVjRPOAZAmzk95kyOzsMjMrxJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7stP5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8i4p7Vy3VrrM48nACp3AOHlxCDW6hDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDoHqNWA==</latexit>z
<latexit sha1_base64="1+yUMbfiDmO3gP2/559fWZPp/nI=">AAAB63icbVBNSwMxEJ2tX7V+VT16Cbaip7JbED1JwYvHCvYD2qVk02wbmmSXJCuWpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etXWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJreZ33mkSrNIPphpTH2BR5KFjGCTSdWn8+qgXHFr7hxolXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n81tn6MwqQxRGypY0aK7+nkix0HoqAtspsBnrZS8T//N6iQmv/ZTJODFUksWiMOHIRCh7HA2ZosTwqSWYKGZvRWSMFSbGxlOyIXjLL6+Sdr3mXdbc+3qlcZPHUYQTOIUL8OAKGnAHTWgBgTE8wyu8OcJ5cd6dj0VrwclnjuEPnM8f/jeNhw==</latexit>

x0

<latexit sha1_base64="kLqeWUKHbHmh7J4VjnLK4ND696M=">AAAB63icbVBNS8NAEJ34WetX1aOXxVb0VJKC6EkKXjxWsB/QhrLZbtqlu5uwuxFC6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzgpgzbVz321lb39jc2i7tlHf39g8OK0fHHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6V3ud5+o0iySjyaNqS/wWLKQEWxyqZZe1IaVqlt350CrxCtIFQq0hpWvwSgiiaDSEI617ntubPwMK8MIp7PyINE0xmSKx7RvqcSCaj+b3zpD51YZoTBStqRBc/X3RIaF1qkIbKfAZqKXvVz8z+snJrzxMybjxFBJFovChCMTofxxNGKKEsNTSzBRzN6KyAQrTIyNp2xD8JZfXiWdRt27qrsPjWrztoijBKdwBpfgwTU04R5a0AYCE3iGV3hzhPPivDsfi9Y1p5g5gT9wPn8A/72NiA==</latexit>

y0
<latexit sha1_base64="cbVade8OgihJlnaqOjJLwbVFyCs=">AAAB63icbVBNSwMxEJ2tX7V+VT16Cbaip7JbED1JwYvHCvYD2qVk02wbmmSXJCvUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etXWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJreZ33mkSrNIPphpTH2BR5KFjGCTSdWn8+qgXHFr7hxolXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n81tn6MwqQxRGypY0aK7+nkix0HoqAtspsBnrZS8T//N6iQmv/ZTJODFUksWiMOHIRCh7HA2ZosTwqSWYKGZvRWSMFSbGxlOyIXjLL6+Sdr3mXdbc+3qlcZPHUYQTOIUL8OAKGnAHTWgBgTE8wyu8OcJ5cd6dj0VrwclnjuEPnM8fAVKNiQ==</latexit>

z0

A B

C

<latexit sha1_base64="1+yUMbfiDmO3gP2/559fWZPp/nI=">AAAB63icbVBNSwMxEJ2tX7V+VT16Cbaip7JbED1JwYvHCvYD2qVk02wbmmSXJCuWpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etXWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJreZ33mkSrNIPphpTH2BR5KFjGCTSdWn8+qgXHFr7hxolXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n81tn6MwqQxRGypY0aK7+nkix0HoqAtspsBnrZS8T//N6iQmv/ZTJODFUksWiMOHIRCh7HA2ZosTwqSWYKGZvRWSMFSbGxlOyIXjLL6+Sdr3mXdbc+3qlcZPHUYQTOIUL8OAKGnAHTWgBgTE8wyu8OcJ5cd6dj0VrwclnjuEPnM8f/jeNhw==</latexit>

x0

<latexit sha1_base64="kLqeWUKHbHmh7J4VjnLK4ND696M=">AAAB63icbVBNS8NAEJ34WetX1aOXxVb0VJKC6EkKXjxWsB/QhrLZbtqlu5uwuxFC6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzgpgzbVz321lb39jc2i7tlHf39g8OK0fHHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6V3ud5+o0iySjyaNqS/wWLKQEWxyqZZe1IaVqlt350CrxCtIFQq0hpWvwSgiiaDSEI617ntubPwMK8MIp7PyINE0xmSKx7RvqcSCaj+b3zpD51YZoTBStqRBc/X3RIaF1qkIbKfAZqKXvVz8z+snJrzxMybjxFBJFovChCMTofxxNGKKEsNTSzBRzN6KyAQrTIyNp2xD8JZfXiWdRt27qrsPjWrztoijBKdwBpfgwTU04R5a0AYCE3iGV3hzhPPivDsfi9Y1p5g5gT9wPn8A/72NiA==</latexit>

y0

<latexit sha1_base64="cbVade8OgihJlnaqOjJLwbVFyCs=">AAAB63icbVBNSwMxEJ2tX7V+VT16Cbaip7JbED1JwYvHCvYD2qVk02wbmmSXJCvUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etXWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJreZ33mkSrNIPphpTH2BR5KFjGCTSdWn8+qgXHFr7hxolXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n81tn6MwqQxRGypY0aK7+nkix0HoqAtspsBnrZS8T//N6iQmv/ZTJODFUksWiMOHIRCh7HA2ZosTwqSWYKGZvRWSMFSbGxlOyIXjLL6+Sdr3mXdbc+3qlcZPHUYQTOIUL8OAKGnAHTWgBgTE8wyu8OcJ5cd6dj0VrwclnjuEPnM8fAVKNiQ==</latexit>

z0<latexit sha1_base64="M4/VdjHPOTlnqRrmwEY57UNDvDM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiJ4k4MVjRPOAZAmzk95kyOzsMjMrhpBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7stP5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8i4p7Vy3VrrM48nACp3AOHlxCDW6hDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDnXCNVg==</latexit>x

<latexit sha1_base64="TIlm2KF56wRjQcTuIsYYUw4JJbs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxoq2FNpTNdtIu3WzC7kYIpT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg8kS9CM6lDzkjBor3Vezar9ccWvuHGSVeDmpQI5mv/zVG8QsjVAaJqjWXc9NjD+hynAmcFrqpRoTysZ0iF1LJY1Q+5P5qVNyZpUBCWNlSxoyV39PTGikdRYFtjOiZqSXvZn4n9dNTXjlT7hMUoOSLRaFqSAmJrO/yYArZEZkllCmuL2VsBFVlBmbTsmG4C2/vEra9Zp3UXPv6pXGdR5HEU7gFM7Bg0towC00oQUMhvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8AnvWNVw==</latexit>y

<latexit sha1_base64="sH/pzjRl+ux8pwy082H45QwkTKI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiJ4k4MVjRPOAZAmzk95kyOzsMjMrxJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7stP5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8i4p7Vy3VrrM48nACp3AOHlxCDW6hDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDoHqNWA==</latexit>z
<latexit sha1_base64="1+yUMbfiDmO3gP2/559fWZPp/nI=">AAAB63icbVBNSwMxEJ2tX7V+VT16Cbaip7JbED1JwYvHCvYD2qVk02wbmmSXJCuWpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etXWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJreZ33mkSrNIPphpTH2BR5KFjGCTSdWn8+qgXHFr7hxolXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n81tn6MwqQxRGypY0aK7+nkix0HoqAtspsBnrZS8T//N6iQmv/ZTJODFUksWiMOHIRCh7HA2ZosTwqSWYKGZvRWSMFSbGxlOyIXjLL6+Sdr3mXdbc+3qlcZPHUYQTOIUL8OAKGnAHTWgBgTE8wyu8OcJ5cd6dj0VrwclnjuEPnM8f/jeNhw==</latexit>

x0

<latexit sha1_base64="kLqeWUKHbHmh7J4VjnLK4ND696M=">AAAB63icbVBNS8NAEJ34WetX1aOXxVb0VJKC6EkKXjxWsB/QhrLZbtqlu5uwuxFC6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzgpgzbVz321lb39jc2i7tlHf39g8OK0fHHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6V3ud5+o0iySjyaNqS/wWLKQEWxyqZZe1IaVqlt350CrxCtIFQq0hpWvwSgiiaDSEI617ntubPwMK8MIp7PyINE0xmSKx7RvqcSCaj+b3zpD51YZoTBStqRBc/X3RIaF1qkIbKfAZqKXvVz8z+snJrzxMybjxFBJFovChCMTofxxNGKKEsNTSzBRzN6KyAQrTIyNp2xD8JZfXiWdRt27qrsPjWrztoijBKdwBpfgwTU04R5a0AYCE3iGV3hzhPPivDsfi9Y1p5g5gT9wPn8A/72NiA==</latexit>

y0

<latexit sha1_base64="cbVade8OgihJlnaqOjJLwbVFyCs=">AAAB63icbVBNSwMxEJ2tX7V+VT16Cbaip7JbED1JwYvHCvYD2qVk02wbmmSXJCvUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etXWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJreZ33mkSrNIPphpTH2BR5KFjGCTSdWn8+qgXHFr7hxolXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n81tn6MwqQxRGypY0aK7+nkix0HoqAtspsBnrZS8T//N6iQmv/ZTJODFUksWiMOHIRCh7HA2ZosTwqSWYKGZvRWSMFSbGxlOyIXjLL6+Sdr3mXdbc+3qlcZPHUYQTOIUL8OAKGnAHTWgBgTE8wyu8OcJ5cd6dj0VrwclnjuEPnM8fAVKNiQ==</latexit>

z0<latexit sha1_base64="M4/VdjHPOTlnqRrmwEY57UNDvDM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiJ4k4MVjRPOAZAmzk95kyOzsMjMrhpBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7stP5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8i4p7Vy3VrrM48nACp3AOHlxCDW6hDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDnXCNVg==</latexit>x

<latexit sha1_base64="TIlm2KF56wRjQcTuIsYYUw4JJbs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxoq2FNpTNdtIu3WzC7kYIpT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg8kS9CM6lDzkjBor3Vezar9ccWvuHGSVeDmpQI5mv/zVG8QsjVAaJqjWXc9NjD+hynAmcFrqpRoTysZ0iF1LJY1Q+5P5qVNyZpUBCWNlSxoyV39PTGikdRYFtjOiZqSXvZn4n9dNTXjlT7hMUoOSLRaFqSAmJrO/yYArZEZkllCmuL2VsBFVlBmbTsmG4C2/vEra9Zp3UXPv6pXGdR5HEU7gFM7Bg0towC00oQUMhvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8AnvWNVw==</latexit>y

<latexit sha1_base64="sH/pzjRl+ux8pwy082H45QwkTKI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiJ4k4MVjRPOAZAmzk95kyOzsMjMrxJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7stP5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8i4p7Vy3VrrM48nACp3AOHlxCDW6hDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDoHqNWA==</latexit>z

D

E F

Fig. 19. Comparing three mapping strategies with two synthetic datasets
generated as mixtures of Gaussians. Label assignments obtained via
tree mapping, Euclidean mapping, and Morse mapping strategies give
rise to different labels.

ACKNOWLEDGMENTS

This project was partially supported by DOE DE-SC0021015.
IH acknowledges support from the following funding sources:
Swedish e-Science Research Center (SeRC), Excellence Cen-
ter at Linköping – Lund in Information Technology (ELLIIT),
the Swedish Research Council (VR) under grant 2019-05487,
and Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP).

REFERENCES

[1] L. Yan, T. B. Masood, R. Sridharamurthy, F. Rasheed, V. Natarajan,
I. Hotz, and B. Wang, “Scalar field comparison with topological descrip-
tors: Properties and applications for scientific visualization,” Computer
Graphics Forum, accepted, 2021.

[2] A. A. Valsangkar, J. M. Monteiro, V. Narayanan, I. Hotz, and V. Natara-
jan, “An exploratory framework for cyclone identification and tracking,”
IEEE Transaction on Visualization and Computer Graphics, vol. 25,
no. 3, pp. 1460–1473, 2018.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 16

[3] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell,
“Interactive exploration and analysis of large scale simulations using
topology-based data segmentation,” IEEE Transactions on Visualization
and Computer Graphics, vol. 17, no. 9, pp. 1307–1324, 2011.

[4] D. M. Thomas and V. Natarajan, “Symmetry in scalar field topology,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 2035–2044, 2011.

[5] T. B. Masood, D. M. Thomas, and V. Natarajan, “Scalar field visual-
ization via extraction of symmetric structures,” The Visual Computer,
vol. 29, no. 6-8, pp. 761–771, 2013.

[6] E. Merelli, M. Rucco, P. Sloot, and L. Tesei, “Topological characteriza-
tion of complex systems: Using persistent entropy,” Entropy, vol. 17, pp.
6872–6892, 2015.

[7] H. Edelsbrunner, Z. Virk, and H. Wagner, “Topological data analysis in
information space,” Proceedings of the 35th International Symposium on
Computational Geometry, vol. 129, pp. 31:1–31:14, 2019.

[8] A. Brown, O. Bobrowski, E. Munch, and B. Wang, “Probabilistic
convergence and stability of random mapper graphs,” Journal of Applied
and Computational Topology, vol. 5, pp. 99–140, 2021.

[9] G. Carlsson, A. J. Zomorodian, A. Collins, and L. J. Guibas, “Persistence
barcodes for shapes,” Proceedings of the Eurographs/ACM SIGGRAPH
Symposium on Geometry Processing, pp. 124–135, 2004.

[10] H. Edelsbrunner and J. Harer, Computational Topology: An Introduction.
American Mathematical Society, 2010.

[11] J. Curry, “The fiber of the persistence map for functions on the interval,”
Journal of Applied and Computational Topology, vol. 2, no. 3-4, pp.
301–321, 2018.

[12] M. J. Catanzaro, J. M. Curry, B. T. Fasy, J. Lazovskis, G. Malen,
H. Riess, B. Wang, and M. Zabka, “Moduli spaces of Morse functions
for persistence,” Journal of Applied and Computational Topology, vol. 4,
pp. 353–385, 2020.

[13] L. Kanari, A. Garin, and K. Hess, “From trees to barcodes and back
again: Theoretical and statistical perspectives,” Algorithms, vol. 13,
no. 12, 2020.

[14] E. Gasparovic, E. Munch, S. Oudot, K. Turner, B. Wang, and Y. Wang,
“Intrinsic interleaving distance for merge trees,” arXiv:1908.00063,
2019.

[15] L. Yan, Y. Wang, E. Munch, E. Gasparovic, and B. Wang, “A structural
average of labeled merge trees for uncertainty visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 26, no. 1,
pp. 832–842, 2020.

[16] R. Sridharamurthy, T. B. Masood, A. Kamakshidasan, and V. Natarajan,
“Edit distance between merge trees,” IEEE Transactions on Visualization
and Computer Graphics, vol. 26, no. 1, pp. 1518–1531, 2020.

[17] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. D. Floriani,
G. Schauermann, H. Hagen, and C. Garth, “A survey of topology-based
methods in visualization,” Computer Graphics Forum, 2016.

[18] J. Reininghaus, J. Kasten, T. Weinkauf, and I. Hotz, “Efficient com-
putation of combinatorial feature flow fields,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 9, pp. 1563–1573,
2012.

[19] J. Reininghaus, N. Kotava, D. Günther, J. Kasten, H. Hagen, and I. Hotz,
“A scale space based persistence measure for critical points in 2D scalar
fields,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 12, pp. 2045–2052, 2011.

[20] H. Saikia and T. Weinkauf, “Global feature tracking and similarity
estimation in time-dependent scalar fields,” Computer Graphics Forum,
vol. 36, no. 3, pp. 1–11, 2017.

[21] M. Soler, M. Plainchault, B. Conche, and J. Tierny, “Lifted Wasserstein
matcher for fast and robust topology tracking,” in IEEE 8th Symposium
on Large Data Analysis and Visualization (LDAV), 2018, pp. 23–33.

[22] D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci,
“Understanding the structure of the turbulent mixing layer in hydrody-
namic instabilities,” IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 1, pp. 1053–1060, 2007.

[23] D. Morozov, K. Beketayev, and G. Weber, “Interleaving distance between
merge trees,” Proceedings of Topology-Based Methods in Visualization
(TopoInVis), 2013.

[24] K. Beketayev, D. Yeliussizov, D. Morozov, G. Weber, and B. Hamann,
“Measuring the distance between merge trees,” Topological Methods in
Data Analysis and Visualization III: Theory, Algorithms, and Applica-
tions, Mathematics and Visualization, pp. 151–166, 2014.

[25] U. Bauer, X. Ge, and Y. Wang, “Measuring distance between Reeb
graphs,” Proceedings of the 30th Annual Symposium on Computational
Geometry, pp. 464–474, 2014.

[26] M. Carriére and S. Oudot, “Local equivalence and intrinsic metrics
between Reeb graphs,” Proceedings of the 33rd International Symposium
on Computational Geometry, vol. 77, pp. 25:1–25:15, 2017.

[27] U. Bauer, C. Landi, and F. Memoli, “The Reeb graph edit distance
is universal,” Foundations of Computational Mathematics, vol. 21, no.
1441–1464, 2021.

[28] M. Pont, J. Vidal, J. Delon, and J. Tierny, “Wasserstein distances,
geodesics and barycenters of merge trees,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 28, no. 1, pp. 291–301, 2021.

[29] K. Beketayev, G. H. Weber, D. Morozov, A. Abzhanov, and B. Hamann,
“Geometry-preserving topological landscapes,” in Workshop at SIG-
GRAPH Asia (WASA), 2012, pp. 155–160.

[30] A.-P. Lohfink, F. Wetzels, J. Lukasczyk, G. H. Weber, and C. Garth,
“Fuzzy contour trees: Alignment and joint layout of multiple contour
trees,” Computer Graphics Forum, vol. 39, no. 3, pp. 343–355, 2020.

[31] M. Herick, V. Molchanov, and L. Linsen, “Temporally coherent topo-
logical landscapes for time-varying scalar fields,” in International Joint
Conference on Computer Vision, Imaging and Computer Graphics The-
ory and Applications (IVAPP), vol. 3, 2020, pp. 54–61.

[32] P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell, “Analyzing
and tracking burning structures in lean premixed hydrogen flames,” IEEE
Transactions on Visualization and Computer Graphics, vol. 16, no. 2, pp.
248–260, 2009.

[33] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell,
“Interactive exploration and analysis of large-scale simulations using
topology-based data segmentation,” IEEE Transactions on Visualization
and Computer Graphics, vol. 17, no. 9, pp. 1307–1324, 2010.

[34] Z. Smith, S. Chowdhury, and F. Memoli, “Hierarchical representations of
network data with optimal distortion bounds,” 50th Asilomar Conference
on Signals, Systems and Comroxiuters, 2016.

[35] G. Carlsson and F. Mémoli, “Characterization, stability and convergence
of hierarchical clustering methods,” Journal of Machine Learning Re-
search, vol. 11, pp. 1425–1470, 2010.

[36] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in all
dimensions,” Computational Geometry Theory and Applications, vol. 24,
no. 2, pp. 75–94, 2003.

[37] G. Cardona, A. Mir, F. Rosselló, L. Rotger, and D. Sánchez, “Cophenetic
metrics for phylogenetic trees, after Sokal and Rohlf,” BMC Bioinfor-
matics, vol. 14, no. 1, p. 3, 2013.

[38] F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot,
“Proximity of persistence modules and their diagrams,” Proceedings of
the 25th Annual Symposium on Computational Geometry, pp. 237–246,
2009.

[39] F. Chazal, V. de Silva, M. Glisse, and S. Oudot, The Structure and
Stability of Persistence Modules. Springer International Publishing,
2016.

[40] E. Munch and A. Stefanou, “The `∞-cophenetic metric for phylogenetic
trees as an interleaving distance,” in Research in Data Science, ser.
Association for Women in Mathematics Series. Springer International
Publishing, 2019, pp. 109–127.

[41] E. F. Touli and Y. Wang, “FPT-algorithms for computing Gromov-
Hausdorff and interleaving distances between trees,” Proceedings of the
27th Annual European Symposium on Algorithms, pp. 83:1–83:14, 2019.

[42] V. de Silva, E. Munch, and A. Patel, “Categorified Reeb graphs,” Discrete
& Computational Geometry, pp. 1–53, 2016.

[43] J. Curry, “Sheaves, cosheaves and applications,” Ph.D. dissertation,
University of Pennsylvania, 2014.

[44] E. Munch and B. Wang, “Convergence between categorical represen-
tations of Reeb space and mapper,” Proceedings of 32nd International
Symposium on Computational Geometry, vol. 51, pp. 53:1–53:16, 2016.

[45] P. Bubenik, V. de Silva, and J. Scott, “Metrics for generalized persistence
modules,” Foundations of Computational Mathematics, vol. 15, no. 6, pp.
1501–1531, 2014.

[46] V. de Silva, E. Munch, and A. Stefanou, “Theory of interleavings on
categories with a flow,” Theory and Applications of Categories, vol. 33,
no. 21, pp. 583–607, 2018.

[47] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of persistence
diagrams,” Discrete & Computational Geometry, vol. 37, pp. 103–120,
2007.

[48] K. Zhang, “A constrained edit distance between unordered labeled trees,”
Algorithmica, vol. 15, pp. 205–222, 1996.

[49] P. D. Doncker, “Spatial correlation functions for fields in three di-
mensional Rayleigh channels,” Journal of Electromagnetic Waves and
Applications, vol. 17, no. 6, pp. 877–878, 2003.

[50] S. Nagaraj, V. Natarajan, and R. S. Nanjundiah, “A gradient-based
comparison measure for visual analysis of multifield data,” Computer
Graphics Forum, vol. 30, no. 3, pp. 1101–1110, 2011.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 17

[51] A. Fofonov and L. Linsen, “Projected field similarity for comparative vi-
sualization of multi-run multi-field time-varying spatial data,” Computer
Graphics Forum, vol. 38, no. 1, pp. 286–299, 2019.

[52] I. Baeza Rojo and T. Günther, “Vector field topology of time-dependent
flows in a steady reference frame,” IEEE Transactions on Visualization
and Computer Graphics, vol. 26, no. 1, pp. 280–290, 2020.

[53] S. Popinet, “Free computational fluid dynamics,” ClusterWorld, vol. 2,
no. 6, 2004. [Online]. Available: http://gfs.sf.net/

[54] H. Edelsbrunner, D. Letscher, and A. J. Zomorodian, “Topological
persistence and simplification,” Discrete & Computational Geometry,
vol. 28, pp. 511–533, 2002.

[55] S. Gerber, P.-T. Bremer, V. Pascucci, and R. Whitaker, “Visual ex-
ploration of high dimensional scalar functions,” IEEE Transactions on
Visualization and Computer Graphics, vol. 16, pp. 1271–1280, 2010.

[56] P.-T. Bremer, D. Maljovec, A. Saha, B. Wang, J. Gaffney, B. K. Spears,
and V. Pascucci, “ND2AV: N-dimensional data analysis and visualization
– analysis for the national ignition campaign,” Computing and Visualiza-
tion in Science, vol. 17, no. 1, pp. 1–18, 2015.

[57] T. Athawale, D. Maljovec, L. Yan, C. R. Johnson, V. Pascucci, and
B. Wang, “Uncertainty visualization of 2D Morse complex ensembles
using statistical summary maps,” IEEE Transactions on Visualization and
Computer Graphics, 2020.

[58] T. Günther, M. Gross, and H. Theisel, “Generic objective vortices for
flow visualization,” ACM Transactions on Graphics, vol. 36, no. 4, pp.
141:1–141:11, 2017.

[59] I. Hoteit, X. Luo, M. Bocquet, A. Köhl, and B. Ait-El-Fquih, “Data
assimilation in oceanography: Current status and new directions,” in New
Frontiers in Operational Oceanography, E. P. Chassignet, A. Pascual,
J. Tintoré, and J. Verron, Eds. GODAE OceanView, 2018.

[60] P. Zhan, G. Krokos, D. Guo, and I. Hoteit, “Three-dimensional signa-
ture of the Red Sea eddies and eddy-induced transport,” Geophysical
Research Letters, vol. 46, no. 4, pp. 2167–2177, 2019.

[61] P. Zhan, A. C. Subramanian, F. Yao, and I. Hoteit, “Eddies in the Red Sea:
A statistical and dynamical study,” Journal of Geophysical Research, vol.
119, no. 6, pp. 3909–3925, 2014.

[62] M. Kerber, D. Morozov, and A. Nigmetov, “Geometry helps to compare
persistence diagrams,” Journal of Experimental Algorithmics, vol. 22, no.
1.4, 2017.

[63] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical Morse
complexes for piecewise linear 2-manifolds,” in Proceedings of the 17th
Annual Symposium on Computational Geometry, Medford, MA, USA,
2001, pp. 70–79.

Lin Yan is a PhD student in the Scientific Computing and Imaging (SCI)
Institute, University of Utah. Her research interests include topological
data analysis and visualization. Her recent work includes statistical
analysis and uncertainty visualization of topological descriptors.

Talha Bin Masood is a Postdoctoral Fellow at Linköping University in
Sweden. He received his Ph.D. in Computer Science from the Indian
Institute of Science, Bangalore. His research interests include scientific
visualization, computational geometry, computational topology, and their
applications to various scientific domains.

Farhan Rasheed is PhD student at Linköping University in Sweden.
He graduated from Heidelberg University with a degree in Scientific
Computing. His research interests includes scientific visualization, topo-
logical data analysis, machine learning, and medical image computing.

Ingrid Hotz is currently a Professor in Scientific Visualization at the
Linköping University in Sweden. She received her Ph.D. degree from
the Computer Science Department at the University of Kaiserslautern,
Germany. Her research interests lie in data analysis and scientific visu-
alization, ranging from basic research questions to effective solutions to
visualization problems in applications.

Bei Wang is an Assistant Professor at the School of Computing and a
faculty member at the SCI Institute, University of Utah. She received her
Ph.D. in Computer Science from Duke University. Her research inter-
ests include topological data analysis, data visualization, computational
topology, computational geometry, machine learning, and data mining.

