A DiscussiON: PARAMETER ESTIMATION

In Sec. 4.4, we conducted a parameter sensitivity analysis on the
two datasets to determine A, running a sequence of exponentially
increasing A values. This analysis provides a systematic approach
for identifying the optimal A. In this section, we further discuss
criteria to help users estimate an appropriate value for A, focusing
in particular on determining its minimum value.
Estimating the minimum value of \. We begin by defining the
terms used in the discussion. Let /N denote the total data volume
and R the number of ranks. The parameter A determines which
attachment points are exchanged: specifically, only those whose
interior forest volume exceeds A are included. Let o be the number
of attachment points received from other ranks. An upper bound on
o for each rank is

N - N/R
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where N — N/ R represents the maximum external data volume for
arank, and A 4 1 specifies the minimum interior forest volume of
attachment points to be exchanged. This bound is loose, as part of
the data volume is already represented in the shared contour tree
structure.

The first criterion for determining A, referred to as the memory
criterion, ensures that sufficient memory is available for analytical
computations. Based on this criterion, we estimate the minimum
value of A through two runs on a subvolume of the data, followed
by a test run on the full dataset.

For example, to estimate the minimum A satisfying the memory
criterion for the 2048 volume of the Nyx dataset, we first run the
framework on a 1024 subvolume with two values of \: 0 and 100.
The run without pre-simplification (A = 0) consumes 574.66 GiB
of memory, whereas the run with A = 100 uses 439.17 GiB. In par-
allel, the number of attachment points drops from 697,320,285 to
1,288,810. This reduction implies that processing approximately
6.96 x 10® attachment points requires about 135.49 GiB of mem-
ory, or roughly 209.02 bytes per attachment point.

Next, we perform a test run on the full 2048% volume using a
large ) value (e.g., A = 10°) to eliminate most attachment points
and measure memory consumption. If this run fails due to insuffi-
cient memory, the hardware configuration is unlikely to be viable
for the dataset, regardless of \. If successful, we record the peak
memory usage for any single rank—in our case, 133.26 GiB (note
that this is not the total memory usage across all ranks). The re-
maining available memory must then be sufficient to handle attach-
ment point computations.

In this example, N = 20483, R = 16, and each rank (i.e., com-
pute node) has 512 GB of available memory. Since the upper bound

on the number of attachment points is N;ifl/R, and the memory re-
quired for attachment point computation is 209.02 bytes per voxel

on average, we require

N - N/R

< 512 x 10° — 133.26 x 1024%.
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209.02 o < 209.02

From this, we estimate the minimum ) for this example to be 4.
The second criterion concerns communication overhead, which
we refer to as the communication criterion. Pre-simplification re-
duces the number of attachment points exchanged during commu-
nication, thereby mitigating scalability limits. As shown in Sec. 4.4,
both the attachment points and the shared contour tree structure
contribute to this overhead. With increasing A, the number of at-
tachment points decreases, and eventually the shared contour tree
structure becomes the dominant factor. For optimal scalability, our
goal is to reduce the number of attachment points to be comparable
to, or smaller than, the size of the shared contour tree, which has
been shown [26, 7, 29] to be bounded by O(N?/3) for 3D data.

This implies that A should be on the order of Q(N'/?) for optimal
scalability.
Limitation. We conclude by discussing the limitations of our
approach for estimating A. First, the memory criterion requires
recording statistics such as the number of attachment points and
the memory usage for each rank. Although our implementation
includes logging functionality, this method still entails additional
effort. Second, the estimated minimum A for the first criterion is
likely higher than the true minimum, as it is based on the worst-
case distribution of attachment points. Third, for the communica-
tion criterion, constant factors in the computation make it difficult
to determine a precise minimum value of \.
Parameter choices. While pre-simplification significantly reduces
communication overhead and enables the processing of much larger
datasets, it also removes some small-volume features that may be
important in certain tasks or data contexts. To preserve such fea-
tures, we aim to choose A as small as possible, subject to satisfying
the memory criterion (and optionally the communication criterion),
and ensuring that A\ < A. However, if the estimated A is substan-
tially larger than the expected size of the smallest relevant features,
pre-simplification may not be suitable for the application.
Currently, our implementation supports only a single, global A
for pre-simplification as a means of reducing the number of attach-
ment points in the computation. Since the augmentation step can be
performed on arbitrary subsets of attachment points [29], it would
be possible to customize A for different subareas or subvolumes of
the data, depending on the features of interest, or even to selectively
preserve specific features—an extension we leave for future work.



