JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Topological Simplifications of Hypergraphs

Youjia Zhou, Archit Rathore, Emilie Purvine, Bei Wang

Abstract—We study hypergraph visualization via its topological simplification. We explore both vertex simplification and hyperedge
simplification of hypergraphs using tools from topological data analysis. In particular, we transform a hypergraph into its graph
representations, known as the line graph and clique expansion. A topological simplification of such a graph representation induces a
simplification of the hypergraph. In simplifying a hypergraph, we allow vertices to be combined if they belong to almost the same set of
hyperedges, and hyperedges to be merged if they share almost the same set of vertices. Our proposed approaches are general and
mathematically justifiable, and put vertex simplification and hyperedge simplification in a unifying framework.

Index Terms—Hypergraph simplification, hypergraph visualization, graph simplification, topological data analysis

1 INTRODUCTION

ATA that capture multiway relationships within a group of
D entities are ubiquitous in science and engineering. In social
networks, apart from pairwise “likes” and friendships, people form
multiway groups or clubs based on common interests. In computer
networking, multiple IP addresses that resolve to the same domain
name (e.g., www.google.com) form a group relationship [1]. In
biological applications, collections of proteins comprise pathways
that lead to a product or a change in a cell, and groups of genes
make up ontology terms and contribute toward a shared molecular
function, cellular component, or biological process [2], [3].

In these cases, exploration of the data can help people discover
interesting patterns, subsets, and entities. Graphs (or networks) are
a central way to model data that come in the form of pairwise (or
binary) relationships. However, graphs cannot natively represent
multiway relationships without moving to bipartite structures or
employing reification strategies. Instead, hypergraphs provide a way
to capture these multiway interactions. A hypergraph, H = (V,E),
consists of a set of vertices, V = {vy,---,v,}, together with a
collection of hyperedges, E = {ey,--- ,en}, each of which is a
subset of vertices ¢; C V.

Visualization can be a useful tool to explore data modeled as a
hypergraph. There are various visual encodings for a hypergraph.
We give a number of examples in Fig. 1, which includes an Euler
diagram, bipartite graph, bubble sets, and rainbow box-based
visualizations together with their hybrids. For instance, Fig. 1a
visualizes a hypergraph with four vertices (as black nodes) and
three hyperedges (as colored convex hulls).

Visualizing large graphs remains challenging as naive visu-
alization often produces “hairballs” of little information content
due to visual clutter. Such a problem is further compounded when
dealing with hypergraphs, even ones with a moderate number of
vertices and a small number of hyperedges. As the number of
vertices grows and hyperedges become more interconnected, it
becomes increasingly difficult to turn a naive visualization into

e Youjia Zhou, Archit Rathore, Bei Wang are with Scientific Computing &
Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, 84112.
E-mails: {zhou325, archit, beiwang} @sci.utah.edu.

e Emilie Purvine is with Pacific Northwest National Laboratory, Seattle, WA,
98109. E-mail: Emilie.Purvine @pnnl.gov.

Manuscript received April 19, 2005; revised August 26, 2015.

° 4 _
@ ° ® . /0\\ T/ © ./o\\ o e
® O o/ \. o \\o
@ © ®
9 A T
® 0 o \l Il

Fig. 1: Examples of visual encodings of a hypergraph. (a) Euler
diagram: black nodes are vertices; colored convex hulls are
hyperedges. (b) Bipartite graph: each colored node represents
a hyperedge, which connects with all its vertices in black. (c) Euler-
bipartite hybrid visualization obtained by superimposing the Euler
diagram with the bipartite graph. (d) Bubble sets: black nodes are
vertices; colored bubble sets (implicit surfaces) are hyperedges. (e)
Bubble-bipartite hybrid visualization obtained by applying bubble
sets to the vertices in the bipartite graph. (f) Rainbow box: each
row is a vertex; each column (box) is a hyperedge.

insights. Fig. 4a illustrates a naive hypergraph visualization where
vertices represent genes and hyperedges consist of pathways from
the Hallmark collection within the Molecular Signatures Database
(MSigDB) [4], [5]. Vertices on the periphery are shown to belong
to a single hyperedge, but hyperedge memberships of those vertices
closer to the center are more difficult to interpret.

To reduce visual clutter and to obtain compact representation
for analysis, we might want to reduce the size of a hypergraph while
preserving its core structure. To this end, one might want to apply
vertex collapse and hyperedge collapse; a common algorithm for
hypergraph simplification as part of the HyperNetX package [6].
As illustrated in Fig. 3, vertex collapse combines vertices that
belong to the same set of hyperedges into a single “supervertex”
(visualized by a concentric circle glyph), whereas hyperedge
collapse merges hyperedges that share the same set of vertices
into a “superhyperedge” (visualized by a pie chart). See Fig. 4b for
the simplified biological pathway hypergraph after vertex collapse.

In this paper, we relax the notions of vertex collapse and
hyperedge collapse mathematically by allowing vertices to be
combined if they belong to almost the same set of hyperedges,

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Input Hypergraph

e

Line Graph

|

/.

N
-

T
s

Simplified Line Graph

Hyperedge Simplified Hypergraph

~Z

V.
W

V.4
4

Dual Hypergraph Clique Expansion

(Line Graph of the Dual)

(J
Topological / O 4?
Simplification o J
——)>)
/0 ()
7
. ()
Topological
Simplification
——)> () ()8
()
()

Simplified Clique Expansion Vertex Simplified Hypergraph

Fig. 2: An overview of topological simplification of hypergraphs. Top: hyperedge simplification. Bottom: vertex simplification.

Tk

TPV v

N e
m. Ry m— » e o
® () ()

Vel o ® O

Fig. 3: A vertex collapse (a) and a hyperedge collapse (b). In (a),
the concentric circle glyph (pointed by the double arrow) shows
the merging of two vertices (pointed by single arrow), forming a
supervertex. In (b), a pie chart (double arrow) shows the merging
of the blue and orange hyperedges, forming a superhyperedge.

Fig. 4: (a) A biological pathway hypergraph with |V| = 1,316
and |E| = 10. Black nodes are vertices, colored convex hulls are
hyperedges. (b) The simplified hypergraph after vertex collapse.

and hyperedges to be merged if they share almost the same set of
vertices. The former is referred to as the vertex simplification (or
approximate vertex collapse), and the latter is referred to as the
hyperedge simplification (or approximate hyperedge collapse). Us-
ing tools from topological data analysis, in particular, barcodes [7]

that capture the topology of hypergraphs, we perform topological
simplification of hypergraphs. Our approach is general as it
generalizes vertex and hyperedge collapses to their approximate
versions. As we simplify a hypergraph in a way that removes
topological noise as determined by its barcode, our approach is
also mathematically justified by the stability of barcodes [8].

Pipeline overview. Our pipeline is illustrated in Fig. 2. To enable
hyperedge simplification (Fig. 2 top), we first convert a hypergraph
H into a graph representation called the (weighted) line graph [9],
which captures the similarities among hyperedges. The line graph
L(H) of H is a graph whose vertex set corresponds to the set
of hyperedges of H; two vertices are adjacent in L(H) if their
corresponding hyperedges have a nonempty intersection in H. We
then perform a topological simplification of the line graph. The
simplified line graph induces a hyperedge simplification of the
input hypergraph.

On the other hand, to enable vertex simplification (Fig. 2
bottom), we first consider a (weighted) cliqgue expansion [10] of
an input hypergraph. The clique expansion Q(H) of H constructs a
graph from a hypergraph by replacing each hyperedge with a clique
among its vertices. We then perform a topological simplification
of the clique expansion. The line graph and clique expansion are
related through the concept of a dual hypergraph, which swaps
the roles of vertices and hyperedges. A clique expansion captures
the similarities among vertices; it is known to be the line graph of
the dual of a hypergraph. The simplified clique expansion in turn
induces the vertex simplification of the input hypergraph. Using
barcode-guided topological simplification, we formalize both vertex
and hyperedge simplification in a unifying way.

Contributions. We summarize our contributions below:

e We introduce a topology-based method for simplifying
complex hypergraph data in a mathematically principled
way. Through the notion of line graph and clique expansion,
our method provides a unifying framework for approximate
vertex and hyperedge collapse.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

« This approximate collapse not only reduces visual clutter
but also provides a compact representation that retains
important structural information for downstream analysis.
It provides greater flexibility in hypergraph simplification
in comparison to state-of-the-art strict vertex and hyperedge
collapse.

« We demonstrate the utility of our simplification method
with real-world examples. We compare with strict vertex
and hyperedge collapse, and evaluate the effects of topolog-
ical simplification on the resulting hypergraph visualization
across multiple visual encodings.

« Although our simplification method is independent of the
method used to visualize the hypergraph, we provide an
open-source, interactive tool that implements our simplifi-
cation method and visualizes how the hypergraph changes
as a result of our simplification method using a choice of
six visual encodings. The tool is modular and extendable,
allowing a user to implement other visual encodings as
desired.

Our tool allows users to explore the simplification framework and
apply vertex and hyperedge simplifications to gain insights from

their own datasets. The tool is available at: https://github.

com/tdavislab/Hypergraph-Vis.

2 RELATED WORK

We focus on visualization techniques relevant to hypergraphs.
For graph visualization, see surveys on graph visualization for
information visualization [11], graph representations for scientific
visualization [12], visual analysis of large graphs [13], dynamic
graphs [14], and graph drawing [15].

Mikinen [16] introduced two widely used approaches for
drawing hypergraphs. In an edge-based approach, hyperedges are
drawn as smooth curves connecting their vertices. In a subset-based
approach, they are drawn as closed curves enclosing their vertices.
For the edge-based approach, by mapping a hypergraph to a graph,
hypergraph visualization could be considered as an extension of
graph visualization. Arafat et al. [17] proposed four ways to encode
a hypergraph as a graph, via complete-, star-, cycle-, and wheel-
associated-graphs. Paquette et al. [18] considered a hypergraph as
a bipartite graph, where hyperedges and vertices form two disjoint
and independent sets. For the subset-based approach, hypergraph
visualization is closely related to set visualization (see [19] for
a survey), which goes back to Euler diagrams [20] and their
more restrictive form, the Venn diagrams. Kritz and Perlin [21]
proposed the QUAD scheme, which resembled a matrix encoding
of set relations: each hyperedge is a column represented by a
rectangle and each vertex is a point along a particular row. Riche
and Dwyer [22] attempted to improve the readability of the set
intersections based on untangling Euler diagrams, by using compact
rectangular shapes or duplicating set elements. Simonetto et al. [23],
[24] introduced an automatic generation of Euler-like diagrams
(EulerView) for any collection of sets and their intersections.
Many recent works focused on representing sets in more efficient
ways, including LineSets [25], BubbleSets [26], MapSets [27],
UpSet [28], and LinearDiagrams [29]. Jacobsen et al. [30] proposed
MetroSets, a novel tool to visualize sets automatically in the form
of metro maps, which scales well for hundreds of elements and
more than a dozen sets. The rainbow box-based visualization
implemented in our tool is inspired by the work of Lamy [31],
which visualized undirected graphs and symmetric square matrices

3

by transforming them into overlapping sets, and visualized them
with rainbow boxes. The HyperNetX Python package [6] includes
hypergraph visualization using an Euler diagram approach. It also
includes the ability to perform exact hyperedge and vertex collapses
(as opposed to approximate collapses, which this paper explores).
Collapsed vertices and hyperedges are visualized in HyperNetX as
larger “supervertices” and thicker “superhyperedges”.

In terms of layouts, Valdivia et al. [32] introduced Parallel
Aggregated Ordered Hypergraph (PAOH) as a hybrid of an edge-
based and a subset-based (matrix) approach, which represents
vertices as parallel horizontal bars and hyperedges as vertical lines,
using dots to depict the connections to one or more vertices. Kerren
and Jusufi [33] introduced a radial layout, where vertices are
evenly distributed on a circle, and the hyperedges are represented
as arcs that enclose the circle. Hypergraphs can be represented
geometrically [34], [35], starting with Zykov [36]. Gropp [37]
positioned the vertices in the plane such that those that form
hyperedges are collinear in the plane. Evans et al. [38] used
polygons to represent hyperedges in 3D to gain additional flexibility.
Qu et al. [39] encoded hyperedges as polygons and proposed a
joint optimization on the layout of the hypergraph and its dual.

Evaluating hypergraph visualizations can be considered from a
quantitative and a qualitative perspective. Many evaluation criteria
for graph visualization are applicable for hypergraphs (e.g., [40],
[41]), including aesthetic criteria such as readability [40] and
faithfulness [41]. Mikinen [16] gave a set of desirable aesthetic
properties for subset-based hypergraph visualization. Arafat et
al. [17] perfected these properties by introducing quantitative
metrics such as concavity, planarity, and coverage. In our work, we
evaluate the quality of hypergraph visualizations after simplification
using four aesthetic criteria. The first criterion evaluates the Euler
diagram-based visualization, which is to minimize the approximate
number of contour intersections. The remaining three criteria
evaluate the bipartite graph-based visualization, which aims to
minimize the number of edge crossings [42], to minimize the
normalized edge length variation [43], and to maximize the
minimum angle between edges out from a vertex [42], respectively.

For graph simplification, a number of works focused on
algorithmic developments [44], [45], [46] and visualization [47],
[48], [49], [50], [51]. In particular, Suh et al. [52] proposed a
topology-based graph simplification tool, which enables contraction
of edges with weight below a user-specified threshold. Work on
hypergraph simplification is much sparser. Lemonnier et al. [53]
studied hypergraph simplification theoretically using a graphical
language from quantum physics. To the best of our knowledge, we
propose the first framework to use topological profiles to guide the
hypergraph simplification process for visual exploration.

Finally, research efforts have also focused on visualizing
large graphs with advanced hardwares such as GPUs, e.g.,
Graphistry (https://github.com/graphistry/); see [13] for
surveys. Few works focus on large hypergraph visualization. We
consider these scalable visualization approaches to be tangential to
hypergraph simplification.

In this paper, we focus on increasing the readability while
preserving as much information faithfulness of hypergraph data
as possible via simplification for insight discovery. It is important
to emphasize that our simplification applies to any hypergraph
visualization technique. We primarily use subset-based approaches
for hypergraph visualization, including Euler diagram, bipartite
graph, bubble sets, and rainbow box-based approaches (Fig. 1).

https://github.com/tdavislab/Hypergraph-Vis
https://github.com/tdavislab/Hypergraph-Vis
https://github.com/graphistry/

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
3 TECHNICAL BACKGROUND

We review two graph representations relevant to hypergraphs,
namely, line graphs and clique expansions, as well the notion of
a dual hypergraph. To explore graphs, one might employ network
science concepts such as walks, distance, and connected compo-
nents to discover entities of interest. In this paper, we work with
analogous hypernetwork science [54] concepts for hypergraphs,
namely, s-walks, s-distance, and s-connected components.

3.1

We begin with an example hypergraph H in Fig. 5a, with five black
vertices and four hyperedges. It is specified by V = {vy, -+ ,vs} and
E = {e1,er,e3,ea} = {{vi,v2,vs},{v2,v3},{v3,va,vs},{vi,vs}}.
In most scenarios of this paper, a hypergraph is shown with an
Euler-bipartite visualization.

Line Graphs, and Clique Expansions

@ :1? k
ol
© Eféi

Fig. 5: (a) A hypergraph H; (b) the Jaccard weighted line graph
Lj(H); (c) the dual hypergraph H*; and (d) the Jaccard weighted
clique expansion Q;(H). In (b) the hyperedges e; and e; in H turn
into vertices e} and e in L;(H) with weight on (e],e}) equa.I to
ler Nez|/|ler Uea| = [{v2}|/I{v1,v2,v3,vs}| = 1/4. In (d) vertices
vy and v, in H belong to sets of hyperedges {e},es} and {e},e2},
respectively, so the edge (vi,v2) in Q;(H) has a weight equal to
[{er,ea} N{er,ex}t|/[{e1,ea} U{er,e2}| =1/3.

As part of the pipeline for hypergraph simplification, we
convert the hypergraph into a graph. There are two candidate
graph representations of a hypergraph: the line graph [9] and the
clique expansion [10]. We formalize these concepts below.

Definition 3.1. The line graph L(H) of a hypergraph H consists
of a vertex set {ej,--- e, }, and an edge set {(e],€}) [e;Ne; #
0,i%).

Definition 3.2. The clique expansion Q(H) of a hypergraph H =
(V,E) consists of vertex set V (the same vertex set as H), and there
is an edge (v;,v;) in Q(H) if there exists some hyperedge e € E
such that v;,v; € e.

The line graph and clique expansion are related through the
concept of duality.

Definition 3.3. The dual hypergraph H* = (E*,V*) of H =
(V,E) has vertex set E* = {e],---,¢},} and hyperedge set V* =
i, ovpb where vi = {e} [vi € e in H}.

4

As shown in Fig. 5¢c, H* swaps the roles of vertices and
hyperedges. For instance, hyperedge e; in H becomes vertex e]
in H*, and vertex v; in H becomes hyperedge v} in H*. It is not
difficult to show that the clique expansion is the line graph of the
dual, i.e., Q(H) = L(H*).

For our hypergraph simplification, we work primarily with a
weighted line graph or clique complex, using intersection sizes or
Jaccard indices as weights. In general the Jaccard index (also
known as the Jaccard similarity) of two sets, X and Y, is a
measure of similarity between them. Formally, it is the size of
their intersection divided by the size of their union,

XNy

jaccard(X,Y) = Xov|’

In L(H) the intersection weight of edge (e}, e}) is |e;Ne;| and
the Jaccard weight is |e;Ne;|/|e;Ue;|. By duality, in Q(H) the in-
tersection weight of edge (v;,v;) is [v; Nv7| and the Jaccard weight
is [v; Nv3|/|[v; UV;|. We denote the Jaccard (resp. intersection)
weighted line graph as L;(H) (resp. L;(H)) and clique expansion
as Qy(H) (resp. Q;(H)). The Jaccard weighted line graph of our
example H is shown in Fig. 5b, and the Jaccard weighted clique
expansion is shown in Fig. 5d.

Intuitively, the Jaccard and intersection weighted line graphs
of a hypergraph capture the similarities between hyperedges; the
higher the weights, the more similar they are. On the other hand,
the Jaccard and intersection weighted clique expansions capture
similarities between vertices.

3.2

For a graph G = (V, E), a walk of length k is a sequence of vertices
connected by edges. It can also be described as a sequence of
successively incident edges. We include a similar notion of a walk
on a hypergraph, introduced by [54], using a hyperedge perspective.

s-Walks and s-Connected Components

Definition 3.4. An s-walk of length k between hyperedges
f and g in a hypergraph H is a sequence of hyperedges,
f=eiei, - e, =g, where for each 1 < j <k, i;_| #i; and
\eijfl ﬂe,"/.\ >s.

Definition 3.5. For a hypergraph H = (V,E), a subset of hyper-
edges C C E is s-connected if there exists an s-walk between all
pairs of hyperedges in C. C is an s-connected component if it
is maximal, that is, there is no s-connected set C' C E such that
ccc.

Definition 3.6. An s-line graph of H (for s > 1), denoted as
L*(H), is a filtered line graph where edge (e}, e7) is present only
if |e;Ne;j| > s. Similarly, an s-clique expansion of H, denoted as
Q°(H), is a filtered clique expansion where edge (v;,v;) is present
only if v; and v; share at least s hyperedges in H.

The notion of s-line graphs and s-clique expansions allows us
to filter a hypergraph by its connectivity, as illustrated in Fig. 6.
For example, the orange and the green hyperedges are 3-connected,
whereas the orange and the blue hyperedges are 1-connected. There
is a 3-walk (dotted black arrow) between the the orange and the
purple nodes via the green node in Fig. 6d, so the orange and the
purple hyperedges are in the same 3-connected component.

For the remainder of this paper, we work primarily with the
Jaccard weighted s-line graph of H, denoted as Lj(H), and the
Jaccard weighted s-clique expansion of H, denoted as Qf(H).
Unless otherwise stated, s = 1. In one of our examples, we will

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

@ © -
o o o
o
O —)
O O () e ° [J ®
O
O e
7
o o o H
() —) ‘\
o O)) o ‘\ ®
() \\

Fig. 6: An example of filtering an s-line graph using the s parameter,
for s =1 (c) and s = 3 (d). Such a filtering leads to a filtering of
the original hypergraph (a), where hyperedges that are in singleton
s-components (i.e., hyperedges that are not s-connected to any
other hyperedge) are grayed out in (b).

provide a comparison between edge weights based on the Jaccard
indices and the intersection size.

3.3 Topological Simplifications of Graphs

In this section, we first introduce the topological profile of a
weighted graph, formally known as its barcode [7], [55], which is
grounded in persistent homology [56]. We then use the barcode to
guide the topological simplification of the graph. Later, in Sect. 4,
we show how simplification of graphs L*(H) and Q°(H) is used to
perform our hypergraph simplification.

To obtain the barcode of a weighted graph G, we apply
persistent homology to a metric space representation of the
graph [57]. See [58] for an introduction and [7] for an algebraic
treatment of persistent homology. Persistent homology can be used
to capture topological features (e.g., connected components, loops,
and higher dimensional voids) in any dimension, d. In this paper
we will focus on d = 0, allowing us to simplify the definition of
a barcode since this restricted version can be computed using the
notion of a minimum spanning tree (MST) of a graph. In other
words, a merger of two components corresponds to an edge of the
MST. Recall an MST is a spanning tree with minimum possible
total edge weight. As an MST can also be used to derive the single
linkage clustering (SLC) dendrogram [59], the barcode-guided
simplification process is also equivalent to applying the SLC with
a threshold.

A weighted graph, G = (V,E,w), consists of vertices, V, edges,
E, and a weight function w : E — R™. Constructing an MST will
tend to keep edges with smaller weight and remove those with
higher weight. Typically, this is done because the weights represent
distances (or similarities), where a small weight means two vertices
are close (or similar), and a large weight means two vertices are
far (or dissimilar). In the case that weights are similarities, not
distances, two vertices with high weight are more similar than two
with low weight. To simplify a similarity-weighted graph, we wish
to merge vertices in G into supervertices based on a decreasing
order of their similarities. Therefore, before computing the barcode
of G, we first invert each edge weight w(e) to be 1/w(e) and then
compute the corresponding MST. Alternatively, one could set the
edge weights to similarities and compute a maximum spanning tree
to achieve the same goal. However, in keeping with the topological

N1 3
2 ’ 0
29 2 \
3 7 ®
[}
/
[}
@ © °® ¢
-] 15 = [
2 3 | | —
%3.5 ! 1
| | | 1
1 1 | | 1
0 1 2 3 %) 0 1 2 3 © 0 1 2 3 [°<)

Fig. 7: A barcode-guided topological simplification of a graph.
Note that the weights shown on the graph in (a) are inverted to get
the bar lengths in (d).

interpretation as O-dimensional persistent homology, we choose
to invert weights and use the MST formulation, which allows
for flexibility in the future to employ other distance metrics or
d-dimensional persistent homology for d > 0; see Sect. 8.

The barcode B(G) is a visual representation of the MST that
consists of a collection of sorted horizontal line segments (bars)
in a plane, where each line segment (excluding the longest one)
corresponds to an edge in the MST with length proportional to its
weight. As illustrated in Fig. 7a, four of the thickest edges (shown
with edge weights) form the MST; each of these edges gives rise to
a bar in the barcode in Fig. 7d. For instance, the edge connecting
the most similar vertices — the red and the purple vertices (pointed
by arrows) — in Fig. 7a with a weight of 2/3 gives rise to the
shortest bar of length 1.5 in Fig. 7d.

Suh et al. [52] used the barcode to control the contraction
and repulsion of edges in the force-directed layout of a graph.
Instead, in this paper, we use the barcode to guide the merging
of vertices into supervertices as part of the simplification pipeline.
As illustrated in Fig. 7e, if we choose a threshold that passes the
first bar, we combine the purple and red vertices together into a
supervertex in (b). Similarly, choosing a threshold that passes the
second bar in Fig. 7f results in the combination of purple, red,
and pink vertices into a supervertex in (c). The number of bars
with length larger than a chosen threshold indicates the number of
vertices remaining after simplification. The last bar corresponds to
a single supervertex after all vertices are combined together. Since
this supervertex cannot be simplified further, the last bar has a
length of infinity.

Stability. We consider a barcode-guided simplification of a graph
to be mathematically justified in the following sense. We call a
graph G’ an e-simplification of another graph G, if G’ is obtained
from G via vertex contractions (that is, merging subsets of vertices
in G, thus contracting the induced edges), and the barcode B(G’)
is the same as the barcode B(G) except all bars with lengths at
most € have been removed. Based on the stability of barcodes [8],
by performing a simplification up to a threshold of &, the distance
between the barcodes of G’ and G is upper bounded by €. The
distance we use to compare barcodes is called the bottleneck
distance.

Definition 3.7. Let y be a matching between the intervals (bars)
I and I’ of B(G) and B(G’) respectively. The bottleneck distance

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

between B(G) and B(G') is defined as

0-(B(G),B(G) = inf sup [[T—7(D)
Y 1€B(G)

where L. distance between two bars I = (b,d) and I’ = (b,d’)
is defined as |[{ —I'|| = max(|b —b'|,|d —d']). In our setting,
the L. distance between two bars that start at zero, I = (0,d)
and I’ = (0,d"), is the absolute difference of their end points,
=1 = d= .

Intuitively, the bottleneck distance measures the smallest value x
such that there is a matching y between the bars of one barcode,
and the bars of the other barcode where all pairs of y-matched bars
have L., distance at most x.

Given this formulation of bottleneck distance, we can now
formally state the stability of barcodes result as

d..(B(G), B(G)) <.

By construction, the MST of G’ is generated from the MST of G
by contracting edges with lengths at most &, therefore merging
vertices connected by these edges that are at most € apart. Therefore,
B(G) and B(G') differ only by the bars that are removed via the
simplification, which have lengths at most €.

4 METHODS

We now describe multiscale topological simplifications of hyper-
graphs. We use the term vertex (resp. hyperedge) simplification to
mean a sequence of operations that reduce the size of a hypergraph
by merging vertices (resp. hyperedges) in decreasing levels of
similarity. Our framework is as follows:

1. Map a hypergraph H to a graph representation G;
Generate the barcode 5(G) of G and use 5(G) to guide its
simplification;

3. Use a simplified G to induce a simplification of H.

At the core of our approach is the idea that a simplified
clique expansion induces a vertex simplification of the hypergraph,
whereas a simplified line graph induces a hyperedge simplification.
Using barcodes of these weighted graph representations, we allow
vertices to be combined if they belong to almost the same set of
hyperedges, and hyperedges to be merged if they share almost the
same set of vertices, both in a mathematically justifiable way.

Two parameters guide the simplification process. First, the
parameter s gives rise to a filtered version of the line graph or
the clique expansion. Fig. 6 illustrates a multiscale filtering of
hyperedges using the s parameter, for s = 1 and 3, respectively.

Second, the parameter € used in the e-simplification of a
hypergraph H by merging vertices (or hyperedges) whose distances
are upper bounded by € (correspondingly, whose similarities are
lower bounded by 1/¢). Fig. 8 illustrates multiscale hyperedge
simplifications. At &1, the brown and purple hyperedges merge into
one (pointed by a black arrow); and at &, three hyperedges in red,
green, and blue merge into one at the same time (pointed by the
hollow arrow). Fig. 9 illustrates multiscale vertex simplifications.
At gf, the gray and pink vertices in the clique expansion (that
correspond to the two vertices in the orange hyperedge) merge into
a supervertex (pointed by a black arrow); and at &), two vertices in
purple and teal in the clique expansion merge into a supervertex
(pointed by a hollow arrow).

°
o
o
0/ 0
® o ==>) —) ‘.\\
[J ® [)
= — €1 —E€2
’:j . :!
1 == I =

Fig. 8: Multiscale hyperedge simplifications of a hypergraph. Top
row includes from left to right: the original hypergraph and its
hyperedge simplifications across two scales. Middle row shows its
corresponding Jaccard weighted line graphs. Botton row shows the

simplification thresholds w.r.z. the barcodes.

N

°
°

o X !
Q (6}

Q —) —)

© o o) o

\ / /
H o 61 o :'52

LIS S S s s |
0.00.51.01.52.02.53.0

1
LS S S s e |
0.00.51.01.52.02.53.0 0.00.51.01.52.02.53.0

Fig. 9: Multiscale vertex simplifications of a hypergraph. Top
row includes from left to right: the original hypergraph and its
vertex simplifications across two scales. Middle row shows its
corresponding Jaccard weighted clique expansions. Botton row
shows the simplification thresholds w.rt. the barcodes.

5 INTERACTIVE VISUALIZATION SYSTEM

We provide an open-source, interactive visualization system that
supports both vertex and hyperedge simplification of an input
hypergraph. We describe its visual interface in Sect. 5.1 followed
by a discussion of the design decisions in Sect. 5.2.

5.1

The user interface is shown in Fig. 10; see the supplementary
video for a demo. We describe the interface based on hyperedge
simplification; the interface for vertex simplification is similar with
minor modifications.

In Fig. 10, the graph visualization panel in the middle
visualizes the original hypergraph (a), the weighted line graph
representation (b), the simplified line graph (d), and the induced
simplified hypergraph (c). The vertices and hyperedges across (a-d)
are connected via linked views based upon their correspondences.

Visual Interface

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

When we switch from hyperedge simplification to vertex simplifica-
tion, weighted line graph representations (b & d) become weighted
clique expansions accordingly.

Fig. 10: Interactive user interface.

On the left, the barcode panel (e) controls the level of simplifi-
cation (parameter €) for the line graph where vertices connected by
edges {e;,e;} with weight below the selected threshold in (b) are
combined into supervertices in (d). Correspondingly, hyperedges
e;,e; in (c) are merged into one hyperedge. Panel (e) also shows the
hierarchical merging of hyperedges (or vertices) via a dendrogram.
Further refinement of a simplified hypergraph can be performed via
the bar expansion: clicking on a bar that has already been simplified
will undo the simplification step, which means, if hyperedges e
and e, have been merged into a single hyperedge e under the
current simplification level, clicking the bar that corresponds to
this operation will separate e back into e; and e;. To choose
the right simplification level, the lower part (f) of the panel
displays the labels of hyperedges (or vertices) when hovering
on a simplified hyperedge (or vertex). Alternatively, it can also
display the persistence graph (not shown here) that shows the
number of features (connected components) as a function of the
persistence level €. An appropriate value of € is typically obtained
at the plateau of the persistence graph (see [60] for details).

On the right, the visual encoding control panel (g) provides
various visual encodings for the hypergraph; see Fig. 1 for
an example. The panel also provides options to display vertex
and hyperedge labels. The parameter control panel (h) deals
with parameter configuration. A large input hypergraph can be
pre-processed to allow vertex collapse and hyperedge collapse.
Collapsing the hyperedges here affects the weights in the line
graph or clique expansion, which in turn affects the barcode. If two
hyperedges intersect in k vertices, and those k vertices are collapsed
into ¢ < k supervertices, then the weight between those hyperedges
will be ¢, not k. Choosing hyperedge simplification employs the
line graph representation, whereas vertex simplification uses the
clique expansion. The s parameter controls the edges present in
the s-line graph or s-clique expansion. Singletons in the s-line
graph or s-clique expansion are either grayed out (used in barcode
computation but visualized as light gray) or filtered (removed from
the hypergraph visualization and not used in barcode computation).
In computing the barcodes, either the Jaccard index or overlap
size can be used. All the parameters set in panel (h) contribute to
barcode computation. Any change made to the parameters requires
a re-computation of the barcode by clicking “compute barcode”.

5.2 Design Decisions

Feedback from a set visualization expert was used to inform a
number of design decisions that we justify below.

1. Support user-defined color assignment. Since a categorical
color palette provides a limited number (10) of colors, hyperedges
lose their distinctiveness within a hypergraph with more than 10
hyperedges. In order to accommodate user preference in hyperedge
color management, our tool supports user-driven manual color
assignment to hyperedges. During the initialization, users may
choose to automatically color all hyperedges (color repeats may
occur), or they may choose to color only the top five largest
hyperedges (the remaining hyperedges are colored gray); this
preserves the distinctiveness among a small number of hyperedges
(Fig. 11a, Fig. 14a). Our system also allows a user to manually
assign colors to hyperedges of interest for subsequent exploration
(Fig. 11b). In addition, a user can adjust the darkness value of edges
in the bipartite graph (for the Euler-bipartite and bubble-bipartite
hybrid visualizations) to emphasize or de-emphasize the relations
between vertices and hyperedges; see Fig. 11b.

@ o)

Fig. 11: User-defined color assignment.

2. Explicitly visualize vertices and hyperedges. While other
visual encodings are possible for hypergraphs, we choose to support
visualizations based on Euler diagram, bipartite, bubble sets, and
rainbow box; the first three approaches capture spatial relations
among the hyperedges, whereas the fourth approach highlights
overlaps among the hyperedges. Since our framework applies
topological simplifications to both vertices and hyperedges, our
hypergraph visualization aims to explicitly visualize both vertices
and hyperedges during the simplification process. To that end, we
choose to support Euler-bipartite and bubble-bipartite hypergraph
visualizations, where each hyperedge is explicitly visualized as a
node that connects to all vertices it contains. Such a visual encoding
supports linked views between the original hypergraph and its line
graph and clique expansion.

3. Diversify glyph representations. For the Euler diagram (resp.
bubble sets) hypergraph visualization, vertices are visualized as
black filled circles, whereas hyperedges are double-encoded as
colored convex hulls (resp. colored bubble sets) and as colored filled
circles. Supervertices and superhyperedges after simplification are
represented by concentric circle glyphs and pie charts, respectively.
Based on the expert’s feedback, our system allows a user to
further diversify glyph representations using black filled squares
for vertices, and colored concentric square glyphs for supervertices;
see Fig. 12 (c¢f. Fig. 1).

4. Highlight relations during hypergraph simplification. Our
simplification framework relies on exploiting the relations between
a hypergraph, its dual hypergraph, line graph, and clique expansion.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

N 1 @

;Y &

HE

/\

()
O

Fig. 12: Vertices as black filled squares and supervertices as colored
concentric square glyphs.

Our system highlights their relations via linked views between
hyperedges and vertices during the simplification process to
increase interpretability.

5. Explicit labels for the dendrogram. The dendrogram panel
shows a labeled tree depicting the hierarchical merging of hyper-
edges (or vertices), as shown in Fig. 13 right and Fig. 21. The
dendrogram is also connected with the graph visualization panel
via linked views for increased interpretability.

Implementation. We implemented our framework as an interactive
web application with a Python back-end using a Flask-based
server. We used the standard HTML/CSS/Javascript stack in tandem
with D3.js and JQuery JavaScript libraries for designing the user
interface and visualization panels. The front-end handles data
upload and graph and hypergraph visualization. The Python back-
end handles data parsing, creates the hypergraph data structures
using the HyperNetX [6] library (including its hyperedge and
vertex collapse functions), constructs bipartite graphs, computes
the persistence barcodes, and performs parameter updates.

6 RESULTS

We provide five example use cases to show how our barcode-
guided hypergraph simplification provides an interpretation of the
underlying data and helps with insight discovery.

6.1

Our first example considers a small social network. In the 1930s, a
group of ethnographers collected data on a group of 18 women in
Natchez, Mississippi [61]. They recorded attendance at 14 informal
social events over the course of a nine-month period; see Fig. 13a.
This dataset has been studied by many other researchers in
sociology, information theory, and mathematics; see [62] for a
meta-analysis of previous studies.

Southern Women

® .

DOROTHY
FLORA
OLIVIA
PEARL
FRANCES
CHARLOTTE
RUTH
ELEANOR

LAURA
BRENDA

EVELYN
THERESA

HELEN
VERNE
MYRNA

NORA
FLORA SYLVIA
KATHERINE

Fig. 13: (a): A table reproduced from [61] using rainbow boxes
that records which social events (columns) each woman (rows)
attended. (b): A hierarchical representation of our simplification
result (at s = 1, € = 0.28) that highlights intrinsic group structure.

b

Group 1

Core Evelyn, Laura, Theresa, Brenda
Primary Charlotte, Frances, Eleanor
Secondary | Pearl, Ruth

Group 2

Core Sylvia, Nora, Helen

Primary Myrna, Katherine |
Secondary | Ruth, Verne, Dorothy, Olivia, Flora ‘

Fig. 14: (a) A hypergraph showing women as vertices (black nodes)
grouped by events they attended as hyperedges (top five largest
hyperedges are visualized as colored convex hulls). (b) Groups
identified from interviews in the original study. In (a), vertices in
the rectangular box belong to Group 1, others below to Group 2.

The hypergraph is shown with an Euler-bipartite visualization
in Fig. 14a (hyperedge glyphs are hidden). Through interviews
with these women, Davis et al. [61] identified two largely distinct
groups and determined core, primary, and secondary members
of each group based on how they were involved with the events,
as summarized in Fig. 14b. Such groupings are considered as
the ground truth in our exploration. The original layout of the
hypergraph in Fig. 14a gives the illusion of a left-right split of
the groups, whereas the ground truth indicates a top-bottom split,
where Pearl (filled arrow) belongs to Group 1, Dorothy (hollow
arrow) belongs to Group 2, and Ruth (double filled arrow) is
identified as secondary in both groups.

Using this Southern Women dataset, we will demonstrate how
varying parameter choices using our simplification framework
highlights the group relations within the ground truth. We will
observe which parameter choices agree with the reported ground
truth and which do not. In all cases, we will perform vertex
simplification as the goal is to see how the women are grouped
based on the events they attend.

Simplification using Jaccard weights. We first consider vertex
simplification of the Jaccard weighted clique expansion Q} (H)
derived from the original hypergraph H with s = 1. As we increase
our simplification parameter €, guided by a priori knowledge of
the group structure, we observe that at € = 1.6 (Fig. 15a & d), our
simplification recovers almost perfectly the core members.

As shown in Fig. 15a, supervertices are formed mostly ac-
cording to the core groups from the ground truth. All the core
members of Group 1 (Evelyn, Theresa, Laura, Brenda) are
merged together into a supervertex (filled arrow on the bottom).
Almost all core and primary members of Group 2 (Nora, Sylvia,
Katherine, Myrna, minus Helen) form a second supervertex
(filled double arrow on the top). Here, all supervertices consist
of members of the same group, with the exception of Pearl and
Dorothy (Group 1 and Group 2 secondary, respectively, hollow
arrow). Flora and Olivia form a supervertex, since they attended
the same set of two events (cf. Fig. 13, double hollow arrow).

We further hypothesize that after simplifying Q}(H) down to
two supervertices, each supervertex would correspond to a group in
the ground truth. However, this is not the case as shown in Fig. 15b.
In the simplified hypergraph, one supervertex contains only Flora
and Olivia, whereas the other supervertex contains everyone else.

Finally, we increase the s value to s = 4, filter out singletons,

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

A, KATHERINE, MYRNA

\\bOLIVIA, FLORA

QVELYN, THERESA, LAURA, BRENDA,

UTH, FRANCES, ELEANOR, VERNE, |
NORA, SYLVIA, KATHERINE, MYRNA, L
CHARLOTTE, PEARL, DOROTHY, HELEN .

©

@EJ

————
0.0 0.5 1.0 1.5 2.0 2.5 3.0 =

ERNE, NORA, SYLVIA, KATHERINE,
'YRNA, N

ELYN, THERESA, LAURA, BRENDA,
RANCES, ELEANOR, CHARLOTTE, RUTH

Fig. 15: Simplification using the Jaccard weighted clique expansion.
(a)s=1,e=1.6.(b) s=1, € =3.2, down to two supervertices.
(c) s =4, filtering out singletons, down to two supervertices. (d)
Corresponding barcode for (a).

and simplify Q‘} (H) to two remaining supervertices. The result
is shown in Fig. 15c. This filtering process leaves out Dorothy,
Olivia, Flora, and Pearl (all of whom are secondary members),
but otherwise splits the women into the correct two groups. The
left supervertex (filled arrow) consists of Group 2 core and primary
members and Verne (Group 2 secondary). The right supervertex
(filled double arrow) similarly consists of Group 1 core and primary
members and Ruth (Group 1 & 2 secondary).

In summary, simplification using the Jaccard weights and s = 1
is unable to identify the two groups in the ground truth without
using the a priori knowledge. Using s = 4, we could identify two
subgroups appropriately; however, certain secondary members are
filtered out unintentionally. Next we compare with simplification
results using overlap weights.

Simplification using overlap weights. We first simplify the
overlap weighted clique expansion Q! (H) by setting s = 1. As
we increase €, the simplification process clearly identifies the two
subgroups in the ground truth; see Fig. 16a with the corresponding
merging hierarchy in Fig. 13 (right). It identifies the same split as
in Fig. 15c without filtering Pearl, Dorothy, Flora, and Olivia. In
particular, the top supervertex (filled arrow) contains all core and
primary members of Group 2 plus its secondary member Verne;
and the bottom supervertex (filled double arrows) contains all core
and primary members of Group 1 plus Ruth. Flora and Olivia are
combined as usual.

As we increase ¢ further, we simplify Q) (H) down to three
groups; see Fig. 16b. There is no threshold with two supervertices
as the final simplification merges all three into one supervertex. As
in the case of Jaccard weights, this naive simplification does not
achieve the desired split into the correct groups. Flora and Olivia

=

YN, THERESA, LAURA, BRENDA, 1
NCES, ELEANOR, CHARLOTTE, RUTH :

T T T T
0.0 0.1 0.2 0.3 04 ©

©OLIVIA, FLORA

@ DOROTHY

LYN, THERESA, LAURA, BRENDA,
RANCES, ELEANOR, CHARLOTTE, RUTH,
PEARL, VERNE, NORA, SYLVIA, KATHERINE,

HELEN, MYRNA

Fig. 16: Simplification using overlap weighted clique expansion
QL (H) with s = 1: (a) € = 0.28, with five groups; (b) filtering out
singletons, down to three groups.

are again grouped together, Dorothy is on her own, and everyone
else is grouped together.

Finally, we increase the s value again to s = 4. It shows the
same split as Fig. 16a, while again filtering Pearl, Dorothy, Flora,
and Olivia.

LVIA; KATHERINE, MYRNA
©oLivia, FLORA

N, THERESA, LAURA, BRENDA

RA, SYLVIA, KATHERINE, MYRNA
©oLIVIA, FLORA

N, THERESA, LAURA, BRENDA

Fig. 17: Southern Women hypergraph visualized with bubble-
bipartite visualization before (a) and after (b) simplification
(hyperedge glyphs not showing), and with bubble sets before (c)
and after (d) simplification.

Final remarks. In this small example with ground truth, we are
able to see how Jaccard and overlap weights perform slightly
differently. The fact that it is easier to identify the two groups
using overlap weights may be an artifact of how the two groups
were identified in the first place by Davis et al. through interviews
and sociological observations. Hence, we cannot expect such an
observation to be generalized to other datasets. It is clear from
this example that Jaccard and overlap weights may help provide
different insights into the same dataset. In crafting the examples in
the following subsections, we explored each dataset using a variety
of parameter and weight choices and will show the choice that
provided the most insight. It happens that Jaccard weights are used
in the remaining examples.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

For a qualitative comparison w.r.t. the effects of topological
simplification on visualization, we show in Fig. 17 the hypergraph
before and after simplification using the bubble-hybrid (a-b) and
bubble sets (c-d) visualization (cf. the Euler-bipartite visualization
in Fig. 14a and Fig. 15a). See Sect. 7 for a quantitive evaluation.

6.2 Les Misérables

Our second example considers Victor Hugo’s novel Les Misérables,
as broken down in the file jean.dat from the Stanford Graph
Base [63]. This dataset lists the set of characters found within
each volume, book, chapter, and scene of the story. To form
our hypergraph, we consider each character to be a vertex and
each (volume, book)-pair to be a hyperedge containing those
characters that appear within. We use the following parameter
settings for the simplification: collapse vertices and hyperedges;
vertex simplification; s = 1; filter singletons; and Jaccard weighted
edges. Fig. 18 shows the simplification results.

Fig. 18: Les Misérables: hypergraph simplification via vertex simpli-
fication, (a) original, (b) collapsed, and (c) simplified hypergraphs
with the barcode thresholded at € = 2.93. (d-f): Correspondences
between three main supervertices of the simplified hypergraph (c)
with their vertices in the original hypergraph (a).

It is not possible to go through the entire plot of this very
long novel here, but the story of Les Misérables revolves around
the characters of Jean Valjean, Javert, Cosette, and Fantine
(labeled yellow nodes in Fig. 18b). Other characters of interest
include Cosette’s love interest Marius (also labeled in Fig. 18b),
a revolutionary student club, and some others who get mixed up
in an uprising. Our vertex simplification groups many characters
together in interesting ways that reflect the narrative of this story.

In the simplified hypergraph Fig. 18c, a vertex (character) of
interest is the fact that Fantine, one of the characters many consider
a main character in the novel, does not group with her daughter

10

Cosette or any other main character. In hindsight, this makes sense,
since Fantine appears only in the first volume (of five) and acts as
a bridge from the first volume to the rest of the story, losing her
daughter Cosette early on. Fantine remains an unsimplified vertex
(not grouped with any other characters) since she interacts with
many groups that do not interact with each other. This makes her
Jaccard similarity to all of these groups low.

Fig. 18(d-f) show and describe correspondences between
three of the supervertices in the simplification (vi,v,, and v3,
pointed by arrows in Fig. 18c) with the vertices of the original
hypergraph (Fig. 18a). The supervertex v; from Fig. 18c contains
many peripheral characters in the first volume in Fig. 18d, those
that interact with Jean Valjean and Fantine. The supervertex v,
contains all of the “Friends of the ABC” revolutionary student
group (circled in red) plus two street kids (circled in blue) who get
mixed up in the uprising and two additional prominent uprising
characters (circled in purple); see Fig. 18e. The supervertex v3 from
Fig. 18c contains Jean Valjean, Cosette, Javert, Marius, and all
of Marius’ family (circled in orange); see Fig. 18f.

Finally, we can use the bar expansion capability to explore the
two bars that are merged just before our chosen threshold (¢ =2.93).
Fig. 19a shows that expanding one bar splits the supervertices
containing Marius and his family from the one containing Jean
Valjean, Cosette, and Javert. In Fig. 19b, we see that expanding
the second bar further splits Valjean and Cosette from Javert.
Both operations make sense in the context of the story. All of
these characters interact frequently, but Valjean and Cosette are
certainly the closest and most central pair in the story. Moreover,
Javert is always chasing Valjean so they do not interact as much,
instead they each interact with the same intermediate characters.

Fig. 19: Les Misérables: expanding the last two bars before the
simplification threshold.

This barcode-guided simplification does not capture the com-
plete narrative flow of the story from beginning to end, but it does
group characters in ways that align with the story. It also shows
how various smaller groups interact with each other as smaller
groups merge to form larger groups, and how some characters act
as bridges between others.

6.3 Hallmark Biological Pathways

Our third example explores the Hallmark Biological Pathways
hypergraph [4] as shown in Fig. 4. The full Hallmark dataset
contains 50 pathways (hyperedges) and 4,386 genes (vertices).
We first use HyperNetX to break this large hypergraph into 2-
connected components in order to focus on a smaller subset
for visual exploration. We chose a component that contains 10
hyperedges. Throughout this example, biological information about
pathways is obtained online from MSigDB [4], [5].

For this example, we use the following parameter settings: do
not collapse vertices or hyperedges; hyperedge simplification; s = 1;

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

11

Fig. 20: (a-d): Steps 1 to 4 of Hallmark Biological Pathways hypergraph simplification. For each subfigure, the right image shows
the new merged hyperedge in the simplified hypergraph, and the left image highlights the corresponding hyperedges in the original
hypergraph. (a) Step 1 merges hyperedges (pathways) INTERFERON_ALPHA_RESPONSE and INTERFERON_GAMMA_RESPONSE.
(b) Step 2 merges pathways HYPOXIA and GLYCOLYSIS. (c) Step 3 merges pathways INFLAMMATORY_RESPONSE and
TNFA_SIGNALING_VIA_NKFB. (d) Step 4 merges hyperedges formed in steps 1 and 3 with ALLOGRAFT_REJECTION.

gray out singletons; and Jaccard weights. Rather than choosing one
threshold for simplification as in the previous example, we will
show insights gathered by walking through the various € thresholds
to see the order in which the hyperedges (pathways) merge. The
original Hallmark hypergraph and the vertex collapsed hypergraph
is shown in Fig. 4.

Fig. 20(a-d) shows the first four steps of the simplification
process from left to right. The first two hyperedges (pathways) to
merge are INTERFERON_ALPHA_RESPONSE and INTER-
FERON_GAMMA_RESPONSE (Fig. 20a). Both are pathways
that contain genes up-regulated in response to interferon (resp. al-
pha or gamma) proteins. The second pair (Fig. 20b) to merge
are HYPOXIA (genes up-regulated in response to low oxygen)
and GLYCOLYSIS (genes involved in breaking down glucose).
Unlike the first pair of hyperedges, the processes of hypoxia
and glycolysis are not very related, but they are merged early
in the process so they must have many genes in common. An
observation that may be useful for biology researchers. The third
bar guides the merging of INFLAMMATORY_RESPONSE with
TNFA_SIGNALING_VIA_NFKB (genes regulated by NF-kB
in response to TNF); see Fig. 20c. The NF-kB protein complex
and TNF protein are both known to play a role in regulation of
immune response so a merge with an inflammatory response is
reasonable. The fourth step merges the INTERFERON pair in
(a) with the INFLAMMATORY and TNFA pair in (c) and the
ALLOGRAFT_REJECTION pathway, which is involved with
transplant rejection. This new superhyperedgen (containing inflam-
mation/immune pathways) seems to encompass the inflammatory
response hyperedges present within the original set of 10.

At this point, we have five superhyperedges in our simpli-
fied hypergraph: inflammation/immune pathways; HYPOXIA
and GLYCOLYSIS; APOPTOSIS (programmed cell death);
MTORC1_SIGNALING (related to mTORC1 complex involved

1

P53_PATHWAY @

APOPTOSIS @

ALLOGRAFT_REJECTION
INFLAMMATORY_RESPONSE @—————— |
TNFA_SIGNALING_VIA_NFKB @

INTERFERON_ALPHA_RESPONSE
INTERFERON_GAMMA_RESPONSE

e

MTORC1_SIGNALING @

e H———
GLYCOLYSIS @

Fig. 21: Similarity hierarchy for 10 Hallmark pathways.

in protein synthesis); and P53_PATHWAY (related to cancer
suppression). In the next four steps of the simplification (1)
APOPTOSIS merges with the inflammation/immune hyperedge,
(2) MTORC1 merges with HYPOXIA and GLYCOLYSIS, (3)
those two just created superhyperedges merge together, and (4),
P53_PATHWAY merges in last.

This simplification process provides a merging hierarchy among
these 10 pathways; see Fig. 21. Whereas MSigDB provides
pairwise overlap sizes for all of these pathways, the most important
insight using our framework is that our simplification process goes
beyond pairwise associations and hierarchically merges pathways
to discover groups of related pathways.

6.4 ActiveDNS

Our fourth example is from computer networking, specifi-
cally the Domain Name System (DNS). DNS focuses on

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

how computers translate from the human interpretable domains
(e.g., www.google.com) to computer-readable IP addresses (e.g.,
192.168.1.1). It might seem like these should be one to one,
that is, each domain has an IP address, and each IP maps to a
domain, but this is not always the case. Domain aliasing means that
sometimes multiple domains map to the same IP (misspellings like
www.gogle.com still get people to the right place) and website
hosting services mean that multiple domains can be served up from
the same IP address. The way that IPs are allocated to domains can
show interesting patterns. Using a hypergraph representation of the
data, where vertices are IP addresses and hyperedges are domains,
we ask the question of whether or not domains that share many
common [P addresses have any common properties.

The dataset for this exploration comes from ActiveDNS [64].
This project out of Georgia Tech does daily active DNS lookups
for millions of IP addresses and records the query results in a
database. We work with one day of DNS records, from April
26, 2018, as our test case. These data were also explored as
a hypergraph in [1]. The entire hypergraph from this day has
millions of vertices and hyperedges so we first used the Chapel
Hypergraph Library (CHGL) [65], [66] to break the hypergraph into
2-connected components and then chose one of these components
that has 30 hyperedges (domain names) to explore visually using
our framework. The original and the simplified hypergraphs are
shown in Fig. 22a and b, respectively.

For the simplification, we use the following parameters:
collapse vertices and hyperedges; hyperedge simplification; s = 3;
gray out singletons; and Jaccard weight. We chose s = 3 to get
more to the core of the interactions within this component.

Fig. 22: ActiveDNS hypergraph before (a) and after (b) simpli-
fication. (c-d) A detailed analysis of simplified hyperedges: (c)
elements from the green hyperedge in (b); (d) elements from the
orange hyperedge in (b).

As shown in Fig. 22b, the simplified hypergraph shows a
clear separation into two main superhyperedges, green (filled
arrow) and orange (filled double arrow), with one additional yellow
hyperedge (hollow arrow) that is fully contained within the green
superhyperedge. There are also four greyed out hyperedges that are
not 3-connected to the rest of the component. The separation is also

12

evident in the original hypergraph but the groupings become more
obvious in the simplified version. After making this observation, we
use the WHOIS lookup from Hurricane Electric BGP Toolkit [67]
to answer the question of what the domains that are grouped have
in common. WHOIS gives publicly available information about the
organization that registered the domain, their contact information,
and a variety of other metadata.

Fig. 22d highlights the 14 hyperedges in the original
hypergraph that are collapsed to form the orange hyperedge in
the simplified version. The domain names (hyperedges) that
are collapsed include worldsleadingcruiselines.com,
worldsleadingcruiselines.net, wlcl.com, and
worldleadingcruiseline.com. All 14 are some play on
“World’s Leading Cruise Lines” and all domains are registered to
Carnival Corporation that is one of the world’s largest cruise lines.
Interestingly, one of the grayed out hyperedges has the domain
comebacktothesea.com. “Come Back to the Sea” is an older
advertising campaign for Carnival and perhaps that is why it does
not have as much overlap with the other domains with the more
current slogan.

The 11 hyperedges highlighted in Fig. 22c, which are
collapsed to form the green superhyperedge in the sim-
plified version, have less in common on the surface.
These domains include bbgdirect.com, azattykplus.kg, and
globalnewsdashboard. com. Within these 11 domains, 7 of them
have “Radio Free Europe” listed as the registered organization in
the publicly available WHOIS information, two have no registered
organization, and two have completely different organizations. Fi-
nally, the yellow hyperedge (hollow arrow) that is contained within
the green in Fig. 22b has domain radiosvobodakrim.mobi and
is also registered to “Radio Free Europe.” We make no claims of
associations between these domains, especially those registered
to other organizations. We only observe that our hypergraph
simplification method grouped domains together that, for the most
part, were registered by the same organization.

For a qualitative comparison w.r1. the effects of topological sim-
plification on hypergraph visualization, we show in Fig. 23 the hy-
pergraph before and after simplification using the bubble-bipartite
visualization (c¢f. the Euler-bipartite visualization in Fig. 22).
See Sect. 7 for a quantitive evaluation.

Fig. 23: ActiveDNS hypergraph visualized with bubble-bipartite
before (a) and after (b) simplification.

6.5 Coauthor Network

Our final example explores a coauthorship network in academic
publications. We use the topic-coauthor dataset from ArnetMiner
[68] and focus specifically on the information-retrieval field of study

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

for authors. Each hyperedge represents an author and vertices in
the corresponding hyperedge are researchers who have coauthored
at least one paper with the author. There are 491 hyperedges
and 506 vertices in this hypergraph. For this exploration, we
use the following parameter setting: do not collapse hyperedges
or vertices, hyperedge simplification, s = 1, gray out singletons,
Jaccard weights, and € = 5.5. Fig. 24a shows the unsimplified
hypergraph, and although there seems to be a central clustering
affinity, it is very hard to parse the information in the original
hypergraph of this size.

JEEE

Fig. 24: A hypergraph of the Coauthor Network. (a) Original
hypergraph. (b) A simplified hypergraph: the central hyperedge
in blue (filled arrow) contains a number of prolific researchers
with numerous papers and citations. (c) The rainbow box-based
visualization of (b) highlighting the researchers that belong to the
blue hyperedge/column (filled arrow).

Contrast Fig. 24a with the simplified hypergraph (at s =1,
€ =5.5) in Fig. 24b, where the centrality of authorship is clearly
evident. The central node (filled arrow) is the result of merging
hyperedges under our framework. The central node contains prolific
researchers in information retrieval with numerous citations. In
particular, as illustrated by the rainbow box-based visualization of
the simplified hypergraph in Fig. 24c, the central node consists
of a hyperedge corresponding to David A. Grossman and Ophir
Frieder who are the authors of the book “Information Retrieval:
Algorithms and Heuristics”, an important introductory textbook of
the field.

7 EVALUATION

The main contribution of this paper is a framework for topology-
based simplifications of hypergraphs, which can be integrated
with any hypergraph visualization technique. In other words, our
hypergraph simplification framework is agnostic to the hypergraph
visual encoding. On the other hand, to demonstrate the effectiveness
of such simplifications, we evaluate the quality of hypergraph
visualizations from Sect. 6 using four aesthetic criteria.

Contour intersections. Given an Euler diagram-based visualiza-
tion of a hypergraph H, a contour intersection is a crossing of the

13

boundaries of two convex hulls representing two hyperedges. To
compute the number of contour intersections, we approximate the
boundary of each convex hull using piecewise linear segments. The
approximated contour intersections, denoted as my;, is defined as
the number of intersections among these line segments. Similarly,
for a bubble sets-based visualization, the boundary of each bubble
set is approximated by a set of linear segments, and m; captures
the intersections among them.

Number of edge crossings. Given a bipartite graph-based visual-
ization of a hypergraph H, we compute its number of edge crossings,
denoted as m,, which is an aesthetic criterion first proposed by
Purchase [42]. For the bipartite graph representation of H with
vertex set V and edge set E, m, is defined as

1= 5 ifepa >0

Cmax
1, otherwise

me =

where ¢ is the number of edge crossings, and ¢,y is the approxi-
mation of the upper bound of the number of edge crossings. ¢y
is defined as

E|(|E]—1 1
o= FEIZD 1y (g aesv) - 1)
vevV
where deg(v) is the degree of a vertex v. Therefore, 0 < m, < 1,
and m, = 1 when there are no edge crossings in the bipartite graph.

Normalized edge length variation. We also evaluate the bipartite
graph visualization of a hypergraph using the normalized edge
length variation [43], denoted as m;. For a graph with a vertex set
V and an edge set £, Hachul and Jiinger [69] proposed a normalized
standard deviation of the edge length oy,

o — Yecp(le —1n)?
: E[- 17

where [, is the length of an edge e, and [;; is the mean of the edge
length. Kwon et al. [43] then proposed a normalized version of
o7, which is to divide o; by its upper bound /|E|— 1, and the
normalized edge length variation my; is then defined as

O;

m = —————-.
"B

By definition, 0 < m; < 1. m; = 0 when all edge lengths are equal.

Minimum angle. Finally, we work with the the minimum angle
between adjacent edges leaving a vertex [42], denoted as m,. Given
a vertex v, m, is defined based on the deviation of the minimum
angle 6,,;,(v) between the adjacent incident edges from the ideal
minimum angle 6(v), where 6(v) = dSez(():). The average absolute
deviation of minimum angles is defined as

o L 9(") - emin(V)
=ik 6w

and the minimum angle metric m, is defined as

)

mg = 1 *de.

By definition, 0 < m, < 1. my; = 1 when all the vertices have equal
angles between all adjacent incident edges.

Evaluation results. We compute the above four criteria to evaluate
the simplified hypergraphs in Sect. 6 across three visual encodings
and their hybrids: the Euler diagram, the bipartite graph, and the
bubble sets. For each hypergraph, we compute a given criterion

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

14

Data "™ contour intersections m, edge crossings my edge length m, minimum angle size (B) size (A) bipartite #e

B A B/A B A B/A B A B/A B A B/A #v #e #v #e B A
SW 164 139 1.18 094 | 095 | 099 | 0.05 | 0.08 | 0.625 | 0.32 | 046 | 0.70 18 14 10 12 89 46
LM 1246 962 1.30 098 | 094 | 1.04 | 0.04 | 0.06 0.67 0.56 | 054 | 1.04 80 45 18 36 276 99
HBP 76 57 1.33 0.99 | 0.86 | 1.15 | 0.02 | 0.05 0.40 092 | 0.27 | 3.41 1316 10 58 7 1858 | 152
DNS 656 51 12.86 | 0.96 | 093 | 1.03 | 0.04 | 0.13 0.31 045 | 058 | 0.78 57 30 15 9 246 36
CN 26162 | 278 | 94.11 | 098 | 099 | 0.99 | 0.02 | 0.05 0.4 0.67 | 0.86 | 0.78 506 491 128 | 81 | 1907 | 231

TABLE 1: For Euler diagram and bipartite graph-based visualizations, aesthetic metric values before (B) and after (A) simplification, and
the ratio (R) between them. The simplification parameters are as follows. For Southern Women (SW) dataset, vertex simplification, s = 1,
€ = 1.6. For Les Misérables (LM) dataset, vertex simplification, s = 1, € = 2.93. For Hallmark Biological Pathways (HBP) dataset,
edge simplification, s = 1, € = 7.86. For ActiveDNS (DNS) dataset, edge simplification, s = 3, € = 2.4. For Coauthor Network (CN)
dataset, edge simplification, s = 1, € = 5.5. The bold numbers in the ratio mean that the simplified visualization is better than the original

visualization under the corresponding criterion.

Data "™ contour intersections m, edge crossings my edge length m, minimum angle size (S) bipartite #e
B S B/S B/S B S B/S B S B/S #v #e S

SW 164 123 1.33 | 094 | 093 | 1.01 | 0.05 | 0.05 | 1.00 | 032 | 0.19 | 1.68 17 13 84

LM 1246 1211 1.03 | 098 | 097 | 1.01 | 0.04 | 0.04 | 1.00 | 0.56 | 044 | 1.27 | 56 44 239

HBP 76 82 093 |1 099 | 094 | 1.05 | 0.02 | 0.03 | 0.67 | 0.92 | 046 | 2.00 | 112 10 314

DNS 656 669 098 | 096 | 095 | 1.01 | 0.04 | 0.04 | 1.00 | 045 | 032 | 141 34 30 191

CN | 26162 | 25114 | 1.04 | 098 | 097 | 1.01 | 0.02 | 0.02 | 1.00 | 0.67 | 0.65 | 1.03 | 459 | 446 1811

TABLE 2: Aesthetic metric values of the original hypergraph (B) and the hypergraph after (strict) edge and vertex collapse (S).

m; contour intersections

Data

B S A B/S B/A
SW 213 169 158 1.26 1.35
LM 2048 1924 1482 | 1.06 1.38
HBP 674 209 210 | 3.22 3.21
DNS 1233 1060 85 1.16 14.51
CN 58658 | 48534 | 260 1.21 | 225.61

TABLE 3: Bubble sets-based visualizations: aesthetic metrics.

m; contour intersections

Data —p S A [BS | BA
SW [180 | 145 | 256 [124 | 070
IM | 2195 | 1991 | 1806 | .10 | 1.2
HBP | 477 | 177 | 132 | 269 | 3.61
DNS | 1073 | 1067 | 80 | Lol | 13.41
CN | 68514 | 79440 | 338 | 0.86 | 202.70

TABLE 4: Bubble-bipartite visualizations: aesthetic metrics.

before (B) and after (A) simplification using the visualizations
generated automatically by our tool without any modification. We
also compute the ratio of the reported values before and after
simplification for comparison (B/A). The criteria m., m;, and m,
are computed using GLAM [43], [70].

The evaluation results for the Euler diagram and bipartite-based
visualizations are shown in Table 1. For the Euler diagram-based
visualization, our hypergraph simplification greatly improves the
approximate number of contour intersections (m;), in particular,
for large and complex hypergraphs (e.g., the Coauthor Networks),
which is indicated by a large ratio B/A that ranges between 1.18x
and 94.11x in the table. The result is not surprising since, by
design, our simplification framework reduces vertex and hyperedge
density in a mathematically justifiable way. Meanwhile, we obtain
comparable numbers of edge crossings m, for the bipartite graph
visualization before and after simplification, which is indicated by
a ratio ~ 1 before and after simplification. Such a ratio is only
slightly elevated for three of the datasets. On the other hand, a
bipartite graph visualization of the simplified hypergraph shows
slightly higher normalized edge length variation (m;). However, we
consider the result to be acceptable since all values are very close
to 0 (ranging from 0.01 to 0.13 across all datasets). Finally, we
observe that our simplification method improves upon the minimum

angle criterion m, for three of the datasets after simplification,
which is likely due to the fact that our simplification generally
reduces the degree of a vertex in the bipartite visualization.

To further demonstrate the strength of our framework, we also
compare against the results of strict hyperedge collapse and vertex
collapse in Table 2. Strict vertex collapse for the Southern Women
dataset has a slightly better ratio (i.e., 1.33) for contour intersections.
However, our simplification framework is shown to be much
more effective for the remaining four large datasets, improving m;
significantly in comparison, e.g., we obtain a 94.11 x improvement
with our hyperedge simplification v.s. 1.04x improvement with
strict hyperedge collapse for the Coauthor Network.

Finally, for the bubble sets-based and bubble-bipartite hybrid
visualizations, we demonstrate in Table 3 and Table 4 that
our simplification framework drastically improves the contour
intersections for larger datasets. In particular, for the Coauthor
Network, the improvement in m; is 202x fold with the bubble-
bipartite hybrid visualization, and 225 x fold with the bubble sets-
based visualization, in comparison to the 94x fold improvement
using the Euler diagram. In summary, our simplification framework
is shown to generally improve aesthetic metrics across four types of
hypergraph visualizations for majority of our datasets. It introduces
drastic improvement in comparison with the strict vertex/hyperedge
collapse.

8 DISCUSSION

In this paper, we introduce a framework that supports topological
simplification of hypergraphs via both vertex and hyperedge
simplifications. We exploit the duality between hypergraphs,
line graphs, and clique expansions, and apply barcode-guided
simplification of a hypergraph across multiple scales. We expect
our framework to be applicable for general hypernetwork science
(e.g., to be integrated with HyperNetX [6]). There are several
interesting venues for future research.

We map a hypergraph to a metric space representation, where
we use a shortest path metric in our current framework. Other
notions of metrics, in particular, resistance distance [71], commute
time distance [72], and diffusion distance [73], that are applicable
in our unifying framework (see Sect. 4). These metrics can

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

be particularly interesting as they capture structural or physical
properties of the underlying data.

Since the barcode used to guide the simplification can be
obtained by computing the minimum spanning tree, the simplifica-
tion process is equivalent to applying a single-linkage clustering
with a threshold. Some other clustering approaches, such as
average-linkage clustering and complete-linkage clustering, or more
complex methods using hypergraph Laplacians [74] or modularity
[75], might also be used to guide hypergraph simplifications. A
comparison among these clustering approaches will be interesting.
Finally, it will be interesting to explore hypergraph simplification
using a higher dimensional barcode.

ACKNOWLEDGMENTS

This project was partially supported by NSF IIS 1513616 and
DOE DE-SC0021015. This work was also partially funded under
the High Performance Data Analytics (HPDA) program at the
Department of Energy’s Pacific Northwest National Laboratory.
Pacific Northwest National Laboratory is operated by Battelle
Memorial Institute under Contract DE-ACO6-76RL01830.

REFERENCES
[11 C. A.Joslyn, S. Aksoy, D. Arendt, J. Firoz, L. Jenkins, B. Praggastis, E. A.
Purvine, and M. Zalewski, “Hypergraph analytics of domain name system
relationships,” in Procceedings of the 17th Workshop on Algorithms and
Models for the Web Graph, Lecture Notes in Computer Science, 2020.
M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,
A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill,
L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson,
M. Ringwald, G. M. Rubin, and G. Sherlock, “Gene ontology: tool for the
unification of biology,” Nature Genetics, vol. 25, no. 1, pp. 25-9, 2000.
The Gene Ontology Consortium, “The gene ontology resource: 20 years
and still GOing strong,” Nucleic Acids Research, vol. 47, no. D1, pp.
D330-D338, 2019.

A. Liberzon, C. Birger, H. Thorvaldsdéttir, M. Ghandi, J. P. Mesirov,
and P. Tamayo, “The molecular signatures database Hallmark gene set
collection,” Cell systems, vol. 1, no. 6, pp. 417425, 2015.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert,
M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander,
and J. P. Mesirov, “Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide expression profiles,” Proceedings
of the National Academy of Sciences of the United States of America
(PNAS), vol. 102, no. 43, pp. 15545-15 550, 2005.

B. Praggastis, D. Arendt, E. Purvine, C. Joslyn, M. Raugas, S. Aksoy, and
K. Monson, “HyperNetX,” https://github.com/pnnl/HyperNetX, 2018.
G. Carlsson, A. J. Zomorodian, A. Collins, and L. J. Guibas, “Persis-
tence barcodes for shapes,” Proceedings Eurographs/ACM SIGGRAPH
Symposium on Geometry Processing, pp. 124-135, 2004.

D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of persistence
diagrams,” Discrete & Computational Geometry, vol. 37, pp. 103-120,
2007.

J.-C. Bermond, M.-C. Heydemann, and D. Sotteau, “Line graphs of
hypergraphs 1,” Discrete Mathematics, vol. 18, no. 3, pp. 235-241, 1977.
J. Zien, M. Schlag, and P. K. Chan, “Multi-level spectral hypergraph
partitioning with arbitrary vertex sizes,” IEEE Transactions on Computer-
Aided Designof Integrated Circuits and Systems, vol. 18, pp. 1389-1399,
1999.

I. Herman, G. Melancon, and M. S. Marshall, “Graph visualization and
navigation in information visualization: A survey,” IEEE Transactions of
Visualization and Computer Graphics, vol. 6, no. 1, pp. 24—43, 2000.

C. Wang and J. Tao, “Graphs in scientific visualization: A survey,”
Computer Graphic Forum, vol. 36, no. 1, pp. 263-287, 2017.

T. Von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J.-D. Fekete, and D. W. Fellner, “Visual analysis of large graphs:
State-of-the-art and future research challenges,” Computer Graphics
Forum, vol. 30, no. 6, pp. 1719-1749, 2011.

F. Beck, M. Burch, S. Diehl, and D. Weiskopf, “The state of the art in
visualizing dynamic graphs,” EuroVis STARs, vol. 2, 2014.

[2]

(3]

[4]

(3]

(6]
(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[36]

[37]

(38]

[39]

[40]

15

P. Eades and R. Tamassia, “Algorithms for drawing graphs: An annotated
bibliography,” Computational Geometry: Theory and Applications, vol. 4,
no. 5, pp. 235-282, 1994.

E. Mikinen, “How to draw a hypergraph,” International Journal of
Computer Mathematics, vol. 34, no. 3-4, pp. 177-185, 1990.

N. A. Arafat and S. Bressan, “Hypergraph drawing by force-directed
placement,” in International Conference on Database and Expert Systems
Applications, 2017, pp. 387-394.

J. Paquette and T. Tokuyasu, “Hypergraph visualization and enrichment
statistics: How the EGAN paradigm facilitates organic discovery from
big data,” in Human Vision and Electronic Imaging XVI, vol. 7865, no.
78650E. International Society for Optics and Photonics, 2011.

B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. Rodgers,
“The state-of-the-art of set visualization,” Computer Graphics Forum,
vol. 35, no. 1, pp. 234-260, 2016.

L. Euler, “Lettres a une princesse d’allemagne,” Letters 102-105, 1761.
M. Kritz and K. Perlin, “A new scheme for drawing hypergraphs,”
International journal of computer mathematics, vol. 50, no. 3-4, pp.
131-134, 1994.

N. H. Riche and T. Dwyer, “Untangling Euler diagrams,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 16, no. 6, pp.
1090-1099, 2010.

P. Simonetto, D. Auber, and D. Archambault, “Fully automatic visuali-
sation of overlapping sets,” Computer Graphic Forum, vol. 28, no. 3, pp.
967-974, 2009.

P. Simonetto, “Visualisation of overlapping sets and clusters with Euler
diagrams,” Ph.D. dissertation, University of Bordeaux, 2011.

B. Alper, N. Riche, G. Ramos, and M. Czerwinski, “Design study of
linesets, a novel set visualization technique,” IEEE transactions on
visualization and computer graphics, vol. 17, no. 12, pp. 2259-2267,
2011.

C. Collins, G. Penn, and S. Carpendale, “Bubble Sets: Revealing set
relations with isocontours over existing visualizations,” IEEE Transactions
on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1009-1016,
2009.

A. Efrat, Y. Hu, S. G. Kobourov, and S. Pupyrev, “MapSets: Visualizing
embedded and clustered graphs,” Journal of Graph Algorithms and
Applications, vol. 19, no. 2, pp. 571-593, 2015.

A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister, “UpSet:
visualization of intersecting sets,” IEEE Transactions on Visualization and
Computer Graphics, vol. 20, no. 12, pp. 1983-1992, 2014.

P. Rodgers, G. Stapleton, and P. Chapman, “Visualizing sets with linear
diagrams,” ACM Transactions on Computer-Human Interaction, vol. 22,
no. 6, pp. 1-39, 2015.

B. Jacobsen, M. Wallinger, S. Kobourov, and M. Néllenburg, “MetroSets:
Visualizing sets as metro maps,” I[EEE Transactions on Visualization and
Computer Graphics, vol. 27, no. 2, pp. 1257-1267, 2020.

J.-B. Lamy, “Visualizing undirected graphs and symmetric square matrices
as overlapping sets,” Multimedia Tools and Applications, vol. 78, no. 23,
pp- 33091-33 112, 2019.

P. Valdivia, P. Buono, C. Plaisant, N. Dufournaud, and J.-D. Fekete,
“Analyzing dynamic hypergraphs with Parallel Aggregated Ordered
Hypergraph visualization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 27, no. 1, pp. 1-13, 2021.

A. Kerren and 1. Jusufi, “A novel radial visualization approach for
undirected hypergraphs,” in Proceedings of the 17th Eurographics
Conference on Visualization, Short paper track, 2013.

U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry, “Path-based
supports for hypergraphs,” Journal of Discrete Algorithms, vol. 14, pp.
248-261, 2012.

K. Buchin, M. van Kreveld, H. Meijer, B. Speckmann, and K. Verbeek,
“On planar supports for hypergraphs,” International Symposium on Graph
Drawing, pp. 345-356, 2009.

A. A. Zykov, “Hypergraphs,” Russian Mathematical Surveys, vol. 29,
no. 6, 1974.

H. Gropp, “The drawing of configurations,” International Symposium on
Graph Drawing, pp. 267-276, 1995.

W. Evans, P. Rzazewski, N. Saeedi, C.-S. Shin, and A. Wolff, “Represent-
ing graphs and hypergraphs by touching polygons in 3D,” in International
Symposium on Graph Drawing and Network Visualization, 2019, pp.
18-32.

B. Qu, E. Zhang, and Y. Zhang, “Automatic polygon layout for primal-
dual visualization of hypergraphs,” IEEE Transactions on Visualization
and Computer Graphics, vol. 28, no. 1, pp. 633-642, 2021.

A. Meidiana, S.-H. Hong, P. Eades, and D. Keim, “A quality metric for
visualization of clusters in graphs,” in International Symposium on Graph
Drawing and Network Visualization. ~ Springer, 2019, pp. 125-138.

https://github.com/pnnl/HyperNetX

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Q. Nguyen, P. Eades, and S.-H. Hong, “On the faithfulness of graph
visualizations,” in International Symposium on Graph Drawing. Springer,
2012, pp. 566-568.

H. C. Purchase, “Metrics for graph drawing aesthetics,” Journal of Visual
Languages & Computing, vol. 13, no. 5, pp. 501-516, 2002.

O.-H. Kwon, T. Crnovrsanin, and K.-L. Ma, “What would a graph look like
in this layout? a machine learning approach to large graph visualization,”
IEEE transactions on visualization and computer graphics, vol. 24, no. 1,
pp. 478-488, 2017.

M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. Subrahmanian,
“Fast influence-based coarsening for large networks,” in Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2014, pp. 1296-1305.

K. Shin, A. Ghoting, M. Kim, and H. Raghavan, “SWeG: Lossless
and lossy summarization of web-scale graphs,” in The World Wide Web
Conference, 2019, pp. 1679-1690.

M. A. Beg, M. Ahmad, A. Zaman, and I. Khan, “Scalable approximation
algorithm for graph summarization,” in Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer, 2018, pp. 502-514.

Z. Shen, K.-L. Ma, and T. Eliassi-Rad, “Visual analysis of large
heterogeneous social networks by semantic and structural abstraction,”
IEEE Transactions on Visualization and Computer Graphics, vol. 12,
no. 6, pp. 1427-1439, 2006.

K. Lee, H. Jo, J. Ko, S. Lim, and K. Shin, “SSumM: Sparse summarization
of massive graphs,” Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 144154, 2020.
D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, “VoG: Summarizing and
understanding large graphs,” Proceedings of the 2014 SIAM international
conference on data mining, pp. 91-99, 2014.

N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos, “TimeCrunch:
Interpretable dynamic graph summarization,” Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1055-1064, 2015.

C. Dunne and B. Shneiderman, “Motif simplification: improving network
visualization readability with fan, connector, and clique glyphs,” Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 3247-3256, 2013.

A. Suh, M. Hajij, B. Wang, C. Scheidegger, and P. Rosen, “Persistent
homology guided force-directed graph layouts,” IEEE Transactions on
Visualization and Computer Graphics, vol. 26, no. 1, pp. 697-707, 2020.
L. Lemonnier, J. van de Wetering, and A. Kissinger, “Hypergraph
simplification: Linking the path-sum approach to the ZH-calculus,” arXiv
preprint arXiv:2003.13564, 2020.

S. G. Aksoy, C. Joslyn, C. O. Marrero, B. Praggastis, and E. Purvine,
“Hypernetwork science via high-order hypergraph walks,” EPJ Data
Science, vol. 9, no. 1, p. 16, 2020.

R. Ghrist, “Barcodes: The persistent topology of data,” Bullentin of the
American Mathematical Society, vol. 45, pp. 61-75, 2008.

H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological persis-
tence and simplification,” Discrete & Computational Geometry, vol. 28,
pp. 511-533, 2002.

M. Hajij, B. Wang, C. Scheidegger, and P. Rosen, “Visual detection of
structural changes in time-varying graphs using persistent homology,”
IEEE Pacific Visualization Symposium, 2018.

H. Edelsbrunner and J. Harer, “Persistent homology - a survey,” Contem-
porary Mathematics, vol. 453, pp. 257-282, 2008.

J. C. Gower and G. J. Ross, “Minimum spanning trees and single linkage
cluster analysis,” Journal of the Royal Statistical Society: Series C
(Applied Statistics), vol. 18, no. 1, pp. 54-64, 1969.

S. Gerber, P.-T. Bremer, V. Pascucci, and R. Whitaker, “Visual exploration
of high dimensional scalar functions,” IEEE Transactions on Visualization
and Computer Graphics, vol. 16, pp. 1271-1280, 2010.

A. Davis, B. B. Gardner, and M. R. Gardner, Deep South: A social
anthropological study of caste and class. University of South Carolina
Press, 2009.

L. C. Freeman, “Finding social groups: A meta-analysis of the southern
women data,” http://moreno.ss.uci.edu/86.pdf, 2003.

D. E. Knuth, The Stanford GraphBase: a platform for combinatorial
computing. New York: ACM Press and Addison-Wesley Publishing
Company, 1994.

A. Kountouras, P. Kintis, C. Lever, Y. Chen, Y. Nadji, D. Dagon,
M. Antonakakis, and R. Joffe, “Enabling network security through
active dns datasets,” in International Symposium on Research in Attacks,
Intrusions, and Defenses. Springer, 2016, pp. 188-208.

S. Aksoy, S. Harun, L. Jenkins, C. Joslyn, C. Lightsey, H. Medal,
D. Mentgen, T. Stavenger, T. Bhuiyan, and M. Zalewski, “Chapel
Hypergraph Library,” https://github.com/pnnl/CHGL, 2018.

[66]

[67]
[68]

[69]

[70]
(711

[72]

(73]

[74]

[75]

16

L. P. Jenkins, T. Bhuiyan, S. Harun, C. Lightsey, S. Aksoy, T. Stavenger,
M. Zalewski, H. Medal, and C. Joslyn, “Chapel Hypergraph Library
(CHGL),” in IEEE High Performance Extreme Computing Conference,
2018.

“Hurricane Electric BGP Toolkit,” https://bgp.he.net/.

J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “ArnetMiner:
Extraction and miningof academic social networks,” in Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2008, pp. 990-998.

S. Hachul and M. Jiinger, “Large-graph layout algorithms at work: An
experimental study,” Journal of Graph Algorithms and Applications,
vol. 11, no. 2, pp. 345-369, 2007.

O.-H. Kwon, T. Crnovrsanin, and K.-L. Ma, “GLAM: Graph layout
aesthetic metrics,” https://github.com/VIDILabs/glam.

D. J. Klein and M. Randic, “Resistance distance,” Journal of Mathematical
Chemistry, vol. 12, pp. 81-95, 1993.

F. Fouss, A. Pirotte, J. michel Renders, and M. Saerens, “Random-walk
computation of similarities between nodes of a graph, with application to
collaborative recommendation,” IEEE Transactions on Knowledge and
Data Engineering, vol. 19, no. 3, pp. 355-369, 2007.

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner,
and S. W. Zucker, “Geometric diffusions as a tool for harmonic analysisand
structure definition of data: Diffusion maps,” Proceedings of the National
Academy of Sciences of the United States of America (PNAS), vol. 102,
no. 21, pp. 7426-7431, 2005.

K. Hayashi, S. G. Aksoy, C. H. Park, and H. Park, “Hypergraph random
walks, Laplacians, and clustering,” in Proceedings of the 29th ACM
International Conference on Information & Knowledge Management,
2020, pp. 495-504.

B. Kaminiski, V. Poulin, P. Pratat, P. Szufel, and F. Théberge, “Clustering
via hypergraph modularity,” PloS one, vol. 14, no. 11, p. 0224307, 2019.

Youjia Zhou is a PhD student at the School
of Computing and the Scientific Computing and
Imaging (SCI) Institute, University of Utah. Her
research focuses on developing visual analytics
systems for large and complex data, in particular,
networks, high-dimensional point clouds, and
vector/tensor fields, using topological techniques.

Archit Rathore is a PhD student at the School
of Computing and the Scientific Computing and
Imaging (SCI) Institute, University of Utah. His
current research focuses on probing machine
learning models through visualization techniques
to improve interpretability.

Emilie Purvine is a Senior Data Scientist at
Pacific Northwest National Laboratory (PNNL).
She received a Ph.D. in Mathematics from Rut-
gers University in May 2011 with a focus on
experimental mathematics and nonlinear recur-
rence relations. At PNNL she is now focused
on applications of combinatorics and computa-
tional topology together with theoretical advances
needed to support the applications, ranging from
computational chemistry and biology to cyber
security and power grid modeling.

Bei Wang is an assistant professor at the School
of Computing and a faculty member at the Sci-
entific Computing and Imaging (SCI) Institute,
University of Utah. She received her Ph.D. in
Computer Science from Duke University. She
is interested in the analysis and visualization of
large and complex data. Her research interests in-
clude topological data analysis, data visualization,
computational topology, computational geometry,
machine learning and data mining.

https://github.com/pnnl/CHGL
https://bgp.he.net/
https://github.com/VIDILabs/glam

	Introduction
	Related Work
	Technical Background
	Line Graphs, and Clique Expansions
	s-Walks and s-Connected Components
	Topological Simplifications of Graphs

	Methods
	Interactive Visualization System
	Visual Interface
	Design Decisions

	Results
	Southern Women
	Les Misérables
	Hallmark Biological Pathways
	ActiveDNS
	Coauthor Network

	Evaluation
	Discussion
	References
	Biographies
	Youjia Zhou
	Archit Rathore
	Emilie Purvine
	Bei Wang

