
TspSZ: An Efficient Parallel Error-Bounded Lossy
Compressor for Topological Skeleton Preservation

Mingze Xia
University of Kentucky
Lexington, KY, USA
mingze.xia@uky.edu

Pu Jiao
University of Kentucky
Lexington, KY, USA

pujiao@uky.edu

Bei Wang
University of Utah

Salt Lake City, UT, USA
beiwang@sci.utah.edu

Xin Liang∗
University of Kentucky
Lexington, KY, USA

xliang@uky.edu

Yuxiao Li
The Ohio State University

Columbus, OH, USA
li.14025@osu.edu

Hanqi Guo
The Ohio State University

Columbus, OH, USA
guo.2154@osu.edu

Abstract—Data compression is a powerful solution for address-
ing big data challenges in database and data management. In sci-
entific data compression for vector fields, preserving topological
information is essential for accurate analysis and visualization.
The topological skeleton, a fundamental component of vector
field topology, consists of critical points and their connectivity
(i.e., separatrices). While previous work has focused on preserv-
ing critical points in error-controlled lossy compression, little
attention has been given to preserving separatrices, which are
equally important. In this work, we introduce TspSZ, an efficient
error-bounded lossy compression framework designed to preserve
both critical points and separatrices. Our key contributions
are threefold. First, we propose TspSZ, a topological-skeleton-
preserving lossy compression framework that integrates two
algorithms, enabling existing critical-point-preserving compres-
sors to also retain separatrices, significantly enhancing their
topology preservation capabilities. Second, we optimize TspSZ
for efficiency through tailored improvements and parallelization.
Specifically, we introduce a new error control mechanism to
achieve high compression ratios and implement a shared-memory
parallelization strategy to boost compression throughput. Third,
we evaluate TspSZ against state-of-the-art lossy and lossless
compressors using four real-world scientific datasets. Experi-
mental results show that TspSZ achieves compression ratios of
up to 7.7× while effectively preserving the topological skeleton,
ensuring efficient storage and transmission of scientific data
without compromising topological integrity.

Index Terms—Scientific data management, high-performance
computing, lossy compression, vector field topology

I. INTRODUCTION

With the recent advancement in high-performance com-
puting, scientific applications are generating extremely large
volumes of data that require remote access and long-term
storage. This poses grand challenges because of the limited
data transfer bandwidth and/or retrieval rate from the storage
systems, which significantly hinders the speed of scientific
discoveries in a wide range of applications.

Compression is regarded as one of the most promising ways
to address such big data problems and has been extensively

*Corresponding author: Xin Liang, Department of Computer Science,
University of Kentucky, Lexington, KY 40506.

used in the field of database and data management, including
the design of databases [1]–[5], acceleration of queries [6],
[7] and speedup for analytics [8], [9]. However, generic
lossless compression techniques [10]–[12] only have modest
compression ratios on scientific data, necessitating the need
for effective lossy compression. Meanwhile, traditional lossy
compression techniques for image compression [13], [14] can-
not provide a quantifiable error bound and thus fail to preserve
the integrity of scientific data. As such, error-controlled lossy
compressors [15]–[22] have been proposed to produce decent
compression ratios while enforcing user-specified constraints.

Most existing error-controlled lossy compressors, including
SZ [17], ZFP [19], and MGARD [20], enable error con-
trol in terms of point-wise error bounds or mean-squared
errors. While providing error control is important, it may
still alter critical features essential for scientific discoveries.
For example, previous studies [23] have shown that directly
applying off-the-shelf error-controlled compressors can distort
the detection of blobs—key structures used to analyze the
separatrix of high-energy particles in fusion energy science.

Topological data analysis offers powerful tools for extract-
ing topological features from scientific data across various do-
mains, including turbulent combustion [24], cosmology [25],
climatology [26], and computational physics [27]. In vector
field data, the topological skeleton is a key topological feature
that provides a concise representation of flow behavior. It
consists of critical points and separatrices, which connect
specific pairs of critical points. In fluid dynamics, the topo-
logical skeleton is utilized to examine vortex structure and
boundary layer behavior [28], [29]. In medical imaging, it
assists in analyzing blood and airflow patterns [30]–[32]. And
in climate studies, it helps characterize the internal structure
of atmospheric rivers [33].

Many of these scientific applications produce vast amounts
of data, straining storage and transmission systems. For in-
stance, Phase 6 of the Coupled Model Intercomparison Project
(CMIP) in climate simulation generates 28 PB of data [34],
posing significant challenges for archiving and data transfer.

While several error-controlled lossy compressors have been
proposed to reduce data size while preserving critical points
(e.g. [35], [36]), none have focused on preserving the topo-
logical skeleton during compression.

Preserving the entire topological skeleton of the target vec-
tor field during lossy compression is nontrivial. First, preserv-
ing critical points is the first step in preserving the topology,
which is a challenging problem by itself. Second, separatrices
are constructed from numerical integration, where minor errors
could accumulate to make a huge difference. For the same
reason, it is hard to derive a theoretical bound to enable preser-
vation. Third, the extraction of separatrices is computationally
expensive and thus requires careful parallelization. These gaps
motivate us to develop a high-performance compression frame-
work that preserves the topological skeleton while efficiently
reducing the data size.

In this work, we propose Topological-Skeleton-Preserving-
SZ (TspSZ), a novel error-controlled lossy compression frame-
work that encapsulates two methods to preserve the topological
skeleton for scientific data. Building upon the recently de-
veloped critical-point-preserving lossy compressor cpSZ [35],
TspSZ features the preservation of the entire topological skele-
ton, which comprises both critical points and the separatrices,
during lossy compression. This is fundamentally different from
cpSZ, which only preserves critical points and overlooks the
preservation of separatrices. We further optimize the TspSZ
to achieve high compression ratios with decent compression
performance, and evaluate it on four real-world scientific
datasets. In summary, our contributions are as follows.

• We design and develop TspSZ, an error-controlled lossy
compression framework capable of preserving the full
vector field topology with a two-phase workflow. By
enhancing cpSZ with a lossless encoding of cells with
present critical points in the first phase, TspSZ preserves
all critical points with exact positions and eigenvectors;
it then encapsulates two methods in the second phase
for the reservation of separatrices: an intuitive method
with bounded execution time and an iterative method that
trades off performance for high compression ratios.

• We analyze the error accumulation in the computation
of separatrices and identify the potential low-data-quality
problem in TspSZ due to the use of point-wise relative
error bound in cpSZ. We then replace it with point-
wise absolute error bound through rigorous derivation to
significantly improve the quality of the reconstructed data
and thus reduce the number of wrong separatrices in the
second phase of TspSZ.

• We optimize TspSZ through careful implementation
along with tailored parallelization in a shared-memory
environment. In particular, we parallelize both the critical-
point-preserving compression in cpSZ and the newly
proposed methods for preserving separatrice to ensure the
entire workflow is highly scalable.

• We evaluate TspSZ and compare it with cpSZ, a derived
variant of cpSZ [36], and lossless compressors using four
real-world datasets. Experimental results demonstrate that

TspSZ faithfully preserves the topology of vector fields
while delivering up to 7.7× compression ratios, which
is significantly better than existing lossless compressors.
In addition, TspSZ demonstrates high scalability with
hundreds of threads in a shared-memory environment,
leading to very high performance for decompression with
acceptable performance for compression.

The remaining sections of the paper are organized as
follows. Section II discusses related works. Section III reviews
the background on vector fields and topological skeleton.
Section IV formulates the research problem and provides
an overview. In Section V, we introduce the methods for
preserving separatrices in TspSZ. In Section VI, we present the
analysis of error accumulation in the computation of separa-
trices, followed by our optimization strategy to replace point-
wise relative error control with absolute error control in cpSZ.
In Section VII, we demonstrate our parallelization strategies
to achieve high efficiency and scalability. In Section VIII, we
present and analyze the experimental results. In Section IX,
we conclude our work with a vision for future work.

II. RELATED WORKS

In this section, we review the literature on scientific data
compression and topology-preserving compression.

A. Error-controlled lossy compression for scientific data

As scientific computing scales in size and complexity, the
volume of generated data increases correspondingly, neces-
sitating the need for efficient data compression methods to
support data storage and transmission. Lossless compression
techniques, such as GZIP [10], ZSTD [11], and BLOSC [12],
suffer from limited compression ratios (often less than two
according to existing studies [37], [38]). As such, lossy
compression methods capable of providing much higher com-
pression ratios are increasingly considered a viable alternative
to address the growing data challenge.

Nevertheless, traditional lossy compression methods, such
as JPEG [13] and JPEG2000 [14] from the image processing
domain, generally fail to provide a quantifiable bound on
the reconstruction error. This failure severely limits their
use in scientific applications that require error guarantees to
ensure the accuracy of downstream data analytics. As a result,
researchers have been focusing on developing error-controlled
lossy compression techniques to ensure that compressed data
remains analytically valid for scientific purposes.

Error-controlled lossy compression methods are broadly
categorized as prediction-based [15]–[18] and transform-based
approaches [19]–[21]. SZ [15] is a typical prediction-based
compressor comprising three major components in the com-
pression pipeline: prediction, quantization, and lossless encod-
ing. The input data is first decorrelated by various prediction
algorithms and then quantized to integers with guaranteed
error control and reduced entropy. These integers are then fed
into lossless encoders such as Huffman [39] and ZSTD [11]
for actual size reduction. ZFP [19] is a typical transform-based
compressor that compresses data in a block-wise fashion.

The input data is divided into individual blocks and operated
independently. Inside each block, the data is aligned to the
same exponent and converted to fix-point representation, and
then a near-orthogonal transform is performed to decorrelate
the data. To this end, embedded encoding is applied to the
transformed data to reduce the size with error control.

B. Topology-preserving lossy compression

Given the critical role of topological features in scientific
data, certain research efforts concentrate on how to effectively
preserve these features within lossy compression frameworks.
Topological structures often represent essential data charac-
teristics, such as flow structures or segmented regions, that
are crucial for scientific interpretation and analysis. Several
approaches have been proposed to address this need in scalar
fields. For example, MSz [40] is a specialized compression
algorithm that preserves piecewise linear Morse-Smale seg-
mentations, making it suitable for applications requiring the
retention of gradient and segmentation information within
scalar fields. Soler et al. [41] developed a topology-controlled
compression method that preserves the persistence diagram
by adaptively quantizing data based on a specified persistence
simplification threshold. Yan et al. [42] proposed TopoSZ,
which enhanced the SZ 1.4 compression algorithm by incor-
porating topological constraints derived from segmentations
guided by contour trees. Despite the usefulness of these
methods in preserving scalar field topology, they cannot be
directly generalized to vector fields.

Vector field compression has also been studied for a long
time. Lodha et al. [43] presented a method to compress
2D vector fields via iterative clustering, but the underlying
algorithm is difficult to generalize to 3D cases. Dey et al. [44]
applied a Delaunay simplification to vector fields, but it did
not provide explicit preservation of the topological features.
Theisel et al. [45] also leveraged edge collapse algorithms for
guaranteed topology preservation, but this method is very time-
consuming and enforces no point-wise error control. Recently,
variations of error-controlled lossy compressors [35], [36] have
been proposed to preserve critical points in vector fields while
enabling point-wise error control. This includes guaranteed
preservation of critical points extracted from both numer-
ical methods [35] and sign-of-determinant predicates [36].
Nonetheless, both these methods overlook the preservation of
separatrices, which is at least of equal importance to critical
points in vector field topology.

Although built upon cpSZ [35], the proposed Tsp-SZ is
significantly different from cpSZ in three aspects. First, Tsp-
SZ enhances cpSZ by providing two algorithms to preserve
separatrices during lossy compression, which enables the
preservation of the topological skeleton, which is essential for
scientific applications. Second, Tsp-SZ replaces the point-wise
relative error control in cpSZ with absolute error control to im-
prove the quality of decompressed data, which in turn reduces
the number of wrong separatrices after enabling critical point
preservation. Third, Tsp-SZ features a careful parallelization
on shared-memory systems, delivering decent compression

TABLE I
NOTATIONS

Symbol Meaning
nv Number of vertices/data points.
nc Number of cells.
u,v Components of the vector fields.
u′,v′ Decompressed forms of u,v.
ui, vi One element in the corresponding component.
µk Barycentric coordinates of critical points.
h Step size used in RK4.
s Position of a critical point.

ratios with high performance and scalability. Note that the
algorithms in Tsp-SZ can also be applied to cpSZ-sos [36] to
preserve the topological skeleton computed from critical points
extracted by the simulation of simplicity [46]. However, this
may create discrepancies in the visualization because these
critical points may not align with the numerically extracted
ones and the numerically integrated separatrices. As such, we
implement Tsp-SZ upon cpSZ instead of cpSZ-sos.

III. BACKGROUND

In this section, we review the background on vector field
topology and critical-point-preserving lossy compression. The
commonly used notations in the paper are described in Table I.

A. Vector field and streamlines

Vector fields are functions of a space whose value at each
point is a vector quantity. They are usually used to represent
velocity-related variables in scientific applications, such as
wind speed in climatology, current speed in oceanology, and
magnetic field directions in physics. A 2D vector field is
usually defined as V = (u,v), where (ui, vi) represents the
vector quantity at the i-th vertex.

One normal operation in a vector field is streamline tracing,
which computes the separatrix of a particle when it is placed
in the flow using numerical integration. The most widely used
method to perform such integration is the Runge–Kutta method
(RK4) [47], [48], which computes the discrete points along the
separatrix using the formula below:
k1 = f(tn, yn), k2 = f

(
tn + h

2 , yn + h
2k1

)
,

k3 = f
(
tn + h

2 , yn + h
2k2

)
, k4 = f(tn + h, yn + hk3),

yn+1 = yn + h
6 (k1 + 2k2 + 2k3 + k4)

(1)
where ki represents the intermediate slopes calculated at

different points in the interval [tn, tn+1]. Specifically, k1 is
the slope at the beginning of the interval; k2 is the slope at
the midpoint, estimated using k1; k3 is another midpoint slope,
this time using k2; and k4 is the slope at the end of the interval,
calculated using k3.

The RK4 method has a local truncation error of order O(h5)
at each integration step, where h is the step size. After t
steps, the global truncation error for a fixed time interval [0, T]
becomes ∼ O(h4).

B. Topological skeleton

The topological skeleton gives a compact description of the
global flow behavior in a vector field by separating the flow
into areas of different behaviors. It mainly comprises critical
points and their connections, a.k.a separatrices. We introduce

these concepts using 2D data as an example, and they can
be directly generalized to 3D cases. In this work, we focus
on piece-wise linear cells, which is one of the most widely
adopted manifold maps in literature.

Critical points: A critical point is defined as the location
where the vector field vanishes, i.e., V(x) = 0. In a 2D
piecewise linear vector field, this problem can be formulated
as solving a linear equation with barycentric coordinates:[

u0 u1 u2
v0 v1 v2

]µ0

µ1

µ2

 = 0 and µ0 + µ1 + µ2 = 1, (2)

where (µ0, µ1, µ2) is the barycentric coordinates, and
(ui, uj) are the vector quantities in the vertices that constitute
the cell. A critical point exists in the cell if and only if
0 ≤ µk ≤ 1 holds for any k ∈ {0, 1, 2}.

Critical points can be categorized into sinks, sources, and
saddles, in general, depending on the eigenvalues of the
Jacobian matrix [29], [49], which characterizes flow behaviors
in the local region. Two positive eigenvalues indicate a source
with repelling behaviors, while two negative eigenvalues imply
a sink with attracting behaviors, and the presence of imaginary
parts in these two cases results in the circulation behavior
of the source/sink. One positive eigenvalue and one negative
eigenvalue lead to a saddle, which may have attracting and
repelling behaviors in different local regions.

Separatrices: Separatrices are a special set of streamlines
that connect critical points. They essentially act as boundaries
that separate different types of motion within a flow field.

Separatrices can be constructed by tracing streamlines
around saddles. For any saddle point s with the Jacobian
matrix J(s), four separatrices can be spawned for both eigen-
vectors of J(s) in the forward and backward direction. In
other words, separatrices are streamlines traced at (s+ϵp∗j1),
(s−ϵp ∗ j1), (s+ϵp ∗ j2), and (s−ϵp ∗ j2) in both forward and
backward directions, where ϵp is sufficiently small perturbation
and j1 and j2 are the eigenvectors of J(s). Fig. 1(a) illustrates
an example of the topological skeleton in the ocean dataset,
which characterizes the flow behaviors into separate regions.

Fig. 1. Topological skeletons of (a) the original data and (b) the decompressed
data of cpSZ [35], with the same color encoding separatrices traced from the
same location. Although cpSZ retains critical points in the data, it distorts
separatrices, resulting in misinterpretation of local flow behavior.

C. cpSZ – error-controlled lossy compression with critical
point preservation

We review the coupled compression scheme proposed in
cpSZ, which serves as a foundation and baseline of the pro-
posed work. As outlined in Algorithm 1, cpSZ visits each data

point (also called a vertex) in a predefined order, and performs
prediction and quantization using the traditional prediction-
based compression pipeline in SZ. The key innovation in cpSZ
is to derive a sufficient error bound for each vertex, which
ensures that the critical points in all the adjacent cells can be
preserved (lines 3-7). This error bound is further quantized to
reduce the storage overhead (line 8), and the quantized value
is then used as an error bound to compress the current vertex
using an existing algorithm (line 9). Note that the original
value needs to be overwritten by the decompressed value after
processing, to ensure the proper derivation of error bounds
for later points. This process allows for the correct execution
during decompression when the original data is unavailable.

Algorithm 1 Coupled Feature-Preserving Lossy Compression
for 2D data with cpSZ
Input: values {vi} and coordinates {xi} of all vertices
Output: compressed byte stream
1: buffer={∅} ▷ integer buffer for compression
2: for i ← 0 to nv − 1 do ▷ iterate vertices
3: for j ∈ vertex cells(i) do ▷ iterate cells connected to vertex i
4: {i0, i1, i2} ← cell vertices(j) ▷ vertices of cell j
5: ξ

(j)
i ←eb_coupled((vi0 ,vi1 ,vi2) , (xi0 ,xi1 ,xi2)) ▷

derive error bound that ensure critical point preservation
6: end for
7: ξi ← minj ξ

(j)
i ▷ aggregate error bound for vertex i

8: ξ̂i ← quant(ξi) ▷ quantize error bound of vertex i
9: bytes← lossy_compress(vi, ξ̂i) ▷ quantize vector data with ξi

10: v′
i ← decode(bytes, ξ̂i) ▷ calculate decompressed value v′

i
11: vi ← v′

i ▷ replace input value with the decompressed value
12: buffer.append(d)
13: end for
14: return compress losslessly(buffer, {ξ̂i})

Rigorous theories have been proposed in cpSZ to derive the
sufficient error bound to avoid false negative (FN, a critical
point that exists in the original data but is absent in the
decompressed data), false positive (FP, a critical point that
is absent in the original data but presents in the decompressed
data), and false type (FN, a critical point that presents in both
original and decompressed data with different types) cases.
We introduce the key theorem to avoid FP in cpSZ as it will
be optimized in our work, and we refer the readers to [35]
for a full treatment. Note that cpSZ leverages a point-wise
relative error bound ξ to perform the derivation, which ensures
|xi−x′

i

xi
| < ϵr for any data xi and its decompressed value x′i.

Theorem 1: Given vertices V0 = (u0, v0), V1 = (u1, v1),
and V2 = (u2, v2) of a piece-linear cell and let m0 = | u1 u2

v1 v2 |,
m1 = | u0 u2

v0 v2 |, m2 = | u0 u1
v0 v1 |, and M =

∑
kmk ̸= 0. A

sufficient error bound for the current vertex (u2, v2) to avoid
FP in this cell is:

ϵr = max
k∈{k|µk /∈[0,1]}

min(ψ(mk;v2), ψ(M −mk;v2), (3)

where ψ(f ;V) is the function that returns the maximal error
bound allowed on V to keep the sign of f .

Although cpSZ can successfully preserve all the critical
points, it fails to provide any guarantees on the separatrices.
Fig. 1(b) depicts the topological skeleton of cpSZ on the same
region as Fig. 1(a). According to the figure, cpSZ clearly

distorts several separatrices (highlighted by colors), leading to
a wrong interpretation of flow behaviors in this local region.

IV. OVERVIEW

In this section, we formulate our research target, followed
by an overview of the proposed framework.

A. Problem formulation

Our goal is to compress a 2D/3D vector field V as much as
possible while preserving the topology. Let fc and fd denote
the compression and decompression functions, respectively.
Further denote size(·) as the operator to obtain the size
of the data, cp(·) as the operator to extract critical points,
and sep(·, ·) as the operator to compute separatrices. Given
the acceptable tolerances τp for the distance between critical
points and τt for separatrices, the generic problem can be
mathematically formulated as follows:

max
size(V)

size(fc(V))

subject to: ∥V −V′∥∞ ≤ ϵ

∥Mp(cp(V), cp(V′))∥∞ ≤ τp

∥Mt(sep(cp(V),V), sep(cp(V′),V′))∥∞ ≤ τt

where V′ = fd(fc(V)) represent the decompressed data,
and Ms and Mp are the respective metrics to measure the
differences between critical points and separatrices.

Different metrics can be used to target different levels of
topology preservation, and we use the following setting to
preserve the original topology as much as possible with a
reasonable computational cost. Specifically, we require exact
matches of critical points in terms of types and positions, or
equivalently cp(V) = cp(V′). This requirement ensures the
same number of separatrices with the same starting points.
For separatrices, we define the following metrics based on
user inputs. First, we define a distant threshold ϵp to check
if the streamline vanishes. If the distance between the current
position and a sink/source is less than ϵp, we say the streamline
vanishes at this critical point. Second, we define the maximal
number of steps t to trace the streamline. This setting is neces-
sary because closed streamlines [50] and orbits [51] may never
reach a destination. We also define the step size h in the RK4
method as a constant. Third, we define a tolerance threshold
τt to indicate the maximal allowable tolerance between the
separatrices in the original data and the corresponding ones
in the decompressed data. We use Fréchet distance [52], a
widely used metric to assess the similarity of two trajectories,
to measure this distance. These input parameters and their
default values are summarized in Table II.

B. System design

We present the design of Tsp-SZ in Figure 2, which is built
upon the critical-point-preserving lossy compressor cpSZ [35].
We propose to base our work on cpSZ for topological skeleton
preservation because it (1) preserves all the critical points
and lays a solid foundation; and (2) provides point-wise error

TABLE II
INPUT PARAMETER AND DEFAULT VALUES FOR TOPOLOGY PRESERVATION

Parameter Default Meaning
ϵ - Maximal allowable point-wise error on raw data.
ϵp 1E-3 Threshold for being absorbed by a sink/source.
t 1000 Maximal number of step in RK4.
h 0.05 Step size used in RK4.
τt

√
2 Maximal allowable error in Fréchet distance.

control that is crucial for scientific data. To ensure the exact
preservation of critical point positions, we revise cpSZ to apply
lossless compression on cells with critical points in 2D cases
(cpSZ automatically falls back to this strategy in 3D cases).
This process automatically eliminates all FN and FT cases. We
further propose using absolute error control in the error bound
solver to eliminate FP cases, which leads to significantly better
quality of the decompressed data compared with the point-wise
relative error control used in cpSZ. This optimization ensures
the exact correspondence between critical points in original
and decompressed data with improved quality.

quantized
error bound

critical point
extraction

quantization
integers

lossless
compressorquantizationprediction

overwrite with
decompressed value

cpSZ

SZ

separatrice
tracing

Error bound
solver

separatrice
comparison

separatrice
fixing

Tsp-SZ

Existing module Optimized module Added module Parallelized module

error control

critical point

preservation

topology

preservation

Fig. 2. Overview of the proposed framework.

We then enhance the framework for preserving separatrices
using the newly added modules, which enables the preser-
vation of the entire topological skeleton. In particular, we
explore two methods for the preservation of separatrices. On
the one hand, we propose an intuitive approach that losslessly
encodes the cells that are passed by any separatrices. This
approach generally leads to a high percentage of losslessly
encoded data (and thus a relatively low compression ratio) but
provides guaranteed topology preservation with fixed running
time. On the other hand, we explore an iterative approach that
gradually fine-tunes the decompressed data until the separatri-
ces are fully preserved, reducing the amount of data requiring
lossless compression at the cost of additional computational
overhead. To this end, we carefully optimize the proposed
approaches and parallelize them in shared-memory environ-
ments to achieve high throughput for topology-preserving
lossy compression.

V. PRESERVATION OF TOPOLOGICAL SKELETON

In this section, we introduce our methods to ensure the con-
sistency of the topological skeleton between the original and
decompressed data in vector fields when users specify their
integration methods and parameters. As illustrated in Fig. 2,

we rely on the revised cpSZ for critical point preservation
while using the proposed modules to enable the preservation
of the topological skeleton. In particular, we propose two
methods to fix the incorrect separatrices, including a single-
pass compression method that produces exact separatrices
with guaranteed runtime (TspSZ-l) and an iterative refining
procedure that improves the compression ratios at the cost of
compression throughput (TspSZ-i).

A. TspSZ-l: Full topology preservation with selective lossless
encoding and single-pass compression

We introduce TspSZ-l for the exact preservation of topolog-
ical skeleton in Algorithm 2. The key idea is to identify the
cells that have been involved in the computation of separatrices
and compress them losslessly. As shown in the algorithm, we
first initialize a bitmap to store the vertices that require lossless
encoding (line 1) and another bitmap to indicate the presence
of critical points in a cell (line 2), and then extract all the
critical points in the original data and mark the vertices with
at least one critical point in their adjacent cells (lines 3-11).
After that, we trace the separatrices using the original data,
and mark all vertices that are involved in this computation as
lossless (lines 12-18). To this end, we use the slightly revised
cpSZ algorithm to perform error-controlled lossy compression
with critical point preservation while encoding the specific set
of vertices in a lossless fashion (line 19).

Algorithm 2 TspSZ-l for 3D data
Input: Vector field dataset d = {u,v,w}, user-specified error bound ϵ,

RK4 parameter set θ = {ϵp, t, h}
Output: Compressed bytes.
1: M ← BitMap(nv , 0) ▷ initialize bitmap for lossless vertices
2: C ← ∅ ▷ initialize a vector to store critical points
3: for i← 0 to nc − 1 do ▷ compute critical points in each cell
4: if check_cp_existence(d, i) then ▷ critical points exist in cell
5: C.append(extract_cp(d, i)) ▷ insert critical point
6: i0, i1, i2, i3 ←cell_vertices(i) ▷ get vertex indices in cell
7: for j ← 0 to 3 do
8: M [ij]← 1 ▷ mark vertices as lossless
9: end for

10: end if
11: end for
12: for c ∈ C do ▷ compute and compare separatrices
13: if c is a saddle then
14: for s ∈ Sc do ▷ iterate all starting location
15: for j ∈ {−1, 1} do ▷ iterate two directions
16: for vi involved in RK4(d, s, θ, j) do ▷ identify the

vertices that are involved in computing separatrices
17: M [i]← 1 ▷ mark vertices as lossless
18: end for
19: end for
20: end for
21: end if
22: end for
23: compressed← cpSZ_with_lossless_vertices(d, ϵ,M)
24: return compressed

Complexity and quality analysis: Because extracting crit-
ical points (lines 3-11), computing separatrices (lines 12-22),
and performing the revised cpSZ (line 23) take O(nc), O(nst)
(where ns indicates the number of saddles in the original
data), and O(nc +nv) time, respectively, this algorithm has a
deterministic runtime of O(nc + nv + nst). It also produces

Algorithm 3 TspSZ-i for 3D data
Input: Vector field dataset d = {u,v,w}, user-specified error bound ϵ ,

integration method parameter set θ = {ϵp, t, h}, and tolerance τ
Output: Compressed bytes.
1: M ← BitMap(nv , 0) ▷ initialize bitmap for lossless vertices
2: C ← ∅ ▷ initialize a vector to store critical points
3: for i← 0 to nc − 1 do ▷ compute critical points in each cell
4: if check_cp_existence(d, i) then ▷ critical points exist in cell
5: C.append(extract_cp(d, i)) ▷ insert critical point
6: i0, i1, i2, i3 ←cell_vertices(i) ▷ get vertex indices in cell
7: for j ← 0 to 3 do
8: M [ij]← 1 ▷ mark vertices as lossless
9: end for

10: end if
11: end for
12: compressed1,d′ ← cpSZ_with_lossless_vertices(d, ϵ,M)

▷ compress data using cpSZ and obtain decompressed data d′

13: Td, Td′ ← ∅ ▷ record separatrices in original and decompressed data
14: V ← ∅ ▷ initialize vertices require lossless encoding
15: Q← ∅ ▷ initialize queue for trajectories that need to fix
16: i← 0 ▷ initialize index for separatrices
17: for c ∈ C do ▷ compute and compare separatrices in d and d’
18: if c is a saddle then
19: for s ∈ Sc do ▷ iterate all starting location
20: for j ∈ {−1, 1} do ▷ iterate two directions
21: td ← RK4(d, s, θ, j) ▷ compute separatrices in d
22: td′ ← RK4(d′, s, θ, j) ▷ compute separatrices in d′

23: Td.append(td), Td′ .append(td′)
24: if check_traj(td, td′ , τ) is false then
25: Q.push(i) ▷ record incorrect separatrices
26: end if
27: i← i+ 1 ▷ increment i
28: end for
29: end for
30: end if
31: end for
32: while Q ̸= ∅ do ▷ iteratively fix separatrices
33: for i ∈ Q do ▷ fix wrong separatrices in current decompressed data
34: fix_traj(Td[i], Td′ [i], τ, θ,d′, V) ▷ see Algorithm 4
35: end for
36: Q← ∅, i← 0 ▷ re-initialize Q and i
37: for c ∈ C do ▷ compute and verify separatrices in d’
38: if c is a saddle then
39: for s ∈ Sc do ▷ iterate all starting location
40: for j ∈ {−1, 1} do ▷ iterate two directions
41: Td′ [i]← RK4(d′, s, θ, j) ▷ update separatrices in d′

42: if check_traj(Td[i], Td′ [i], τ) is false then
43: Q.push(i) ▷ record incorrect separatrices
44: end if
45: i← i+ 1 ▷ increment i
46: end for
47: end for
48: end if
49: end for
50: end while
51: compressed2 ← lossless(V) ▷ compress value and index of V
52: return {compressed1, compressed2}

exact separatrices when compared with those from the original
data because of the lossless encoding on all related vertices.
However, it may suffer from relatively low compression ratios
when the separatrices span the entire domain, which leads to
a large percentage of losslessly encoded vertices.

B. TspSZ-i: Error-controlled topology preservation with iter-
ative correction

As data size is becoming the dominant factor for scientific
data management tasks such as data transfer and I/O, high
compression ratios are usually preferred, if not required.

To address the limited compression ratios of TspSZ-l, we
propose TspSZ-i, an algorithm that iteratively refines the
decompressed data to achieve topology preservation. Instead of
using a generic compression-verification paradigm in existing
works [53], we propose to operate on the decompressed data
of the revised cpSZ, and record additional information that
is required to preserve separatrices. This approach eliminates
the repeated executions of the compression procedure in cpSZ,
which turns out to dominate the runtime in 3D cases. We
further optimize TspSZ-i by identifying bifurcation points to
reduce the amount of data requiring lossless compression.

We present the detailed algorithm in Algorithm 3. The first
few steps (lines 1-12) are very similar to TspSZ-l, where we
extract the critical points and use the revised cpSZ to compress
the data. After that, we obtain the decompressed data d′ and
compute separatrices in both d′ and original data d (lines 13-
31). During the computation, we also compare the two sets
of separatrices and record the wrong ones that require further
processing (lines 24-26).

If the revised cpSZ fails to preserve the topological skeleton,
we will iteratively correct these separatrices until the process is
complete (lines 32-50). This process involves the procedure for
correcting a single separatrix (lines 33-35), which is detailed in
Algorithm 4. In this algorithm, we first identify the positions
in the original data where the separatrix diverges based on
Euclidean distance (lines 2-4), and then iteratively correct the
separatrix (lines 9-23). Specifically, we replace all the data that
affect the divergence of the separatrix with the original values
(lines 11-16) to ensure that both trajectories are identical
before the divergence point. Next, we recompute the separatrix
on the decompressed data and compare it with the separatrix
from the original data (lines 17-18). If the result does not meet
the required criteria, we increment the index by 1 and repeat
the process. In the worst case, the entire separatrix will be
losslessly compressed. This method enables the preservation
of topological features by losslessly compressing parts of the
data. The compression ratio is significantly improved since
only portions of the separatrix are losslessly compressed.

After fixing the incorrect separatrices in Algorithm 3 (lines
33-35), we compute the new separatrices based on the updated
data and compare them with those from the original data (lines
36-49). This procedure continues until no wrong separatrices
are found in the current decompressed data. This process
guarantees the preservation of vector field topology under
user-specified requirements. To this end, we will losslessly
compress the data and indices of V , and concatenate the results
to the compressed data produced by cpSZ (line 12) to generate
the final compressed data. In practice, we merge the positions
of indices to the bitmap M (line 1) for optimized storage cost.

Complexity and quality analysis: The first two parts of
the algorithm (lines 1-31) yield almost the same runtime as
TspSZ-l, namely O(nc+nv+nst). The iterative correction of
separatrices may take O(ninst) time, where ni is the number
of iterations. This algorithm is guaranteed to converge because,
in the worst case, all the data can be losslessly compressed in a
fixed number of iterations. In practice, we observe the number

Algorithm 4 Separatrix Correction
Input: ith separatrix for d, ith separatrix for d′, integration parameter θ =
{ϵp, t, h}, tolerance τ , decompressed data d′, and lossless vertex set V

1: index← 0
2: flag← false
3: for i← 0 to len(Td[i]) do ▷ find the diverging vertex
4: if distance(p1, p2) ≥ τ then ▷ check vertices in the two separatrices
5: index← i
6: break
7: end if
8: end for
9: θ′ = {ϵp, t, h}

10: while flag is false do
11: P ← Td[i]
12: Q ← RK4(d′, c, θ′)
13: for vi involved in Q do
14: d′[v]← d[v] ▷ replace original data for all vertices related to

the separatrix
15: V.append(vi) ▷ record lossless vertices
16: end for
17: Q′ ← RK4(d′, c, θ)
18: if check_traj(P,Q′, τ) is true then
19: return
20: else
21: θ′ = {ϵp, index + 1, h} ▷ update parameter to proceed
22: end if
23: end while

of iterations is usually less than 5 for smooth data and less
than 10 for turbulent data. Compared with TspSZ-l, it has a
longer running time because of the iterative procedure, but
it usually delivers better compression ratios due to a smaller
percentage of losslessly compressed vertices.

VI. OPTIMIZING CRITICAL POINT PRESERVATION WITH
ABSOLUTE ERROR CONTROL

As mentioned in Section II, cpSZ uses point-wise relative
error bound for error control (i.e., ensuring |xi−x′

i

xi
| < ϵr for

a point-wise relative error bound ϵr and any data point xi) in
the compression procedure. Although approach this leads to
relatively straightforward error bound derivation, it produces
lower-quality decompressed data in terms of mean squared
errors (MSE) when compared with absolute error control (i.e.,
ensuring |xi − x′i| < ϵa for an absolute error bound ϵa
and any data point xi) according to existing studies [54]. In
this section, we carefully analyze the impact of using point-
wise relative error control for topology-preserving data com-
pression, and propose to optimize the efficiency of cpSZ by
utilizing absolute error control for critical point preservation.
This significantly reduces the MSE of the decompressed data
under the same compression ratios and thus benefits topology
preservation due to a reduced number of wrong separatrices
and reduced errors in the numerical integration.

A. Analysis of error accumulation in computing separatrices

When the vector field is compressed in a lossy fashion,
errors will be introduced in each component. We analyze how
such errors could accumulate and impact the results for separa-
trices using 2D cases as an example. We perform the analysis
using absolute error bounds on each data point, followed by
a discussion of the situations when point-wise relative error

bounds are used. For any data point inside a linear cell, its
vector components u′ and v′ in the decompressed data are
interpolated using the formula below:[

u′

v′

]
=

[
u0 + ξu0 u1 + ξu1 u2 + ξu2
v0 + ξv0 v1 + ξv1 v2 + ξv2

]µ0

µ1

µ2

 , (4)

where {ξui} and {ξvi} are the absolute errors introduced
in each node, which are subject to |ξui| ≤ ϵa and |ξvi| ≤ ϵa
under the given absolute error bound ϵa. This implies that
the resulting errors in the two components are

∑
i ξuiµi

and
∑

i ξviµi, respectively. Since the intermediate terms (i.e.,
k1, k2, k3, k4) in RK4 are all interpolated in this way, the final
error in a single step of RK4 is the weighted average of the
errors in the four terms according to Eq. (1). As separatrices
tend to spread in the entire data domain, lower average errors
in the raw data usually indicate lower errors in the separatrices.

The same analysis applies to the case of point-wise relative
error bounds, where the absolute error bound in each data
point turns out to be the multiplication of the error bound and
the data values. Meanwhile, existing studies [54] have demon-
strated that point-wise relative error control yields much higher
mean-squared errors than absolute error control under the same
compression ratio, which also indicates much higher average
errors in usual cases. This inspires us to seek absolute error
control for full topology preservation with better efficiency.

One can also estimate a pessimistic upper bound for the
separatrices when a global absolute error bound ϵa is used.
In particular, the upper bounds of the errors in u′ and v′ are
|
∑

i ξuiµi| ≤ |
∑

i ϵaµi| = ϵa and |
∑

i ξviµi| ≤ |
∑

i ϵaµi| =
ϵa. This implies a maximal error of ϵa for k1, k2, k3, k4, which
leads to an upper bound of h

6 (ϵa+2ϵa+2ϵa+ϵa) = hϵa for the
final error in a single step of RK4 according to Eq. (1). Thus,
the upper bound of the integration error can be expressed as
thϵa, where t is the number of steps taken in the integration.
Although these bounds could be used as an alternative way
to determine an absolute error bound for topology-preserving
compression, it usually leads to over-preservation in certain
regions due to the pessimistic estimation.

B. Enabling absolute error control with cpSZ

To address the limitations mentioned above, we propose
to revise the error bound solver in cpSZ to enable absolute
error control. This optimization is done by adjusting Eq. (3)
in Theorem 1 to solve an absolute error bound instead of the
current point-wise relative error bound. In the following text,
we first prove a lemma that derives a sufficient absolute error
bound to keep the sign of a specific function and then apply
it in the context of avoiding FP cases in cpSZ. We use 2D
vector fields as an example for demonstration purposes, and
this easily generalizes to 3D cases.

Lemma 1: If |A| + |B| ̸= 0, the maximal absolute error
bound ϵ to keep the sign of A ∗ ξ1 + B ∗ ξ2 + C for any
ξ1, ξ2 ∈ [−ϵ, ϵ] is |C|

|A|+|B| .
Proof: Assuming C ≥ 0, we have A∗ξ1+B∗ξ2+C ≥ 0.

This requires C ≥ −(A ∗ ξ1+B ∗ ξ2) for any ξ1, ξ2 ∈ [−ϵ, ϵ].
As −(A∗ξ1+B∗ξ2) ≤ |−(A∗ξ1+B∗ξ2)| ≤ |A∗ξ1|+|B∗ξ2| ≤

|A|ϵ+ |B|ϵ, we have C ≥ |A|ϵ+ |B|ϵ and thus ϵ ≤ |C|
|A|+|B| .

The proof holds when C < 0, which completes the proof.
Then, we use this lemma to solve the absolute error bound

that eliminates FP in the decompressed data. Since this deriva-
tion is only needed when no critical point is present in a cell,
there exists at least one k such that µk /∈ [0, 1]. Without loss
of generality, we assume µ0 /∈ [0, 1]. According to Theorem 1,
it requires that m0 and M −m0 = m1 +m2 have the same
sign in the original and decompressed data. Assuming that
an absolute error bound ϵ is used to compress the current
vertices (both u2 and v2), this assumption will introduce the
errors of ξu, ξv ∈ [−ϵ, ϵ]. For the former, we know that
m0 = | u1 u2

v1 v2 | = u1v2 − u2v1; and this problem reduces to
preserve the sign of u1(v2 + ξv)− (u2 + ξu)v1, which can be
directly solved using Lemma 1. Similarly, the latter reduces to
the sign preservation of u0(v2+ξv)−(u2+ξu)v0+u0v1−u1v0,
where the error bound can be solved in the same way. Then the
final error bound for u2 and v2 that ensures no FP in this cell
is min(|m0|

|u1|+|v1| ,
|m1+m2|
|u0|+|v0|). This approach also applies when

k = 1 and k = 2, which can be solved using Lemma 1 with
a slightly different analytical form.

We evaluate the effectiveness of the absolute error control
in terms of data quality using the 2D ocean data and present
the comparison with cpSZ under similar compression ratios
in Fig. 3. In the figure, one can clearly see the large error
magnitudes caused by the point-wise relative error control in
cpSZ. In contrast, the proposed revision with absolute error
control demonstrates small average errors both quantitatively
and qualitatively. This optimization significantly reduces the
number of incorrect separatrices after cpSZ, as will be detailed
in Section VIII.D.

Fig. 3. Visualization of errors in Ocean data after applying cpSZ with point-
wise relative and absolute error bounds under similar compression ratios (CR).

VII. PARALLELIZATION

Due to the computationally intensive nature of the algo-
rithms, we parallelize the proposed framework on shared-
memory environments with openMP [55]. Note that we par-
allelize both cpSZ and the added modules in TspSZ to ensure
high end-to-end efficiency.

We first present our parallelization strategy for cpSZ. The
key idea is to serialize the dependency in the predication stage.
Specifically, cpSZ has strong dependencies in neighboring
vertices, which limits the use of traditional embarrassing
parallelization strategies. To address this issue, we adopt a
multi-stage algorithm inspired by the parallelization strategy
in [36]. Specifically, we first partition the data into independent
blocks, with each thread processing only the internal data of a
block (i.e., skipping the data that form surfaces and edges with
other blocks, as these data points are interdependent during
prediction). After processing the internal data of the blocks,
we degrade the 3D Lorenzo predictor into 2D Lorenzo for
handling surfaces (similarly, for edges, we reduce it to 1D
Lorenzo). We first process all planes perpendicular to the x-
axis in parallel, followed by those perpendicular to the y-axis,
and finally those perpendicular to the z-axis. After processing
the planes, we adopt a similar strategy to handle the edges.
Finally, we perform lossless processing on the data points
located at the intersections of the three planes.

For the numerical integration steps, we adopt an embarrass-
ingly parallel approach for high efficiency. Since there are no
dependencies between threads, the parallel efficiency is close
to 100%, according to our experiments. We further parallelized
the module responsible for correcting the trajectories (Algo-
rithm 4) via speculated execution. In particular, we allow the
threads to read decompressed data d′ from shared memory and
compute the separatrices in parallel. Although this approach
involves the use of stale data and may lead to discrepancies
in the intermediate topological skeleton, it will not impact the
final result because we always verify the final result after the
correction (lines 36-49 in Algorithm 4).

VIII. EVALUATION

We evaluate our methods using four real-world datasets
from real-world applications and compare them with state-of-
the-art lossy and lossless compressors, including cpSZ [35],
ZSTD [11], and GZIP [10]. We present quantitative evaluation
in terms of Peak Signal-to-Noise Ratio (PSNR), the number
of incorrect separatrices, and Fréchet distance, as well as qual-
itative evaluation using visualization. Throughout this section,
we use CR to present the compression ratio and Tc and Td to
represent compression and decompression time, respectively.

A. Experimental setup

We conduct our experiments using four scientific datasets
listed in Table III, where nd represents the number of dimen-
sions, nv stands for the numbers of vertices, ncp, ns and nsep
denote the number of critical points, saddles, and separatrices,
respectively. All datasets are stored as single-precision floating
points with the following detailed information.

• Ocean: A simulated dataset representing ocean currents.
• CBA: Simulation of a 2D flow generated by a heated

cylinder, using Boussinesq approximation [56], [57].
• Hurricane: A simulation of Hurricane-ISABEL from the

National Center for Atmospheric Research [58].
• Nek5000: A fluid simulation generated by Nek5000 [59].

Topological skeletons are used in these datasets to extract
and characterize features for insight generation. In the Ocean
dataset, they identify major flow structures, track eddies,
and examine water mass transport. In computational fluid
dynamics datasets like CBA and Nek5000, they partition
complex flow regions, detect transient phenomena such as
vortex shedding, and enhance flow control strategies. For
the Hurricane dataset, they characterize key storm structures
(e.g., the eye, eyewall, and rainbands), analyze hurricane
evolution, and assess the impact of large-scale environmental
flow patterns.

TABLE III
BENCHMARK DATASETS

Dataset nd nv ncp ns nsep Size

CBA 2 450× 150 78 38 152 0.51MB
Ocean 2 3600× 2400 20938 10376 41504 65.92 MB
Hurricane 3 100× 500× 500 1026 833 4998 286.10MB
Nek5000 3 512× 512× 512 10587 9145 54870 1.50GB

All our evaluations are performed on a high-performance
cluster [60], where each compute node contains 2 AMD EPYC
ROME 7702P processors with 128 cores and 512 GB memory
in total. Tc and Td are reported with 128 threads unless
specifically noted.

B. Evaluation Metrics

Our objective is to preserve all critical points under lossy
compression while ensuring that separatrices are retained to
varying degrees. Therefore, the following metrics are particu-
larly important:

1) Compression Ratio (CR): The Compression Ratio is
defined as CR = Sizeoriginal/Sizecompressed. Alternatively,
we use bitrate to represent CR in rate-distortion graphs,
which is computed as 32 (number of bits to represent
one single-precision number) divided by the compression
ratio in this section.

2) Peak Signal-to-Noise Ratio (PSNR): PSNR measures
the quality of a compressed or reconstructed signal
compared to the original, and it is calculated based on
the Mean Squared Error (MSE) between the original
and decompressed data. Specifically, it is defined as
PSNR = 20 · log10(data range)− 10 · log10(MSE).

3) Number of Incorrect Separatrices (IS): We consider
a separatrix to be incorrect if the separatrix from the
original data and that from the decompressed data result
in different topological structures, including cases where
they end at different critical points or when the Fréchet
distance between the two trajectories exceeds the prede-
fined threshold τt.

4) Fréchet Distance: The Fréchet Distance helps evaluate
how well the trajectories are preserved after compression,
offering insights into the topological distortions intro-
duced. Given two discrete curves P = (p1, p2, . . . , pn)
and Q = (q1, q2, . . . , qm), composed of the point sets
P and Q, the discrete Fréchet distance is defined as
dF (P,Q) = minσ,τ maxk ∥pσ(k) − qτ(k)∥, where σ and
τ are the valid reparameterization that mapping points
along curve P and Q, respectively. We use the minimum,

maximum, median, and standard deviation of Fréchet
Distance across all the trajectories to measure how close
the original trajectories are to decompressed trajectories.

C. Rate-distortion

We first assess the quality of our decompressed data using
the widely used rate-distortion curves in Fig. 4. The x-axis
in this curve represents the bit-rate, and the y-axis represents
PSNR. According to the figure, it is observed that the pro-
posed absolute error control yields much higher PSNR when
compared to the point-wise relative error control at the same
compression ratios for both cpSZ and TspSZ. Compared with
TspSZ-l, TspSZ-i provides better compression ratios due to
the reduced number of losslessly encoded vertices, and this
difference seems bigger when the data is harder to compress
(Ocean and Nek5000). While cpSZ generally provides the best
compression ratios, it cannot preserve separatrices, as will be
detailed below.

Fig. 4. Rate-distortion under different datasets

D. Topology preservation

We present the quantitative results for all four datasets
in Table IV - VII. Since no existing lossy compressors are
capable of preserving separatrices with error control, we
compare our methods with lossless compressors in terms of
benefits in improving compression ratios. We also present the
results for cpSZ, TspSZ-l, and TspSZ-i with both point-wise
relative error control and absolute error control (-abs). We
further include a comparison with cpSZ-sos [36], a variant of
cpSZ that preserves critical points extracted by the Simulation
of Simplicity (SoS) [46] method. Note that such differences
may lead to discrepancies in the number of detected critical
points when compared to numerical methods. Since cpSZ-sos
does not have a parallel implementation in a shared memory
environment, we report the compression and decompression
times in a serial execution setting. We use the most relaxed
setting “ST4” in cpSZ-sos, as it leads to the best compression
ratio in general. Note that we adjust the error bounds for
the two error control modes and cpSZ-sos to achieve similar
compression ratios for a fair comparison.

According to the tables, both cpSZ and cpSZ-sos fail to
preserve the separatrices, as evidenced by their large maximal
Fréchet distance. Meanwhile, TspSZ methods preserve the
topological skeleton much better, and they yield much higher
compression ratios than lossless compressors because they
compress the data in a lossy fashion. In particular, TspSZ-
l methods preserve the exact topology and yield 3 ∼ 6×
compression ratios on the CBA and Hurricane datasets because
they are relatively smooth. This gain reduces to 1.2 ∼ 2.7×
in more turbulent datasets (Ocean and Nek5000). TspSZ-i
methods produce consistently better compression ratios than
TspSZ-l at the cost of slower compression speed and slightly
altered separatrices. It leads to up to 50% improvement in
the compression ratios, especially in the turbulent datasets.
Meanwhile, absolute error control exhibits higher compression
ratios than point-wise relative error control in most cases,
demonstrating the benefits of improved data quality.

TABLE IV
QUANTITATIVE RESULTS ON 2D CBA DATA

Compressor Setting CR PSNR #IS Fréchet Distance Tc TdMax Mean Std
ZSTD / 1.09 / 0 0 0 0 0.01 0.01
GZIP 1.11 / 0 0 0 0 0.03 0.01

cpSZ-sos ϵ=5E-6,h=1,τ= 1
2 , t=3E3 4.15 111.03 4 1.63 0.17 0.26 0.16 0.01

cpSZ
ϵ=5E-2,h=1,τ= 1

2 , t=3E3
4.99 56.20 35 77.93 25.09 55.37 0.14 0.04

TspSZ-l 3.28 57.96 0 0 0 0 0.11 0.02
TspSZ-i 3.61 57.08 0 0.41 0.02 0.08 3.17 0.02
cpSZ-abs

ϵ=5E-4,h=1,τ= 1
2 , t=3E3

4.80 79.01 17 116.70 4.34 17.00 0.15 0.04
TspSZ-l-abs 3.19 80.77 0 0 0 0 0.11 0.02
TspSZ-i-abs 4.06 79.18 0 0.433 0.06 0.10 2.18 0.02

TABLE V
QUANTITATIVE RESULTS ON 2D OCEAN DATA

Compressor Setting CR PSNR #IS Fréchet Distance Tc TdMax Mean Std
ZSTD / 1.60 / 0 0 0 0 0.2 0.1
GZIP 1.59 / 0 0 0 0 2.054 0.45

cpSZ-sos ϵ=1E-5,h=2.5E-2 5.12 110.59 1565 280.57 0.39 5.33 21.55 1.55
cpSZ

ϵ=2E-2,h=2.5E-2
6.64 73.36 912 525.37 1.54 11.54 0.70 0.11

TspSZ-l 1.91 75.12 0 0 0 0 8.17 0.12
TspSZ-i 3.64 75.58 0 1.41 0.16 0.23 324.44 0.17
cpSZ-abs

ϵ=5E-2,h=2.5E-2
7.00 93.60 337 287.40 0.62 5.53 0.67 0.11

TspSZ-l-abs 1.93 95.36 0 0 0 0 8.09 0.13
TspSZ-i-abs 5.03 94.00 0 1.41 0.16 0.22 260.57 0.17

TABLE VI
QUANTITATIVE RESULTS ON 3D HURRICANE DATA

Compressor Setting CR PSNR #IS Freéchet Distance Tc TdMax Mean Std
ZSTD / 1.10 / 0 0 0 0 1.00 0.01
GZIP 1.11 / 0 0 0 0 13.85 2.53

cpSZ-sos ϵ= 3E-5 6.93 87.84 329 444.90 5.72 32.01 348.89 5.44
cpSZ

ϵ=5E-2
7.13 53.81 34 233.37 0.55 4.55 2.43 0.36

TspSZ-l 6.35 53.88 0 0 0 0 12.43 0.45
TspSZ-i 6.97 53.82 0 1.38 0.15 0.23 72.36 0.42
cpSZ-abs

ϵ= 1E-2
7.82 81.91 19 135.44 0.34 3.14 1.88 0.17

TspSZ-l-abs 6.90 81.99 0 0 0 0 12.24 0.26
TspSZ-i-abs 7.74 81.92 0 1.41 0.10 0.18 45.89 0.34

TABLE VII
QUANTITATIVE RESULTS ON 3D NEK5000 DATA

Compressor Setting CR PSNR #IS Fréchet Distance Tc TdMax Mean Std
ZSTD / 1.09 / 0 0 0 0 5.7 3.43
GZIP 1.10 / 0 0 0 0 72.04 12.18

cpSZ-sos ϵ=1E-5, h=0.025 4.69 106.32 8074 621.65 10.59 39.21 1911.32 30.77
cpSZ

ϵ=5E-2, h=0.025
7.33 57.62 14576 634.61 19.67 51.64 13.46 1.92

TspSZ-l 3.74 58.77 0 0 0 0 122.84 3.12
TspSZ-i 4.08 58.69 0 1.41 0.13 0.26 1051.57 3.07
cpSZ-abs

ϵ=5E-2, h=0.025
6.92 88.73 6843 531.25 8.33 31.58 10.41 0.87

TspSZ-l-abs 3.04 101.40 0 0 0 0 120.07 1.80
TspSZ-i-abs 4.56 89.08 0 1.41 0.14 0.24 979.31 1.59

We also present qualitative visualization results for the two
turbulent datasets, namely Ocean in Fig. 5 and Nek5000 in
Fig.7. The light blue lines in (a) and (c) represent the ground
truth topological skeleton, and those in (b) and (d) stand for
the topological skeletons computed from the decompressed
data in TspSZ-i and TspSZ-i-abs, respectively. According
to their comparison, our TspSZ methods faithfully preserve
the topological skeleton under relatively high compression
ratios, demonstrating its benefits over lossless methods. We

Fig. 5. The topological skeleton in Ocean data with surface line integral convolution (LIC) visualized as context. For (a) and (c), the light blue trajectories
represent the ground truth topological skeleton under the two error control modes, respectively; for (b) and (d), the light blue trajectories represent the
topological skeleton under TspSZ-i and TspSZ-i-abs, respectively. In (a) and (c), the red paths indicate the incorrect separatrices in cpSZ/cpSZ-abs, and
the green paths highlight their corresponding ground truth. In (b) and (d), the highlighted green paths overlap with the topological skeleton, indicating the
successful corrections of the incorrect separatrices.

also depict the incorrect separatrices in (a) and (c) using
red lines, and highlight their corresponding ground truth in
green. It is observed that cpSZ/cpSZ-abs leads to numerous
incorrect separatrices and, thus, wrong vector field topology,
and those discrepancies can be corrected by the proposed
TspSZ framework.

Fig. 6. Data points preserved losslessly

We further visualize the lossless vertices in cpSZ and
TspSZ in Fig.6. In particular, the lossless vertices required by
cpSZ/cpSZ-abs are shown in yellow, and those produced by
TspSZ-i/TspSZ-i-abs are depicted in green; the other nodes,
which are colored in pink, are lossily compressed. This figure
indicates that TspSZ-i methods only lossless encode a small
portion of data, and the proposed absolute error control yields
a further smaller percentage when compared with the original
point-wise relative error control in cpSZ. This is the key reason
for the relatively high compression ratios in TspSZ-i-abs.

E. Scalability

We then present the scalability of the compression and
decompression procedure in TspSZ with the increasing num-
ber of threads in Fig. 8. Since 2D data compression and
decompression are extremely fast, we report results only for
3D datasets. In particular, we compare the five methods in this
evaluation: cpSZ and TspSZ with both point-wise relative error
control and the proposed absolute error control, as well as the

vanilla SZ3 as baseline. It is observed that TspSZ achieves
much higher parallel efficiency than that of cpSZ and SZ3 for
compression, because it eliminates several serial dependencies
for high scalability. The decompression scalability is not
high, though, which is mainly caused by the extremely fast
decompression time: under such circumstances, the overhead
for enabling multithreads (e.g., context switch) becomes one
performance bottleneck and limits the scalability.

F. Impact of varying configurations

As discussed in Section VI, the computation of separatrices
could be affected by multiple variables. In this section, we
examined the impact of various parameters to investigate these
effects. The results on varying values of t, h and τ are
presented in Table VIII.

According to the table, as the maximal RK4 step t increases,
the compression ratio decreases while the compression time
significantly increases due to continued integration, which
causes some incomplete trajectories to eventually reach non-
saddle points or orbits, leading to error accumulation and an
increased number of trajectories requiring correction.

The trend for changing the integration step size h is similar
to that of n. As the integration step size increases, the
separatrix length grows, meaning it passes through more cells,
which in turn leads to a greater number of cells being affected.
As for the maximal allowable error tolerance τ in the Fréchet
distance of the separatrices, the compression ratio of TspSZ
increases with the threshold, as smaller thresholds impose
stricter topological preservation requirements. Similarly, the
compression time will also increase with the thread because
of the increasing number of separatrices to be corrected. Note
that the decompression time remains almost the same for all
the parameters, as it is only slightly impacted by the decoding
time that is relevant to the compression ratios.

(a) Ground truth skeleton vs.
incorrect separatrices under cpSZ
(#IS = 14576, CR = 7.33)

(c) Ground truth skeleton vs.
incorrect separatrices under cpSZ-abs
(#IS = 6843, CR = 6.91)

(b) TspSZ-i skeleton vs.
groud truth separatrices
(CR = 4.07)

(d) TspSZ-i-abs skeleton vs.
groud truth separatrices
(CR = 4.55)

Fig. 7. The topological skeleton in Nek5000 data. The notations and styles are the same as those in Fig. 5.

TABLE VIII
IMPACT OF RK-4 STEP t, STEP SIZE h, AND FRÉCHET DISTANCE THRESHOLD τ

Metric Maximal RK-4 Step t RK-4 Step Size h Fréchet Distance Threshold τ

t = 500 t = 1000 t = 1500 t = 2000 h = 0.1 h = 0.05 h = 0.025 h = 0.01 τ = 5 τ = 3 τ =
√
2 τ = 1

CR 6.41 5.03 4.15 3.65 2.35 3.18 5.03 6.78 6.10 5.78 5.03 4.59
Tc 71.57 260.57 569.58 1196.07 293.18 318.11 260.57 197.80 197.23 197.54 260.57 325.40
Td 0.14 0.15 0.16 0.17 0.19 0.17 0.15 0.13 0.14 0.14 0.15 0.15

Fig. 8. Speedup in compression and decompression (black dashed line
indicates ideal linear speedup).

IX. CONCLUSION

In this paper, we propose TspSZ, which significantly ex-
tends the cpSZ framework for vector field topology preserva-
tion. We propose two algorithms to enable the preservation of
separatrices, and optimize the entire framework to achieve high

compression ratios and throughput through careful derivation
of absolute error control and tailored parallelization. Exper-
imental results on four real-world scientific datasets demon-
strate that TspSZ yields up to 7.7× with preserved topological
skeletons, which is 7× higher than existing lossless com-
pressors. Despite its relatively low compression throughput,
TspSZ features high decompression throughput to facilitate its
use in scientific applications because scientific data is usually
compressed once and decompressed multiple times for diverse
use cases. In the future, we will investigate how to further
improve the efficiency of TspSZ in terms of compression ratios
and compression throughput.

ACKNOWLEDGMENT

This work was partially supported by grants from NSF
OAC-2330367, OAC-2311756, OAC-2313122, OAC-2313123,
and OAC-2313124. We would like to thank the University of
Kentucky Center for Computational Sciences and Information
Technology Services Research Computing for its support and
use of the Lipscomb Compute Cluster, Morgan Compute
Cluster, and associated research computing resources.

REFERENCES

[1] W. P. Cockshott, D. McGregor, and J. Wilson, “High-performance
operations using a compressed database architecture,” The Computer
Journal, vol. 41, no. 5, pp. 283–296, 1998.

[2] C.-C. Chang, J.-C. Chuang, and Y.-S. Hu, “Retrieving digital images
from a jpeg compressed image database,” Image and Vision Computing,
vol. 22, no. 6, pp. 471–484, 2004.

[3] L. Deri, S. Mainardi, and F. Fusco, “tsdb: A compressed database
for time series,” in International Workshop on Traffic Monitoring and
Analysis. Springer, 2012, pp. 143–156.

[4] C. Taskiran, J.-Y. Chen, A. Albiol, L. Torres, C. A. Bouman, and E. J.
Delp, “Vibe: A compressed video database structured for active browsing
and search,” IEEE Transactions on Multimedia, vol. 6, no. 1, pp. 103–
118, 2004.

[5] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte, “The im-
plementation and performance of compressed databases,” ACM Sigmod
Record, vol. 29, no. 3, pp. 55–67, 2000.

[6] Z. Chen, J. Gehrke, and F. Korn, “Query optimization in compressed
database systems,” in Proceedings of the 2001 ACM SIGMOD interna-
tional conference on Management of data, 2001, pp. 271–282.

[7] A. Arion, A. Bonifati, I. Manolescu, and A. Pugliese, “Xquec: A query-
conscious compressed xml database,” ACM Transactions on Internet
Technology (TOIT), vol. 7, no. 2, pp. 10–es, 2007.

[8] F. Zhang, Z. Pan, Y. Zhou, J. Zhai, X. Shen, O. Mutlu, and X. Du, “G-
tadoc: Enabling efficient gpu-based text analytics without decompres-
sion,” in 2021 IEEE 37th International Conference on Data Engineering
(ICDE). IEEE, 2021, pp. 1679–1690.

[9] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and W. Chen, “Efficient document
analytics on compressed data: Method, challenges, algorithms, insights,”
Proceedings of the VLDB Endowment, vol. 11, no. 11, pp. 1522–1535,
2018.

[10] J. loup Gailly and M. Adler, gzip (GNU zip), Free Software
Foundation, 2023, accessed: January 24, 2025. [Online]. Available:
https://www.gnu.org/software/gzip/

[11] Y. Collet, “Zstandard - real-time data compression algorithm,”
http://facebook.github.io/zstd/, online.

[12] Blosc Development Team. (2009-2023) A fast, compressed and persis-
tent data store library. Https://blosc.org.

[13] G. K. Wallace, “The jpeg still picture compression standard,” Commu-
nications of the ACM, vol. 34, no. 4, pp. 30–44, 1992.

[14] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The jpeg 2000 still im-
age compression standard,” IEEE Signal Processing Magazine, vol. 18,
no. 5, pp. 36–58, 2001.

[15] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 2017, pp. 1129–1139.

[16] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data. IEEE, 2018, pp. 438–447.

[17] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao et al., “Sz3: A modular framework
for composing prediction-based error-bounded lossy compressors,” IEEE
Transactions on Big Data, 2022.

[18] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE transactions on visualization and computer
graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[19] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[20] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the multivariate
case,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. A1278–
A1303, 2019.

[21] S. Li, P. Lindstrom, and J. Clyne, “Lossy scientific data compression
with sperr,” in 2023 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS). IEEE, 2023, pp. 1007–1017.

[22] J. Liu, S. Di, K. Zhao, X. Liang, S. Jin, Z. Jian, J. Huang, S. Wu,
Z. Chen, and F. Cappello, “High-performance effective scientific
error-bounded lossy compression with auto-tuned multi-component
interpolation,” Proc. ACM Manag. Data, vol. 2, no. 1, Mar. 2024.
[Online]. Available: https://doi.org/10.1145/3639259

[23] T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki,
S. Klasky, M. Wolf, T. Liu, and Z. Qiao, “Understanding and modeling
lossy compression schemes on hpc scientific data,” in 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2018, pp. 348–357.

[24] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell,
“Interactive exploration and analysis of large-scale simulations using
topology-based data segmentation,” IEEE Transactions on Visualization
and Computer Graphics, vol. 17, no. 9, pp. 1307–1324, 2011.

[25] T. Sousbie, C. Pichon, and H. Kawahara, “The persistent cosmic web
and its filamentary structure — ii. illustrations,” Monthly Notices of
the Royal Astronomical Society, vol. 414, no. 1, pp. 384–403, 2011.
[Online]. Available: https://doi.org/10.1111/j.1365-2966.2011.18395.x

[26] H. Doraiswamy, V. Natarajan, and R. S. Nanjundiah, “An exploration
framework to identify and track movement of cloud systems,” IEEE
Transactions on Visualization and Computer Graphics, vol. 19, no. 12,
pp. 2896–2905, 2013.

[27] T. Agarwal, A. Chattopadhyay, and V. Natarajan, “Topological feature
search in time-varying multifield data,” in Topological Methods in
Visualization: Theory, Software and Applications. Springer-Verlag,
2021.

[28] J. L. Helman and L. Hesselink, “Visualizing vector field topology in
fluid flows,” IEEE Computer Graphics and Applications, vol. 11, no. 3,
pp. 36–46, 1991.

[29] H. Theisel, C. Rössl, and T. Weinkauf, “Topological representations of
vector fields,” in Shape Analysis and Structuring. Springer, 2008, pp.
215–240.

[30] V. Mazzi, U. Morbiducci, K. Calò, G. De Nisco, M. Lodi Rizzini,
E. Torta, G. C. A. Caridi, C. Chiastra, and D. Gallo, “Wall shear
stress topological skeleton analysis in cardiovascular flows: Methods
and applications,” Mathematics, vol. 9, no. 7, p. 720, 2021.

[31] T. Wischgoll, “Computing center-lines: an application of vector field
topology,” in Topology-Based Methods in Visualization II. Springer,
2009, pp. 177–190.

[32] S. Li, R. Pan, A. Gupta, S. Xu, Y. Fang, and H. Huang, “Predicting the
risk of rupture for vertebral aneurysm based on geometric features of
blood vessels,” Royal Society Open Science, vol. 8, no. 8, p. 210392,
2021.

[33] F. Lan, B. Gamelin, L. Yan, J. Wang, B. Wang, and H. Guo, “Topological
characterization and uncertainty visualization of atmospheric rivers,” in
Computer Graphics Forum. Wiley Online Library, 2024, p. e15084.

[34] S. Abdulah, A. H. Baker, G. Bosilca, Q. Cao, S. Castruccio, M. G.
Genton, D. E. Keyes, Z. Khalid, H. Ltaief, Y. Song et al., “Boosting
earth system model outputs and saving petabytes in their storage using
exascale climate emulators,” in SC24: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2024, pp. 1–12.

[35] X. Liang, S. Di, F. Cappello, M. Raj, C. Liu, K. Ono, Z. Chen, T. Peterka,
and H. Guo, “Toward feature-preserving vector field compression,” IEEE
Transactions on Visualization and Computer Graphics, 2022.

[36] M. Xia, S. Di, F. Cappello, P. Jiao, K. Zhao, J. Liu, X. Wu, X. Liang,
and H. Guo, “Preserving topological feature with sign-of-determinant
predicates in lossy compression: A case study of vector field critical
points,” in 2024 IEEE 40th International Conference on Data Engi-
neering (ICDE). IEEE, 2024, pp. 4979–4992.

[37] P. Lindstrom, “Error distributions of lossy floating-point compressors,”
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), Tech. Rep., 2017.

[38] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-k. Liao, and
A. Choudhary, “Data compression for the exascale computing era-
survey,” Supercomputing frontiers and innovations, vol. 1, no. 2, pp.
76–88, 2014.

[39] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[40] Y. Li, X. Liang, B. Wang, Q. Yongfeng, L. Yan, and G. Hanqi, “Msz:
An efficient parallel algorithm for correcting morse-smale segmentations
in error-bounded lossy compressors,” in 2024 IEEE Visualization and
Visual Analytics (VIS), 2024(In Press).

[41] M. Soler, M. Plainchault, B. Conche, and J. Tierny, “Topologically
controlled lossy compression,” in Proceedings of 2018 IEEE Pacific
Visualization Symposium, 2018, pp. 46–55. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/PacificVis.2018.00015

[42] L. Yan, X. Liang, H. Guo, and B. Wang, “Toposz: Preserving topology in
error-bounded lossy compression,” IEEE Transactions on Visualization
and Computer Graphics, vol. 30, no. 1, p. 1302–1312, Nov. 2023.
[Online]. Available: https://doi.org/10.1109/TVCG.2023.3326920

[43] S. K. Lodha, J. C. Renteria, and K. M. Roskin, “Topology preserving
compression of 2d vector fields,” in Proceedings Visualization 2000. VIS
2000 (Cat. No. 00CH37145). IEEE, 2000, pp. 343–350.

[44] T. K. Dey, J. A. Levine, and R. Wenger, “A delaunay simplification
algorithm for vector fields,” in 15th Pacific Conference on Computer
Graphics and Applications (PG’07). IEEE, 2007, pp. 281–290.

[45] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compres-
sion with compressive autoencoders,” arXiv preprint arXiv:1703.00395,
2017.

[46] H. Edelsbrunner and E. P. Mücke, “Simulation of simplicity: a
technique to cope with degenerate cases in geometric algorithms,” ACM
Trans. Graph., vol. 9, no. 1, p. 66–104, Jan. 1990. [Online]. Available:
https://doi.org/10.1145/77635.77639

[47] M. W. Kutta, “Beitrag zur näherungsweisen Integration totaler Differ-
entialgleichungen,” Zeitschrift für Mathematik und Physik, vol. 46, pp.
435–453, 1901.

[48] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential
Equations I: Nonstiff Problems, 2nd ed. Springer, 1987.

[49] J. Helman and L. Hesselink, “ Representation and Display of
Vector Field Topology in Fluid Flow Data Sets ,” Computer,
vol. 22, no. 08, pp. 27–36, Aug. 1989. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/2.35197

[50] T. Wischgoll and G. Scheuermann, “Detection and visualization of
closed streamlines in planar flows,” IEEE Transactions on Visualization
and Computer Graphics, vol. 7, no. 2, pp. 165–172, 2001.

[51] D. Ebert, P. Brunet, and I. Navazo, “Locating closed streamlines in 3d
vector fields,” methods, vol. 16, p. 19, 2002.

[52] H. Alt and M. Godau, “Computing the fréchet distance between two
polygonal curves,” International Journal of Computational Geometry &
Applications, vol. 5, no. 01n02, pp. 75–91, 1995.

[53] R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “Fraz: a generic
high-fidelity fixed-ratio lossy compression framework for scientific
floating-point data,” in 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2020, pp. 567–577.

[54] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient
transformation scheme for lossy data compression with point-wise
relative error bound,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2018, pp. 179–189.

[55] OpenMP Application Programming Interface, OpenMP Architecture Re-
view Board, 2023, available at https://www.openmp.org/specifications/.

[56] S. Popinet, “Free computational fluid dynamics,” ClusterWorld, vol. 2,
no. 6, 2004. [Online]. Available: http://gfs.sf.net/

[57] T. Günther, M. Gross, and H. Theisel, “Generic objective vortices for
flow visualization,” ACM Transactions on Graphics (Proc. SIGGRAPH),
vol. 36, no. 4, pp. 141:1–141:11, 2017.

[58] H. I. dataset, http://sciviscontest-staging.ieeevis.org/2004/data.html, on-
line.

[59] P. Fischer, J. Lottes, and H. Tufo, “Nek5000,” Argonne National
Lab.(ANL), Argonne, IL (United States), Tech. Rep., 2007.

[60] “Morgan Compute Cluster,” https://docs.ccs.uky.edu, 2023, online.

