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Abstract
A merge tree is a type of graph-based topological summary that tracks the evolution
of connected components in the sublevel sets of scalar functions. Merge trees enjoy
widespread applications in data analysis and scientific visualization. In this paper, we
consider the problem of comparing two merge trees via the notion of interleaving
distance in the metric space setting. We investigate several theoretical properties of
such a metric. In particular, we show that the interleaving distance is intrinsic on the
space of labeled merge trees and provide an algorithm to construct metric 1-centers
for collections of labeled merge trees. We further prove that the intrinsic property of
the interleaving distance also holds for the space of unlabeled merge trees. Our results
provide practical recipes for performing statistics on merge trees.
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1 Introduction

Many applications in science and engineering use scalar functions to describe and
model their data. For example, atmospheric scientists compare simulated data from
the Weather Research and Forecasting (WRF) Model with daily surface observations
in weather forecasts, where both simulated and observed parameters (such as surface
temperature, pressure, precipitation, and wind speed) can be modeled as scalar func-
tions. We are interested in comparing scalar functions by comparing their topological
summaries. There are several types of summaries constructed from topological meth-
ods, including vector-based summaries such as persistence diagrams [1] and barcodes
[2], as well as graph-based summaries such as merge trees, contour trees [3], and Reeb
graphs [4].

The merge tree (sometimes referred to as a barrier tree [5]) for a given topological
space X equipped with a continuous scalar function is a combinatorial construction
that tracks the evolution of sublevel sets. For a given function f : X → R, the merge
tree encodes the connected components of the sublevel sets f −1(−∞, a] for a ∈ R.
This construction is closely related to that of the Reeb graph [4], which analogously
encodes connected components of the level sets f −1(a). The contour tree [3] is a
special type of Reeb graph for a simply connected domain. Both merge trees and
Reeb graphs are related to the level set topology through critical points of the scalar
functions which give rise to them [6]. Furthermore, the mapper graph [7], which has
found considerable success in applications, can be viewed as an approximation of a
Reeb graph [8–10]. These constructions are referred to as graph-based summaries as
the output object of study is always a graph G equipped with an induced real-valued
function f : G → R. They have appeared in many contexts and applications over the
last few decades [11–13]. Similar concepts also appeared within probability theory as
trees created through excursion sets of random functions, and these trees are shown
to be related to random branching processes (e.g. [14, 15]).

1.1 RelatedWork

Considerable recent effort has gone into understanding how to performproper statistics
on graph-based summaries. For instance, how does one define the mean of a collection
of these objects? The first step toward answering this question is to determine a metric
for the comparison of two summaries. This has been extensively studied recently with
the creation of a veritable zoo of metric options for Reeb graphs and merge trees
[16–25]; see two recent surveys [26, 27] and Sect. 2.3 for a discussion of some of
these metrics. In particular, Carriére and Oudot [24] have investigated whether some
of these metrics are intrinsic in the more general case of Reeb graphs; i.e., that the
distance between two (close enough) graphs can be realized by a geodesic.

In this paper, we continue the investigation into the intrinsic-ness of these metrics
with the more narrow view of merge trees. Themain distance we study is the interleav-
ing distance. This metric was originally given in the context of persistence modules
[28, 29] as a generalization of the bottleneck distance, and has been ported to merge
trees [16, 30] and Reeb graphs [17, 31] via a category-theoretic viewpoint [32, 33].
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When restricting ourselves from Reeb graphs to merge trees, we can actually work
in an even more restrictive setting that has desirable theoretical properties, namely,
labeledmerge trees. In this case, we study a data triple: a merge tree T with its function
f : T → R, and a labeling π : {1, . . . , n} → V (T ) of its vertices, which at a mini-
mum encompasses the leaves of T . The interleaving distance for labeled merge trees
has been investigated in [34], where it is shown that themetric can be naturally realized
as the L∞-distance for a particular matrix construction. This matrix construction has
already been discovered in the context of dendrograms [35] and phylogenetic trees
[36], where the objects of interest are closely related to merge trees. The phylogenetic
tree literature, in particular, provides a wealth of other options for metrics [37–48].
There has also been interest in that community for creating summaries of collections
of phylogenetic trees [49–51]. A parallel line of work has also focused on constructing
barycenters of merge trees [52, 53].

These ideas are also closely related to those of ultrametrics, a strengthening of the
triangle inequality for ametric into a requirement that d(x, y) ≤ max{d(x, z), d(z, y)}
(for all z). Independent of the phylogenetic tree work, there has been extensive interest
in what is known as Gelfand’s Problem from the ultrametric literature, that is, to
describe all finite ultrametric spaces up to isometry using graph theory. The answer to
this question is exactly a restriction of the labeled merge tree, although their literature
never calls it such [54–58].

Furthermore, our work has close ties with the literature on consensus of classifi-
cation [59]. In the language used therein, labeled merge trees belong to the class of
valued classification trees, with the path-length distance being actually induced by the
function values. Geodesic midpoints between two merge trees are called medians and
defined as Fréchet means in the considered metric between trees. Finding medians
is a special instance of the so-called consensus problem, and it is known to have an
easily computable solution when the metric between merge trees is chosen to be the
�∞-distance between their corresponding ultra matrices [60], as is the case in our
work. By contrast, the problem is known to be NP-hard when other �p-distances are
put on the ultra matrices, typically when p = 1 or 2 [61], and in such situations one
must resort to approximate solutions—e.g., mean-squares approximations in the case
p = 2 [62, 63].

1.2 Our Contributions

In this paper, we prove that the interleaving distance is intrinsic on both the space of
labeled merge trees as well as on the space of unlabeled merge trees. Furthermore,
in the labeled merge tree setting, we provide explicit procedures for constructing
geodesics and metric 1-centers. Our results mark important progress toward the goal
of performing statistics on graph-based topological summaries to be used for topo-
logical data analysis and visualization. For instance, using results in this paper, Yan
et al. [64] computed geodesics of merge trees and their structural averages for ensem-
ble analysis and uncertainty visualization, and Curry et al. [65] utilized an estimation
of the interleaving distance between unlabeled merge trees in order to classify and
compare point cloud data.
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Fig. 1 A roadmap of key notations

In Sect. 2,we provide the necessary background on labeledmerge trees and establish
a correspondence between labeledmerge trees and a particular class ofmatrices known
as ultra matrices (Lemma 2.3). Then, in Sect. 3, we prove a stability result for the
labeled interleaving distance dL

I (Lemma 3.1), which we use both to show that dL
I

is strictly intrinsic on the space of labeled merge trees (Corollary 3.2) as well as to
construct 1-centers for collections of labeled merge trees in Sect. 3.3.

Section 4 focuses on unlabeledmerge trees and the interleaving distance. In particu-
lar, given two unlabeled merge trees, we show that the unlabeled interleaving distance
between them is equal to the infimum over all finite labelings for the two trees of the
labeled interleaving distance between them (Theorem 4.1). Section4 concludes with
the result that the interleaving distance is intrinsic on the space of unlabeled merge
trees (Corollary 4.4). We end with a discussion of open problems and future work in
Sect. 5.

2 Background

In this section, we give the basic definitions for our constructions of interest. We refer
to Fig. 1 for an overview of notations. For the entirety of the section, we fix n, and
denote {1, . . . , n} by [n] and isomorphism by ∼=. We note that some of the notions
here appear in the literature under different names. For example, the concept of ultra
matrix is the same as the one induced from the ultra network proposed in [66], both
of which correspond to the distance matrix for a relaxed version of the ultrametric
(see Definition 5). The concept of a merge tree is also the same as the tree gram
in [66], both of which generalize the standard dendrogram. A dendrogram could be
represented as an ultrametric, as shown by Jardine and Sibson [67], Hartigan [68],
Carlsson and Mémoli [69].

2.1 Merge Trees and LabeledMerge Trees

First, we give the definition of amerge tree (whichwe shall also refer to as an unlabeled
merge tree to contrast it with its labeled counterpart, defined subsequently) and related
notions arising from the phylogenetic tree literature that we will make use of shortly.

In some cases—for instance, when a merge tree is constructed from sublevel sets of
input data given by a topological space with a function g : X → R—we prefer to think
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Fig. 2 A given function g defined on the complete graph K4 is shown at left. In the middle are sublevelsets
Kai = g−1(−∞, ai ] for a1 < a2 < a3 < a4. At right is the resulting merge tree

of a merge tree as a continuous object which can be encoded with combinatorial data
when necessary. Specifically, a merge tree is constructed from a function g : X → R

by first building the epigraph, epi f = {(x, y) ∈ X × R | y ≥ f (x)}, with a function
f̄ : epi f → R given by f̄ (x, y) = y. Define an equivalence relation on epi f by
setting (x, y) ∼ (x ′, y′) iff the points are in the same connected component of the
levelset f̄ −1(y) = f̄ −1(y′).

Definition 1 The merge tree of an input function f : X → R is the quotient space
�( f ) = epi f / ∼. The induced function f̃ : �( f ) → R is given by f̃ ([x, y]) = y.

Note that the projection onto the first coordinate of the levelset ḡ−1(a) is exactly the
sublevelset g−1[∞, a), so we can equivalently compute this merge tree by studying
the merging of connected components of the sublevelsets as a varies, hence the name.

We assume our input function g is nice enough to result in a a 1-dimensional
stratified space equipped with a function, that is, there is a set of 0-cells inducing
edges which are homeomorphic to intervals. This will happen, for instance, in the
case where g is given by a Morse function on a manifold; or as we will use later, in
the case where g is a function on a finite simplicial complex K where g : K → R

such that σ ≤ τ implies g(σ ) ≤ g(τ ). Consider the example of Fig. 2, where K is
the complete graph on 4 vertices and we have g : K → R given by the labels on the
simplices, assuming a1 < a2 < a3 < a4. Then the resulting merge tree �(g) is given
on the right.

In this setting, we can then align the continuous notion of a merge tree with a
more combinatorial version which will be given in Definition 2. A given collection
of 0-cells for the stratification gives rise to a vertex set V , and then 1-cells are edges.
We can then store the function in this setting by remembering g(v) for the vertices.
However, we next note a technicality of the two parallel viewpoints. In the stratified
space setting, the set of 0-cells is not unique. replacing a merge tree edge e = (u, v)

with f (u) < f (v) by a subdivision of that edge where the interior vertex w satisfies
f (u) < f (w) < f (v) does not change the inherent structure of the tree. We call
such a modification a monotone edge subdivision and its inverse a monotone edge
simplification. We consider two merge trees to be the same if one can be obtained
from the other by a sequence of such subdivisions or simplifications.
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Definition 2 A merge tree is a pair (T , f ) of a finite rooted tree T with vertex set
V (T ) and a function f : V (T ) → R ∪ {∞} such that adjacent vertices do not have
equal function value, every non-root vertex has exactly one neighbor with higher
function value, and the root (a degree one node) is the only point with the value ∞.
Two merge trees are said to be equivalent if one can be obtained from the other of a
series of monotone edge subdivisions or simplifications. The space of merge trees up
to equivalence is denoted MT.

We choose to topologizeMT using the topology induced by the interleaving distance,
althoughwe hold off on the full definition of this distance until Sect. 2.3.We commonly
call the function f a height function, the non-root vertices with degree 1 are called
leaves, and we let depth(u) denote the largest height difference between the vertex
u in T and any node in the subtree rooted at u. All merge trees under consideration
in this paper are assumed to be finite. When we wish to return to the stratified space
setting, we denote this as |T |, the geometric realization of T where f (x) is given by
f (v) when x = v a vertex, and linear interpolation for points on the edges.
Furthermore, the merge tree structure induces a poset relation on the vertices of

T . We say v is an ancestor of w and write v 
 w if the unique path from v to w

strictly decreases in f . This occurs if and only if w is in the subtree of v. We use
LCA(v,w) ∈ T to mean the lowest common ancestor of v and w (or LCA f (v,w) if
the function needs to be emphasized), and f (LCA(v,w)) for its function value. We
have LCA(v, v) = v. We abuse notation and write LCA(S) for the lowest common
ancestor of any finite set S ⊂ V (T ).

Note that the merge tree as defined is closely related to the construction of a rooted,
weighted tree. Indeed, there is a canonical weighting associated to any merge tree
(T , f ), namely, ω(u, v) = | f (u) − f (v)| for any two adjacent vertices u and v in the
tree. However, because of the function setting, the merge tree requirements are stricter
since, for instance, a merge tree (T , f ) and its shift (i.e., translation) (T , f + 100)
are considered different as merge trees but induce the same weighting. The merge
tree structure further provides a method for inducing a metric on the underlying tree
vertices via the metric given by the length of the unique path between two points;
i.e. δT (u, v) = ∑

ω(e) for the edges in the path from u to v.
We remind the reader that we use the terms merge tree and unlabeled merge tree

interchangeably. In Sect. 3, we will be focusing on labeled merge trees, defined as
follows.

Definition 3 A labeled merge tree is a triple (T , f , π) consisting of a merge tree
(T , f ) along with a map π : [n] → V (T ) that is surjective on the set of leaves.
When additional data are unnecessary or clear from context, we sometimes write T
for (T , f , π). The space of labeled merge trees is denoted LMT.

Note that the topology on LMT comes from viewing it as a metric space with
the labeled interleaving distance, as defined later in this section. Analogous to the
unlabeled case, we consider two labeled merge trees to be the same if one can be
obtainedvia edge contractions or insertions that respect the functionvalues and existing
labels.

When computing a merge tree from input data g : X → R, note that labeled
points on X give rise to labels on the resulting merge tree. For a point x ∈ X, we
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Fig. 3 An example of a labeled
merge tree with two types of
degenerate labels. As all
matrices used are symmetric, we
only show the upper triangular
portion

have a point (x, g(x)) ∈ epi g and thus a point in the merge tree [(x, g(x))] ∈ �(g).
Given a labelling on X, π̄ : [n] → X, we can push forward the labeling to define
π : [n] → �(g) by π [i] = [(π(i), g(π(i))].

Definition 3 is closely related to that of a weighted, rooted X-tree from the phylo-
genetic literature [70]. Specifically, given a set X , an X -tree is a pair (T , ϕ) where T
is a tree and ϕ : X → V (T ) is a map so that every vertex of degree at most 2 is in
the image. The difference is that such weighted graphs do not keep track of function
values, so that two different labeled merge trees that induce the same weighting might
be considered to be the same X -tree. Thus, a labeled merge tree can be thought of
as a weighted, labeled X -tree (where X = [n]) with f (u) specified for a subset of
vertices u that includes all leaves, and function values for the remaining vertices can
be deduced from the weights on leaves.

As with X -trees, labels for our merge tree are allowed to go to vertices that are not
leaves; we essentially think of these as degenerate labeled leaves. Furthermore, we
do allow π to be non-injective, so a vertex can have multiple labels. See Fig. 3 for an
example with labels on degenerate leaves and vertices with more than one label.

2.2 RelatingMerge Trees andMatrices

In this section, we give the relationship between labeled merge trees and a particular
class of matrices. Again, see Fig. 1 for an overview of notation.

We begin with the traditional notion of an ultrametric and our variant of it that
relaxes one of the conditions, which will be closely related to our labeled merge trees.

Definition 4 An ultrametric is a function d : X×X → R such that for any x, y, z ∈ X ,

• d(x, y) ≥ 0 and is equal to 0 if and only if x = y,
• d(x, y) = d(y, x), and
• d(x, y) ≤ max{d(x, z), d(z, y)}.

Definition 5 A relaxed ultrametric is a function d : X × X → R such that for any
x, y, z ∈ X ,

• d(x, y) = d(y, x), and
• d(x, y) ≤ max{d(x, z), d(z, y)}.
It is well known that ultrametrics satisfy the isosceles triangle property. That is,

for any triple x, y, z, at least two of d(x, y), d(y, z), and d(x, z) must be equal.
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Otherwise, assume without loss of generality that d(x, y) < d(y, z) < d(x, z), and
then d(x, z) � max{d(x, y), d(y, z)}. Note that this further implies that the pair that
are equal must be at least as big as the third value, since d(x, y) = d(y, z) < d(x, z)
still violates the ultrametric property. This means that relaxed ultrametrics still satisfy
the isosceles triangle property.

When we have a set X ∼= [n], the information in a relaxed ultrametric can be stored
as follows.

Definition 6 A symmetric matrix M ∈ R
n×n is called valid if Mii ≤ Mi j for all

1 ≤ i, j ≤ n. A symmetric matrix M is called ultra if Mi j ≤ max{Mik, Mkj } for
every 1 ≤ k ≤ n. The spaces of valid and ultra matrices are denoted VM and UM,
respectively, and note that UM ⊆ VM.

In particular, a relaxed ultrametric on [n] is represented by an ultra matrix. As with
merge trees, we will endow VM and UM with the topology induced by the relevant
metric; in this case, the �∞ distance between matrices,

‖M − M ′‖∞ = max
i, j

|mi, j − m′
i, j |.

Inspired by the cophenetic matrix construction of Cardona et al. [36] that is studied
in relation to merge trees in [34], there is a natural way to associate a matrix to a
labeled merge tree as follows.

Definition 7 The induced matrix of a labeled merge tree (T , f , π), denoted M
(T , f , π) ∈ R

n×n , is the matrix

M(T , f , π)i j = f (LCA(π(i), π( j))).

See Fig. 3 for an example. We include the simple proof of the following result for
completion.

Lemma 2.1 The inducedmatrix of a labeledmerge tree is anultramatrix (Definition6).
That is,M(T , f , π) ∈ UM for (T , f , π) ∈ LMT.

Proof Let M = M(T , f , π) for (T , f , π) ∈ LMT. First, to check that it is a
valid matrix, we see that Mii is simply the function value f (π(i)). So, as f (u) ≤
f (LCA(u, v)) by definition, we have

Mii = f (π(i)) ≤ f (LCA(π(i), π( j))) = Mi j .

To check that M is an ultra matrix, let u = LCA(π(i), π(k)), v = LCA(π( j), π(k)),
w = LCA(π(i), π( j), π(k)). This means that u � w and v � w. If u and v are not
comparable, then there are two distinct paths from π(k) to each of them, and thus
we have a loop π( j) → u → w → v → π( j), contradicting the tree property of
T . If u and v are comparable, assume without loss of generality that u � v; then
v is a common ancestor for π(i), π( j), and π(k), and thus w � v. This implies
f (w) ≤ f (v), and so for all k,
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Mi j ≤ f (w) ≤ f (v) = max{ f (u), f (v)} = max{Mik, Mjk}. ��
We include an additional useful tool for working with the LCA which we will use

throughout the paper.

Lemma 2.2 Given a finite collection of points S ⊂ |T |, there exists a pair {x, y} ⊂ S
such that LCA(S) = LCA(x, y). Moreover, for any x ∈ S, an element y ∈ S exists
such that LCA(S) = LCA(x, y).

Proof Because T is a tree, removing w := LCA(S) separates T into two disjoint
subtrees (otherwise there exists a lower LCA). Thus, x and y can be chosen as elements
in each of the respective tree. For the final statement of the lemma, if an x is given,
then y can be chosen to be in the other subtree. ��

A valid matrix may be viewed as representing a function fM on a complete graph
K of n vertices, with function value Mii defined on vertex i and function value Mi j

defined on edge (i, j). Note that because M is a valid matrix, any sublevel set of the
resulting function f : K → R satisfies the condition that every edge has equal or
higher function value than either of its vertices. Given a valid matrix, one thus may
obtain a labeled merge tree and subsequently an ultra matrix in the following way.

Definition 8 Let M ∈ R
n×n be a valid matrix, K be a complete graph over n ver-

tices, and fM : K → R be a function induced from M with fM (vi ) = Mii and
fM ((vi , v j )) = Mi j . The labeled merge tree of a valid matrix M , denoted as T (M),
is the labeled merge tree of the complete graph K with the induced function fM .

Specifically, given a valid matrix M , we can consider M to induce a function
fM : K → R on the complete graph K on n vertices, as in the example of Fig. 2.
Specifically, M is an n × n matrix and so we build the complete graph K on the
vertex set {v1, . . . , vn}. The function g is given by g(vi ) = Mi,i for vertices, and
g(vi , v j ) = Mi, j for edges. Because M is a valid matrix, this gives a well-defined
map; in particular, g(vi ) ≤ g(vi , v j ) for any i �= j . The labeling is given byπ(i) = vi .
We then compute the merge tree of g and push forward the labels; the result �(g) is
what we denote by T (M), the labeled merge tree of M .

This relationship gives a direct connection between labeled merge trees and ultra
matrices; see the result below, which follows from Theorem 6 of [66] (although the
proof there is written in the language of tree grams).

Lemma 2.3 (Theorem 6 in [66]) M induces a bijection between labeled merge trees
and ultra matrices.

Putting this together, we can thus take an ultra matrix, turn it into a labeled merge
tree and then back into an ultra matrix, i.e. MT (M). This procedure corresponds to
the maximal subdominant construction in [60]. Although MT is the identity when
restricted to ultra matrices, this is not the case when extending to only valid matrices.
However, this construction does offer a method for turning a valid matrix into an ultra
matrix.

Definition 9 The ultra matrix of a valid matrix M ∈ VM, denoted U(M), is defined
to be the induced matrix of T (M). That is, U = MT .
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2.3 Available Metrics

There are a number of metrics that may be defined on the space of (labeled) merge
trees. Note that anymetric defined on labeledmerge trees can be extended to unlabeled
merge trees by simply ignoring the labeling information,while likely turning themetric
into a pseudometric. In this paper, we focus on interleaving distance dI and labeled
interleaving distance dL

I . Other popular distances include the functional distortion
distance dFD [18] and the bottleneck distance dB .
Interleaving Distance The interleaving distance is an idea arising from the general-
ization of the bottleneck distance for persistence diagrams to arbitrary persistence
modules [28]. Generalizations abound [9, 32, 33], but the analog for merge trees was
first given in [16]. We give a non-standard formulation here based on the concept of
δ-good maps. In particular, in [30] a concept of δ-good map is given, and it is shown
that one can then define interleaving distance based on this concept (see Theorem 7 of
[30]). In what follows (Definition 10), we will use a slightly different formulation of
the δ-good map from [30]. However, we show in Appendix A that these two concepts
of δ-good maps are indeed equivalent.

Definition 10 Given two merge trees (T , f ), (T ′, f ′), a δ-good map α : (T , f ) →
(T ′, f ′) is a continuous map on the metric trees such that the following properties
hold:

(i) For any x in the geometric realization |T |, f ′(α(x)) − f (x) = δ;
(ii) For any w ∈ Im(α) with x ′ := LCA(α−1(w)), f (x ′) − f (u) ≤ 2δ for all u ∈

α−1(w); and
(iii) For any w /∈ Im(α), depth(w) ≤ 2δ.

The interleaving distance is then defined to be

dI ((T , f ), (T ′, f ′)) = inf{δ | ∃ δ-good α : (T , f ) → (T ′, f ′)}.

One particularly useful property that we will use later is the following.

Lemma 2.4 Let α : (T , f ) → (T ′, f ′) be a continuous map such that f ′(α(x)) =
f (x) + δ for any x ∈ |T |. Assume u � v. Then

• α(u) � α(v), and
• if w is the unique ancestor of α(u) with f ′(w) = f (v) + δ, then w = α(v).

Proof Note that u � v implies that f (u) ≤ f (v) and further that the unique path
γ from u to v in T is monotone increasing in f . Then the image of γ in T ′, α(γ ),
satisfies f ′(α(γ (t))) = f (γ (t)) + δ and thus is monotone increasing in f ′. Thus, by
definition, we have that α(u) � α(v). Further, the uniqueness of paths implies that if
w is the unique ancestor with f ′(w) = f (v) + δ, then it must be the endpoint of γ ,
and so w = α(v). ��
Labeled InterleavingDistanceThe followingmetric is closely related to one originally
defined in [36] for comparing phylogenetic trees.
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Definition 11 Given two labeled merge trees sharing the same set of n labels, the
labeled interleaving distance is

dL
I ((T , f , π), (T ′, f ′, π ′)) = ‖M(T , f , π) − M(T ′, f ′, π ′)‖∞.

The reason for calling such a distance an interleaving distance comes from [34]
where it is shown that this metric arises as an interleaving distance on a particular
category with a flow [33]. Note that because we need the labels in order to be able to
have a well-defined matrix, this metric only works on labeled merge trees.

2.4 Intrinsic Metrics

Given a metric d on merge trees, we may define its intrinsic version as follows; see,
e.g., [71].

Definition 12 Given two merge trees, let γ : [0, 1] → MT be a continuous path in
d such that γ (0) = T and γ (1) = T ′. The length of γ induced by the distance d is
defined as

Ld(γ ) = sup
n,

∑

n−1∑

i=0

d(γ (ti ), γ (ti+1)),

where n ranges over N and
∑

ranges over all partitions 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1
of [0, 1]. The intrinsic metric d̂ induced by the distance d is

d̂(T , T ′) = inf
γ

Ld(γ ).

Thus, the induced intrinsic metric on a metric space is the infimum of the lengths
of all paths from one point to another. It is known that d is always less than or equal
to d̂.

A metric space is said to be a length space if the original metric d coincides with
the intrinsic metric d̂ . Recall that a metric space is said to be a geodesic space if any
two points in the space can be connected by a curve of length equal to the distance
between the two points. In this case, the metric is said to be strictly intrinsic. Note that
a geodesic space is necessarily a length space.

3 Geodesics and 1-Centers for LabeledMerge Trees

In this section, we prove an inequality involving the labeled interleaving distance and
provide methods for constructing geodesics and 1-centers for collections of labeled
merge trees.
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3.1 More on the Labeled Interleaving Distance

The following result is not new. It follows from Theorem 2 of [66], which is slightly
more general than the lemmabelow in the sense that thematricesM andM ′ are allowed
to be non-valid as well. It is also a slight generalization of Lemma 15 of [69] (which
is the following result restricted to the metric setting). It can also be deduced from
Proposition 1 and Corollary 1 of [60] because the set of relaxed ultra matrices (which
are the matrices corresponding to merge trees) is stable under translations along the
diagonal. See Section 3 of [60] for the special case of ultra matrices (equivalently,
labeled dendrograms), which adapts straightforwardly to our slightly more general
setting. Nevertheless, here we provide simple and direct proofs, both for completeness
and clarity.

Lemma 3.1 For any pair of valid matrices M, M ′ ∈ VM,

dL
I (T (M), T (M ′)) ≤ ‖M − M ′‖∞.

Proof Let δ = ‖M − M ′‖∞. Let T = M(M) and T ′ = M(M ′) be the associated
merge trees, and M̃ = U(M) and M̃ ′ = U(M ′) the induced ultra matrices. Since, by
definition, dL

I (T (M), T (M ′)) = ‖U(M) − U(M ′)‖∞, we will actually establish the
inequality ‖U(M) − U(M ′)‖∞ ≤ ‖M − M ′‖∞.

Consider any pair of (possibly equal) labels i and j with 1 ≤ i ≤ j ≤ n. We
consider the vertices vi and v j in the complete graph K with s, s′ : K → R denoting
the maps on K induced by M and M ′, respectively. Denote edge e = viv j , so by
definition s(e) = Mi j and s′(e) = M ′

i j . Because ‖M − M ′‖∞ ≤ δ, we have that

s′(e) ≤ s(e) + δ ≤ M̃i j + δ.

Thus, vi and v j are in the same component of the (M̃i j + δ)-sublevel set of s′ and thus
M̃ ′

i j ≤ M̃i j + δ.
Symmetrically, for any t < M̃i j − δ, vi and v j do not lie in the same connected

component of the t-sublevel set of s′. Otherwise, by the same argument as above,
vi and v j would belong to the same connected component of the (t + δ)-sublevel
set of T with t + δ < M̃i j , a contradiction. Hence, M̃ ′

i j ≥ M̃i j − δ. It follows that

|M̃ ′
i j − M̃i j | ≤ δ, and since this is true for all labels 1 ≤ i ≤ j ≤ n, the symmetric

matrices M̃, M̃ ′ satisfy ‖M̃ − M̃ ′‖∞ ≤ δ. Hence, dL
I (T , T ′) = ‖M̃ − M̃ ′‖∞ ≤ δ. ��

3.2 Geodesics in LMT

The next corollary looks at the linear interpolation between the matrices associated to
two labeled merge trees. Specifically, given any two labeled merge trees T , T ′ ∈ LMT,
we know that their associated matrices M = M(T ), M ′ = M(T ′) are ultra matrices.
We can define the line between them by setting Mλ := (1−λ)M+λM ′ for λ ∈ [0, 1].
While not necessarily ultramatrices, it is easy to check thatMλ ∈ VM for all λ ∈ [0, 1].
We can then pull this back to a path of labeled merge trees by setting T λ = T (Mλ).
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Fig. 4 An example of the
averaging process for labeled
merge trees. T 1 and T 2 are
labeled merge trees with induced
matrices M1 and M2. M is the
pointwise average of M1 and
M2, but is not an ultra matrix.
The labeled merge tree T (M) is
shown, whose induced matrix is
the ultra matrix U(M)

Corollary 3.2 (LMT Geodesics)Given any two labeled merge trees T , T ′ ∈ LMT, and
their corresponding ultra matrices M = M(T ), M ′ = M(T ′), the family of merge
trees

{
T λ := T

(
Mλ

)}
λ∈[0,1] defines a geodesic between T and T ′ in the metric dL

I . As

a consequence, on the space of labeled merge trees, the metric dL
I is strictly intrinsic.

Proof Let δ denote the distance dL
I (T , T ′) = ‖M − M ′‖∞. For any 0 ≤ λ ≤ λ′ ≤ 1,

the linearly interpolating matrices Mλ, Mλ′
satisfy ‖Mλ − Mλ′ ‖∞ ≤ (λ′ − λ) δ.

Hence, by Lemma 3.1, we have dL
I (T λ, T λ′

) ≤ (λ′ − λ) δ. Since this is true for all
0 ≤ λ ≤ λ′ ≤ 1, the triangle inequality implies that the family {T λ}λ∈[0,1] defines a
geodesic between T and T ′. ��

See the example of Fig. 4. Setting λ = 1/2, Mλ is the matrix (labeled M) shown
in the middle green circle, and T λ (labeled T (M)) is the tree shown at the far right.
Corollary 3.2 discusses the geodesics in the space of labeled merge trees. A metric
space in general may have no geodesics; thus Corollary 3.2 provides an additional
property for the space of interest. Furthermore, a geodesic can be used to perform
shape morphing between a pair of merge trees (see [64]).

3.3 1-Centers in LMT

Our 1-center merge tree originates from the notion of ametric k-center in graph theory.
Given m number of cities, one aims to build k facilities that minimize the maximum
distance between a city to a facility.

Definition 13 Given a metric space (X , d), a 1-center c ∈ X of a finite point set
P = {p1, · · · , pm} ⊂ X is

c ∈ argmin
x∈X

max
p∈P

d(x, p)

if it exists. That is, c is the center of a minimal enclosing ball of P .
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Fig. 5 An example of not unique
1-centers in a general metric
space. X = R

2 with metric
‖ · ‖∞ and
P = {p1, p2, p3, p4}. The point
c is the center of the range in
each coordinate but every other
point in C is also a 1-center

Fig. 6 An example of not unique 1-centers of a set of two labelled merge trees. All the 1-centers
have the same tree shape, and the height of a must be the midpoint of a1 and a2 as the interval
|a1 − a2| is longer than both |b1 − b2| and |c1 − c2| but the heights of b and c can vary. It will

be a 1-center whenever b ∈
[
max{b1, b2} − |a1−a2|

2 ,min{b1, b2} + |a1−a2|
2

]
(purple interval) and

c ∈
[
max{c1, c2} − |a1−a2|

2 ,min{c1, c2} + |a1−a2|
2

]
(blue interval)

A metric 1-center will in general not be unique. For example, consider the metric
space R

2 with the l∞ norm. If P is the set of points of the corners of rectangle (which
is not a square), then only one of the coordinates of the 1-center is determined, see
Fig. 5.

For k = 1, a metric 1-center of a finite set of labeled merge trees is one that
minimizes the maximum distance to any other tree in the set. Again this is not in
general unique. Analogously to the above example, we may have parameters that can
be chosen within an interval as the range of these parameters in the set P is smaller.
An example is shown in Fig. 6.

Here, we use the set notation ∈ to indicate that c may not be unique. In the case
of a finite collection of numbers χ in R, the 1-center is simply the midpoint of the
enclosing interval, (max(χ) + min(χ))/2. Now suppose we are given a collection
of matrices {M1, . . . , MN }. Let Mmid denote the matrix consisting of the entry-wise
1-center of the matrices, i.e., Mi j is the midpoint of the enclosing interval of numbers
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{M1
i j , M

2
i j , . . . , M

N
i j }. It is easy to see that Mmid is a 1-center for these matrices in

the space of all matrices equipped with the �∞ norm. A similar statement holds for a
collection of valid matrices, and we include its simple proof for completeness.

Claim 3.3 Let M1, · · · , MN be valid n×n matrices, and Mmid be thematrix consisting
of the entry-wise 1-center of thesematrices. Then Mmid must be valid aswell and Mmid

is a 1-center of {M1, . . . , MN } in the space of valid matrices equipped with the �∞
norm.

Proof In what follows, all spaces ofmatrices are equippedwith the �∞ norm. Since the
space of validmatrices is a subspace of the space of all matrices, it follows thatMmid is
a 1-center of {M1, . . . , MN } in the space of all matrices. Hence to prove the claim we
only need to show that Mmid is a valid matrix. In other words, (Mmid)i i ≤ (Mmid)i j
for any i, j ∈ [n]. To see why this holds, note that for any i, j ∈ [n],

(Mmid)i i = maxk(Mk
ii ) + mink(Mk

ii )

2
≤ maxk(Mk

i j ) + mink(Mk
i j )

2
= (Mmid)i j .

The claim thus follows. ��
Mmid as a 1-center of valid matrices is, by itself, a valid matrix, but may not be an

ultra matrix, so we can replace it by its labeled merge tree (following the procedure
described by Definition 8) and take its corresponding ultra matrix, thus turning it back
to an ultra matrix.

Themain result of this section is an algorithm to compute the 1-center of a collection
of labeledmerge trees under the labeled interleaving distance dL

I . In particular, suppose
we are given a set of labeled merge trees {T 1, . . . , T N }, whose corresponding induced
matrices {M1, . . . , MN } are ultra (and thus also valid). We compute a 1-center valid
matrix Mmid of {M1, . . . , MN } following Claim 3.3, and convert it to a labeled merge
tree, denoted T ∗. Then T ∗ is a 1-center of the labeledmerge trees, see Fig. 4 for a simple
example. The correctness of this procedure is established in the following Proposition
3.4.

Proposition 3.4 (LMT 1-Center) Let {T 1, . . . , T N } be a set of labeled merge trees,
which gives rise to a set of ultra matrices {M1, . . . , MN }. Let T ∗ be a merge tree
constructed as above. Then T ∗ is a 1-center of {T 1, . . . , T N }. Furthermore, let U∗ =
M(T ∗) = MT (Mmid) be the ultramatrix corresponding to T ∗. ThenU∗ is a 1-center
of the set of ultra matrices {M1, . . . , MN }.
Proof Recall that (the validmatrix)Mmid is a 1-center of ultramatrices {M1, . . . , MN }
in the space of valid matrices following Claim 3.3. Set

δ = max
i

‖Mmid − Mi‖∞.

Then dL
I (T , T i ) ≤ ‖Mmid − Mi‖∞ by Lemma 3.1. It then follows that

max
i

d L
I (T ∗, T i ) ≤ max

i
‖Mmid − Mi‖∞ ≤ δ.
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Thus {Ti }Ni=1 is contained in a ball of radius δ centered at T ∗.
We now show that this is in fact a minimum enclosing ball of {T 1, . . . , T N } in the

space of labeled merge trees, which would then imply that T ∗ is a 1-center for these
merge trees. Specifically, assume there exists a T̃ such that max

i
d L
I (T̃ , T i ) < δ. Set

Ũ = M(T̃ ). Then for any i ,

‖Ũ − Mi‖∞ = dL
I (T (Ũ ), T (Mi )) = dL

I (T̃ , T i ) < δ.

Hence Ũ , as a valid matrix, gives rise to a smaller maxi ‖Ũ − Mi‖, which contra-
dicts the assumption that Mmid is a 1-center within the space of valid matrices (i.e,
Mmid = argminM maxi ‖M−Mi‖). Hence such a T̃ cannot exist, and T ∗ is a 1-center
for {T 1, . . . , T N }. By the relation between distance for ultra matrices and for their
corresponding labeled merge trees,U∗ = M(T ∗) is a 1-center for {M1, . . . , MN }, as
well. ��

Remark As a corollary of the above result, if we are given a collection of ultra matrices
{M1, . . . , MN }, then U∗ = MT (Mmid) is a 1-center for them in the space of ultra
matrices, where Mmid as defined earlier is the matrix consisting of the entry-wise
1-center of the input ultra matrices and Mmid is itself not necessarily a ultra matrix.
Computing 1-centers for ultrametrics has been explored in the literature. While in
general, this problem is NP-hard, for the case when we consider the �∞-norm on
the space of ultrametrics (which is the same as our setting), it is known that there is
a simple algorithm to compute it [72]. However, our approach above is completely
different from the previous approach in [72], and has a different interpretation as well.

Fitting a distance matrix by ultrametrics and trees arises from the fields of math-
ematical psychology and evolutionary biology for such purposes as taxonomy and
phylogenetic tree reconstruction. Farach et al. [73] studied the ultrametric �∞-fitting
problem and proposed a rather involved algorithm that relies on computing cut-weights
for edges in a minimum spanning tree. Agarwala et al. [74] studied the problem of
fitting a distance matrix by a tree metric, and established that the tree fitting prob-
lem under the �∞ metric is NP-hard. They presented a polynomial 3-approximation
algorithm using the Farris transform and modifying the approach of Farach et al. [73].
Chepoi and Fichet [72] studied the problem of finding the best �∞-fitting of distances
by ultrametrics and tree metrics. Their problem formulation is as follows: given a
vector u and a subset K of a real vector space, find the vector û ∈ K that is nearest to
u in the �∞-norm [72]. They recovered and generalized the result of Agarwala et al.
[74], but avoided solving a restricted �∞-approximation problem [72]. The provided
general conditions on K under which a relationship between the subdominant of u
and a best �∞-approximation holds [72]. Here, the subdominant u∗ of u is the upper
bound of the set {x ∈ K | x ≺ u}, where x ≺ u means that all coordinates of x are
smaller than or equal to those of u.
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4 Interleaving Distances for UnlabeledMerge Trees

Moving to the unlabeled setting, we establish the existence of a certain labeling for a
pair of merge trees that allows us to show that the interleaving distance for unlabeled
merge trees is intrinsic.

Theorem 4.1 Given twomerge trees (T , f ) and (T ′, f ′), let L and L ′ be the respective
leaf sets. Then

dI ((T , f ), (T ′, f ′)) = inf
π,π ′ d

L
I ((T , f , π), (T ′, f ′, π ′)) (1)

where the infimum is taken over all finite labelings the two given merge trees, π and
π ′, using at most |L| + |L ′| labels.

Note that the infimum in the statement implicitly is also taken over all vertex
subdivisions of the tree since we can always add a vertex at a label point. Prior to
proving the theorem, we will investigate the following construction of a labeling
when given a δ-good map. First, note that given two labeled merge trees (T , f , π) and
(T ′, f ′, π ′), where π : [n] → V (T ) and π ′ : [n] → V (T ′), the labeling information
can be equivalently stored as an ordered collection of pairs � = {(π(i), π ′(i)) | i ∈
[n]} ⊆ V (T ) × V (T ′). Since the order of the labels does not matter for this particular
application, we will build � iteratively. At the end, once we have constructed �, we
will assign the integers that index the labels to be compatible with �.

Let L and L ′ denote the leaf sets for T and T ′, respectively.Assumewe are given a δ-
good map α as described in Definition 10. While this map is defined on the underlying
metric trees, note that we can subdivide the trees so that α(v) is a vertex in T ′ for any
vertex in T , and further that every point in the set α−1(w) is a vertex in T if w is a
vertex in T ′.

Then, we construct the labeling � as follows.

(S-1) Fix some v ∈ L , and let w = α(v). Then for every u ∈ α−1(w), add (u, w)

to � and add the points to the vertex sets as necessary. Repeat this for every
vertex in L .

(S-2) For any leaf node w ∈ L ′\Im(α), let x be its lowest ancestor contained in
Im(α). Let u ∈ α−1(x) be a preimage of x from |T |. We assume that the
same preimage u is always chosen for a given x ; for example by assuming an
ordering of the edges and vertices of T . Add (u, w) to � and add each point to
the respective vertex sets if necessary. Repeat for all leaves in L ′.

(S-3) Fix an ordering on the pairs in� = {(ui , wi ) | i ∈ [n]} and define π(i) = ui ∈
T and π ′(i) = wi ∈ T ′.

Observe that since the preimage of any leaf node w ∈ L ′ ∩ Im(α) must be some
vertex (or vertices) in L , any w ∈ L ′ ∩ Im(α) will be paired with some u ∈ L by the
process in (S-1), so this procedure does not miss any leaves in T ′. See Fig. 7 for an
example.

To use this construction to prove Theorem 4.1, we will use the following two
lemmas.
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Fig. 7 Given α : (T , f ) → (T ′, f ′), this is an example of the labeling induced by the procedure discussed
after Theorem4.1. The image of themapα is given by the red dashed lines, andα is δ-good for δ = ai+1−ai .
Labels 1–4 were generated in (S-1), the rest in (S-2). Note that there were two options for the location of
label 7 in T . The other choice would be the same as the vertex labeled 3, and would only change the red
entries inM(T , f , π)

Lemma 4.2 For any (u, w) ∈ �, | f (u) − f ′(w)| ≤ δ.

Proof If (u, w) is generated from (S-1) above, then the lemma holds by property (i) in
the definition of the δ-good map α (see Definition 10). If (u, w) is generated from (S-
2), then the lemma follows from property (iii) of the δ-goodmap α. Indeed, let x be the
lowest ancestor ofw contained in Im(α), so that α(u) = x . Then 0 ≤ f ′(x)− f ′(w) ≤
2δ and f ′(x) − f (u) = δ, implying that | f ′(w) − f (u)| ≤ δ. ��
Lemma 4.3 For any (u1, w1), (u2, w2) ∈ �,

| f (LCA(u1, u2)) − f ′(LCA(w1, w2))| ≤ δ.

Proof Assume we are given α, a δ-good map. If (ui , wi ) is generated from (S-1), set
w′
i = wi . If (ui , wi ) is generated via (S-2), then let w′

i be the lowest ancestor of wi in
Im(α). In both cases, we have that α(ui ) = w′

i and wi � w′
i . Set u0 = LCA(u1, u2),

w0 = LCA(w1, w2) andw′
0 = LCA(w′

1, w
′
2). Thismeans, in particular, thatw0 ≺ w′

0.
First, assume that both pairs are from (S-2), so thatw1 ň w′

1 andw2 ň w′
2. Assume

further that w0 �= w′
0. Since w0 is the LCA of w1 and w2, the first assumption implies

that w0 � w′
1 and w0 � w′

2. This means that at least one of w′
1 � w′

2 or w′
2 � w′

1 is
true else we have a cycle.WLOG, assumew′

1 � w′
2. But thenw2 � w0 � w′

1 ∈ Im(α)

and since w′
2 was defined as the lowest element above w2 in the image of α, we have

that w′
2 � w′

1. Hence w′
1 = w′

2, and thus w′
1 = w′

2 = w′
0. Because we assumed in

(S-2) that the same u is chosen for any given x , we can be assured that sincew′
1 = w′

2,
u1 = u2. Hence u0 = u1. So

f (u0) = f (u1) = f ′(w′
1) − δ = f ′(w′

0) − δ.

Because α is δ-good, Definition 10(iii) implies

f (u0) − δ = f ′(w′
0) − 2δ ≤ f ′(w0) ≤ f ′(w′

0) = f (u0) + δ

and so | f (u0) − f ′(w0)| ≤ δ, finishing the lemma for this case.
We show that in all remaining cases,w0 = w′

0, and then use that to prove the lemma.
We have already dealt with the case where both pairs come from (S-2). Assume that
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both pairs come from (S-1). It is immediate in this case that w0 = w′
0. If exactly one

comes from (S-1), assume that (u1, w1) comes from (S-1) and (u2, w2) comes from
(S-2). This means w1 = w′

1 and w2 ≺ w′
2. Since w1 ∈ Im(α) and w1 ≺ w0, this

means that w0 ∈ Im(α). If w0 �= w′
0, we would have a cycle of distinct elements

w1 ≺ w0 
 w2 ≺ w′
2 ≺ w′

0 
 w1 which is not possible in a tree. Thus w0 = w′
0 in

this case as well.
Wewill nowprove themain claim, namely, that | f (u0)− f ′(w0)| ≤ δ in the case that

w0 = w′
0. To see that this is the case, assume that the claim does not hold; that is, either

f (u0) − f ′(w0) > δ or f ′(w0) − f (u0) > δ. Suppose first that f ′(w0) − f (u0) > δ,
and consider α(u0). Because ui � u0 for i = 1, 2, by Lemma 2.4 we must have that
w′
i = α(ui ) � α(u0) for i = 1, 2. However, then α(u0) is an ancestor of both w′

1 and
w′
2 with

f ′(α(u0)) = f (u0) + δ < f ′(w0),

contradicting the least common ancestor assumption of w0.
Next, suppose f (u0)− f ′(w0) > δ and consider α−1(w0). We claim that any point

in α−1(w0) is a descendant of u0; i.e., v � u0 for all v ∈ α−1(w0). Otherwise, we
have that

f (LCA(α−1(w0))) > f (u0) > f ′(w0) + δ = f (v) + 2δ

for any v ∈ α−1(w0), contradicting property (ii) of Definition 10. For i = 1, 2, let
vi be the unique ancestor of ui with f (vi ) = f ′(w0) − δ. By Lemma 2.4, since
α(ui ) = w′

i andw0 is the unique ancestor ofw′
i with f ′(w0) = f (vi )+δ, this implies

that α(vi ) = w0. That is, vi ∈ α−1(w0). Further, v1 �= v2. Otherwise if v := v1 = v2,
then

f (v) = f ′(w0) − δ < f (u0) − 2δ < f (u0)

and thus v is a lower common ancestor of u1 and u2 than u0, a contradiction. Hence,
LCA(v1, v2) = u0. However,

f (u0) − f (vi ) = f (u0) − f ′(w0) + δ > 2δ.

This also contradicts property (ii) of Definition 10, finishing the proof of Lemma 4.3.
��

Proof of Theorem 4.1 Say we have a δ-good map α for some δ ≥ dI ((T , f ), (T ′, f ′)).
We construct the labelings π, π ′ as described above. Then Lemmas 4.2 and 4.3 imply
that

dL
I ((T , f , π), (T ′, f ′, π ′)) ≤ δ.

As this is true for any δ,

inf
�

dL
I ((T , f , π), (T ′, f ′, π ′)) ≤ dI ((T , f ), (T ′, f ′)).
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To show the other inequality, assume we are given any pair of labelings π , π ′ and
assume

dL
I ((T , f , π), (T ′, f ′, π ′)) = δ.

We will construct the map α and show that it is δ-good.
For any x ∈ |T |, let Sx ⊆ [n] be the labels in the subtree of x . Let yi be the unique

ancestor of π ′(i) ∈ |T ′| for i ∈ Sx with f ′(yi ) = f (x) + δ. First, we note that
yi = y j for all i, j ∈ Sx . Indeed, let M = M(T , f , π) and M ′ = M(T ′, f ′, π ′). By
Lemma 2.2, LCA(Sx ) = maxi, j∈Sx LCA(π(i), π( j)). Then we know M ′

i j ≤ δ + Mi j

for all pairs, and so for any k ∈ Sx ,

f ′(yk) = f (x) + δ ≥ f (LCA(π(Sx ))) + δ

= max
i, j∈Sx

Mi j + δ ≥ max
i, j∈Sx

M ′
i j = f ′(LCA(π ′(Sx ))).

Because every yk has function value greater than the lowest common ancestor of
π ′(Sx ), the tree property implies that all yk are equal. Thus, we can set α(x) = yk for
any k ∈ Sx and it is well-defined and more-over continuous.

We need to ensure that the α constructed is δ-good as given in Definition 10. The
map satisfies property (i) by construction, so we move on to (ii). Let w ∈ Im(α) and
set x ′ = LCA(α−1(w)) ∈ |T |. Fix any u ∈ α−1(w), and clearly f (u) ≤ f (x ′). By
Lemma 2.2, x ′ must be LCA(u, u′) for some other u′ ∈ α−1(w). Let i be a label in
the subtree of u, and let j be a label in the subtree of u′. This further implies that
x ′ = LCA(π(i), π( j)). Set w′ = LCA(π ′(i), π ′( j)) and note that as π ′(i) � w

and π ′( j) � w, this implies that w′ � w. In particular, this means f ′(w′) ≤ f ′(w).
Further, by assumption | f (x ′) − f ′(w′)| = |Mi j − M ′

i j | ≤ δ. Thus,

f (x ′) − f (u) ≤ ( f ′(w) − f (u)) + ( f (x ′) − f ′(w′)) + ( f ′(w′) − f ′(w)) ≤ 2δ

as the first part of the middle term is exactly δ, the second is ≤ δ, and the last is
negative, showing that α satisfies property (ii).

Finally, we ensure property (iii). Letw ∈ |T ′|\Im(α). Let i be the label of any leaf in
the subtree ofw, and set y = α(π(i)) to be the image of the vertex labeled i in T . Then
the tree property implies that π ′(i) � w � y and thus f ′(π ′(i)) ≤ f ′(w) ≤ f ′(y).
So,

| f ′(w) − f ′(π ′(i))| ≤ | f ′(π ′(i)) − f ′(y)| ≤ | f ′(π ′(i)) − f (π(i))| + δ

= |Mii − M ′
i i | + δ ≤ 2δ.

As this is true for every leaf in the subtree of w, depth(w) ≤ 2δ and so α satisfies
property (iii).

Thus, we have that dI ((T , f ), (T ′, f ′)) ≤ dL
I ((T , f , π), (T ′, f ′, π ′)) for any

given �, completing the proof of the theorem. ��
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We conclude this section by showing that the interleaving distance is intrinsic on
the space of finite (unlabeled) merge trees. Recall from Definition 12 that d̂ denotes
the intrinsic metric induced by a metric d.

Corollary 4.4 For the space of finite (unlabeled) merge trees, dI = d̂I .

Proof Let (T , f ) and (T ′, f ′) be two merge trees. Consider any ε > 0. According to
Theorem4.1, there are labelingsπ, π ′ of T , T ′ such that dL

I ((T , f , π), (T ′, f ′, π ′)) ≤
dI ((T , f ), (T ′, f ′)) + ε.

Now consider the space of labeled merge trees LMT. By Corollary 3.2, there exists
a geodesic γ : (T , f , π) � (T ′, f ′, π ′) in LMT such that the length LdL

I
(γ ) is equal

to dL
I ((T , f , π), (T ′, f ′, π ′)).
Note that γ can be projected to a path γ ′ from T to T ′ in the space of (unla-

beled) merge trees MT by simply ignoring the labeling. As dI ((T , f ), (T ′, f ′)) ≤
dL
I ((T , f , π1), (T ′, f ′, π2)) for any labelings π1, π2 between any two trees T and T ′,

we have

d̂I ((T , f ), (T ′, f ′)) ≤ LdI (γ
′) ≤ LdL

I
(γ ) = dL

I ((T , f , π), (T ′, f ′, π ′))

≤ dI ((T , f ), (T ′, f ′)) + ε. (2)

On the other hand, by definition of the intrinsic metric d̂I induced by dI ,

d̂I ((T , f ), (T ′, f ′)) ≥ dI ((T , f ), (T ′, f ′)). (3)

Letting ε → 0 inEq. (2) and combiningwithEq. (3),we obtain that d̂I ((T , f ),(T ′, f ′))
= dI ((T , f ), (T ′, f ′)). ��

5 Concluding Remarks and Discussion

In this paper, we investigated whether interleaving-type distances for (finite) labeled
or unlabeled merge trees are intrinsic or not, and presented positive answers in both
cases. In the case of labeled trees, the geodesic between two labeledmerge trees can be
characterized and computed easily, and we also showed how to compute the 1-center
of a set of labeled merge trees. In future work, it would be interesting to find a method
to not only compute a 1-center but k-centers that could be incorporated into, say, a
clustering method of an ensemble of merge trees. For unlabeled merge trees, however,
computing the geodesic (even if just numerically estimating it) between two merge
trees appears to be significantly harder, part of the reason being that it is NP-hard to
approximate the interleaving distance between two merge trees, as pointed out in [30].

On the other hand, a simpler and easier to compute object is the bottleneck distance
dB(T1, T2) between two (unlabeled) merge trees. We conjecture that the intrinsic
distance d̂B induced by dB is in fact equivalent to d̂I (= dI ).

Another natural question is whether (some of the) results for merge trees in this
paper can be extended to contour trees. As a first question, can we characterize and
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compute the midpoint (i.e., the contour tree representing the 1-center) for two labeled
contour trees under either d̂I , d̂B , or d̂FD (wherewe remind the reader that dFD denotes
the functional distortion distance)? One idea is to compute the join and split trees of
input contour trees, and compute the midpoint of the pair of join trees (resp., the pair
of split trees). Note that each join or split tree can be viewed as a merge tree. Next we
need to use the common ancestor information in both trees to construct a midpoint
for the two contour trees. This step could be subtle: in particular, it is known [75]
that in general, given a descending (join) tree TJ and an ascending (split) tree TS with
consistent functions associated to them, there may not exist a contour tree (or even a
graph) whose join and split trees are equal to TJ and TS , respectively. If such a contour
tree exists, then it is unique, and the algorithm by Carr et al. [3] will compute this tree
in near linear time.

Finally, understanding theoretical properties of distances between merge trees has
many practical implications. For instance, in scientific visualization, such distances
may be employed to study ensemble data sets that arise from scientific simulations
(e.g., [52, 64]). Theorem 4.1 suggests the potential development of computing inter-
leaving distances between unlabeled merge trees. Building on the work presented in
this paper, Yan et al. [64] computed the structural average and geodesics of merge trees
for uncertainty visualization. They explored various labeling strategies for computing
interleaving distances between merge trees. Furthermore, Curry et al. [65] estimated
the interleaving distance between unlabeled merge trees by searching for an optimal
alignment between nodes in the trees with respect to a certain cost function; such
estimation was used for classification and comparison of point cloud data. Moving
beyond this paper, we envision a number of future applications in topological data
analysis and visualization.

A Equivalence of ı-GoodMap

We now prove Definition 10 is an equivalent version of the concept of a δ-good map
as introduced in [30]. Recall that the original δ-good map is defined as follows.

Definition 14 [30] Given two merge trees (T , f ), (T ′, f ′), a δ-good map α :
(T , f ) → (T ′, f ′) is a continuous map on the metric trees such that the following
properties hold:

(P1) For any x in the geometric realization |T |, f ′(α(x)) − f (x) = δ;
(P2) If α(u1) � α(u2), then we have that u2δ1 � u2δ2 ; and
(P3) If w ∈ |T ′| but w /∈ Im(α), then we have that | f ′(wF ) − f ′(w)| ≤ 2δ, where

wF is the lowest ancestor of w in Im(α).
For any w /∈ Im(α), depth(w) ≤ 2δ.

Note that (P1) above is equivalent with condition (i) of our Definition 10. We will
now show that properties (ii) and (iii) of Definition 10 are equivalent to properties (P2)
and (P3) in the original definition above, respectively.
Equivalence of Definition 10(ii) with (P2) Above First, we show that Definition 10(ii)
implies (P2). In particular, consider any u1, u2 ∈ |T1| such that α(u1) � α(u2). We
aim to show that if Definition 10(ii) holds, then we must have u2δ1 � u2δ2 .
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To this end, let u′ � u2 be the ancestor of u2 such that f (u′) = f (u1). (Note that
as α(u1) � α(u2), we must have f (u1) ≥ f (u2).) By property (P1), we have that
f ′(α(u1)) = f (u1)+ δ. It then follows from Lemma 2.4 that α(u′) = α(u1) as α(u1)
is the unique ancestor of α(u2) with f ′ value equal to f (u′) + δ = f (u1) + δ. This
implies that both u1 and u′ have the same image under the map α. It then follows
from property (ii) of Definition 10 that f (x ′) ≤ f (u1)+ 2δ where x ′ = LCA(u1, u′),
implying that u2δ1 � LCA(u1, u′) � LCA(u1, u2). Since f (u2δ2 ≤ f (u2δ1 ), it then
follows that u2δ1 � u2δ2 .

Next, we show the opposite direction, namely (P2) above implies Definition 10(ii).
In particular, consider any w ∈ Im(α) with x ′ = LCA(α−1(w)). Our goal is to show
that f (x ′) − f (u) ≤ 2δ for all u ∈ α−1(w), assuming that (P2) holds. To see this,
consider any two u1, u2 ∈ α−1(w). Obviously, α(u1) = α(u2) ⇒ α(u1) � α(u2). It
then follows from (P2) that u2δ1 � u2δ2 . Since this holds for any two nodes in α−1(w),
it follows that u2δ1 = u2δ2 � x ′ = LCA(α−1(w). Hence f (x ′) ≤ f (u) + 2δ, and
property Definition 10(ii) thus holds.
Equivalence ofDefinition 10(iii) and (P3)First, assume (P3) holds, andwe aim to show
(iii) is true. Indeed, consider any w ∈ |T ′| but w /∈ Im(α). Now assume depth(w) >

2δ. This means that there exists w′ ≺ w (i.e, w′ is a descendent of w) such that
f ′(w) > f ′(w′) + 2δ. Note that by Lemma 2.4, if w /∈ Im(α), then no descendent
of w could lie in Im(α). It then follows that the lowest ancester of w′ in Im(α) is the
same as that for w, which is wF . Hence we have now found a point w′ /∈ Im(α) but
f ′(wF ) − f ′(w′) > f ′(w) − f ′(w′) > 2δ, which contradicts property (P3). Hence
the assumption is wrong and it must be that depth(w) ≤ 2δ for any w ∈ |T ′|\Im(α).
That is, Definition 10(iii) holds.

Now consider the opposite direction. Assume Definition 10(iii) holds, and we aim
to show (P3). Consider any w ∈ |T ′|\Im(α) and let wF be its lowest ancestor that is
in Im(α); note that as wF � w, f ′(wF ) ≥ f ′(w). Now suppose (P3) does not hold,
meaning that f ′(wF )− f ′(w) > 2δ. Thismeans thatw2δ /∈ Im(α). Now take any node
w′ (not equal to w2δ nor wF ) such that w2δ ≺ w′ ≺ wF . We have that w′ /∈ Im(α)

but f ′(w′) > f ′(w) + 2δ. This means that depth(w′) > 2δ, which contradicts the
property stated in Definition 10(iii). Hence our assumption is wrong, and thus (P3)
must hold.

Putting everything together, our concept of δ-good map as introduced in Defini-
tion 10 is equivalent to the one introduced in [30] (shown in Definition 14).
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