
Supplementary Material
Interactive Visualization of Time-Varying Flow Fields

Using Particle Tracing Neural Networks

Mengjiao Han, Jixian Li, Sudhanshu Sane, Shubham Gupta, Bei Wang, Steve Petruzza, Chris R. Johnson

1 OVERVIEW OF SUPPLEMENTARY MATERIAL

In Sec. 2, we offer additional details, including the equations used to
simulate the Double Gyre and ABC datasets. Sec. 3 features a detailed
table summarizing all the experimental setups used to identify the
most effective model architecture. This section also includes additional
evaluation results, such as using the mean closest point distance as
an error metric to compare our deep-learning-based (DL) approach
with the traditional barycentric coordinate (BC) approach, along with
their corresponding visualizations. In addition, it demonstrates how the
pathlines predicted by our DL approach effectively maintain temporal
coherence. Furthermore, Sec. 4 provides an in-depth description of
the functionalities incorporated in our web-based viewer and high-
performance OSPRay-based viewer.

2 DETAILS ON DATASETS: SIMULATION EQUATIONS

Double Gyre

ψ(x,y, t) = Asin(π f (x, t))sin(πy)

f (x, t) = a(t)x2 +b(t)x
a(t) = εsin(ωt)
b(t) = 1−2εsin(ωt)

where A = 0.1, ω = pi/5 and ε = 0.25

(1)

ABC
f (x, t) = A(t)sin(z)+Bcos(y)
f (y, t) = Bsin(x)+Ccos(z)
f (z, t) =Csin(y)+A(t)cos(x)

A(t) =
√

3+0.5tsin(πt)

where B =
√

2, C = 1

(2)

• Mengjiao Han is with SCI Institute, University of Utah. E-mail:
mengjiao@sci.utah.edu

• Jixian Li is with SCI Institute, University of Utah. E-mail:
jixianli@sci.utah.edu

• Sudhanshu Sane is with SCI Institute, University of Utah. E-mail:
ssane@sci.utah.edu.

• Shubham Gupta is with Utah State University. E-mail:
shubhamg2404@gmail.com.

• Bei Wang is with SCI Institute, University of Utah. E-mail:
beiwang@sci.utah.edu

• Steve Petruzza is with Utah State University. E-mail:
steve.petruzza@usu.edu.

• Chris R. Johnson is with SCI Institute, University of Utah. E-mail:
crj@sci.utah.edu

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

3 MORE DETAILS ON EXPERIMENTS AND RESULTS

3.1 Impact of Model Architecture

Sec. 3.1 displays the mean and median errors for each combination
derived from our selection of the number of encoding layers, decoding
layers, and the size of the hidden latent vector.

Our experiments reveal that the mean and median errors are similar
when using four or six encoding or decoding layers. Additionally, mod-
els based on Multi-Layer Perceptron (MLP) generally show enhanced
performance with shallower neural network architectures. Furthermore,
in most instances, a larger dimension of the hidden latent vector is more
effective than a smaller one. As presented in Sec. 3.1, the maximum
error values are substantially higher than the median errors. This re-
sult is especially evident in scenarios involving hyperbolic Lagrangian
Coherent Structures (LCS), where the errors are observed to increase
with increasing flow turbulence. However, as illustrated in Fig. 1, our
deep-learning-based approach consistently yields smaller maximum
errors compared to the traditional interpolation method. Enhancing the
model’s capability to manage hyperbolic LCS effectively will be stud-
ied in future work. This advancement is key to significantly expanding
the applicability and effectiveness of deep-learning-based approaches
in this field.

E
rr

o
rs

E
rr

o
rs

Gerris (Re 101.6)

Hurricane

DL BC DL BC DL BC

DL BC DL BC DL BC

Heated Cylinder [U]

Heated Cylinder [S]

Half Cylinder (Re 160) [U]

Half Cylinder (Re 160) [S]

0.00064 0.00088
0.0028 0.0044

Max: 0.209 Max:0.216

0.00007 0.00000
0.00014 0.00015

Max: 0.015 Max:0.026

0.00010 0.00008
0.00017 0.0010

Max: 0.0.029 Max:0.171

0.062 0.029
0.082 0.112

Max: 6.80 Max:16.65

0.00009 0.00000
0.00020 0.00017

Max: 0.030 Max:0.023

0.0057 0.0022

0.0076 0.0074

Max: 0.165 Max:0.219

Fig. 1: The violin plot compares error rates between our deep learning-
based method (DL) and the conventional barycentric coordinate inter-
polation (BC) method, using the mean-closest-point metric for error
assessment. These plots are constructed from 5000 trajectory data
points. In the plot, ’S’ symbolizes structured data, whereas ’U’ signi-
fies unstructured data. The median of each distribution is shown by
a white line on a gray background, and the mean is represented as a
black dot. Each violin plot incorporates error limits to illustrate the
range of errors, with the highest error value marked at the top of each
plot. Our findings indicate that the DL method outperforms the BC
method across all structured datasets with dense seedings and yields
comparable outcomes for unstructured datasets with sparse seedings.



Double Gyre Gerris (Re 101.6) Gerris (Re 445.7)

1024 2048 1024 2048 1024 2048

[#E, #D] Max Max(< 3std) Mean Med Max Max(< 3std) Mean Med Max Max(< 3std) Mean Med Max Max(< 3std) Mean Med Max Max(< 3std) Mean Med Max Max(< 3std) Mean Med

[4, 4] 0.015040 0.002599 0.001198 0.001138 0.035495 0.002901 0.000360 0.000252 0.070006 0.008243 0.000864 0.000527 0.143171 0.012130 0.001125 0.000586 0.355923 0.066951 0.005818 0.001238 0.397267 0.071722 0.005599 0.000854
[4, 6] 0.022072 0.002170 0.000733 0.000664 0.041218 0.002686 0.000439 0.000339 0.097808 0.009787 0.000871 0.000521 0.082728 0.006718 0.000671 0.000410 0.360701 0.066855 0.005553 0.001140 0.401839 0.074412 0.005570 0.000829
[4, 8] 0.036979 0.002901 0.000508 0.000402 0.025446 0.001761 0.000146 0.000105 0.119044 0.010082 0.000909 0.000549 0.061141 0.005441 0.000659 0.000417 0.390928 0.069549 0.005615 0.001096 0.421647 0.071151 0.005549 0.001021
[6, 4] 0.004693 0.000351 0.000092 0.000082 0.007374 0.000554 0.000087 0.000075 0.075854 0.004795 0.000613 0.000413 0.153836 0.013044 0.001148 0.000589 0.394845 0.065593 0.005251 0.001063 0.410827 0.081046 0.006641 0.001028
[6, 6] 0.006525 0.000440 0.000097 0.000087 0.045319 0.003081 0.000496 0.000372 0.149521 0.010705 0.000987 0.000577 0.145615 0.012662 0.001156 0.000594 0.384426 0.064527 0.004981 0.000986 0.487556 0.085583 0.006971 0.001083
[6, 8] 0.032895 0.005353 0.001667 0.001477 0.046326 0.003171 0.000415 0.000266 0.136674 0.010987 0.000954 0.000574 0.103415 0.007892 0.000704 0.000421 0.389712 0.071249 0.005765 0.001128 0.403145 0.072066 0.005259 0.000785
[8, 4] 0.015751 0.010245 0.006276 0.006395 0.039029 0.003122 0.000689 0.000576 0.156254 0.012222 0.001410 0.000778 0.162986 0.013428 0.001265 0.000658 0.387796 0.078124 0.007043 0.001503 0.438808 0.085449 0.007408 0.001118
[8, 6] 0.032474 0.003925 0.001833 0.001812 0.078831 0.005179 0.000594 0.000417 0.137461 0.013975 0.001695 0.000885 0.153754 0.014227 0.001249 0.000643 0.405358 0.078671 0.008247 0.002640 0.407937 0.085184 0.006938 0.001134
[8, 8] 0.040973 0.005288 0.002546 0.002483 0.042387 0.003768 0.000879 0.000749 0.133435 0.012930 0.001616 0.000804 0.160815 0.014334 0.001225 0.000625 0.403534 0.078814 0.009005 0.001592 0.434742 0.084257 0.006894 0.001323

ABC Half Cylinder (Re 160) Half Cylinder (Re 320)

1024 2048 1024 2048 1024 2048

[#E, #D] Max Max(< 3std) Mean Med Max Max(< 3std) Mean Med Max Max(< 3std) Mean Med Max Max(< 3std) Mean Med Max Max(< 3std) Mean Med Max Max(< 3std) Mean Med

[4, 4] 0.036861 0.009468 0.001521 0.000412 0.099295 0.012862 0.003533 0.002726 0.107393 0.006192 0.000255 0.000111 0.070775 0.003762 0.000220 0.000124 0.199564 0.011533 0.000466 0.000154 0.201851 0.016832 0.000447 0.000115
[4, 6] 0.030883 0.007899 0.002667 0.002176 0.055693 0.012862 0.002835 0.001946 0.105311 0.005334 0.000265 0.000126 0.066850 0.003313 0.000208 0.000125 0.202506 0.014704 0.000487 0.000173 0.203822 0.012574 0.000450 0.000120
[4, 8] 0.081320 0.015790 0.004257 0.003406 0.045269 0.011415 0.002475 0.001914 0.082466 0.005549 0.000319 0.000186 0.069271 0.004303 0.000328 0.000228 0.212825 0.016497 0.000517 0.000200 0.205328 0.015798 0.000478 0.000152
[6, 4] 1.011904 0.069674 0.017979 0.015364 0.071155 0.018524 0.005582 0.004405 0.082571 0.005148 0.000287 0.000151 0.069917 0.003684 0.000209 0.000103 0.206473 0.016362 0.000495 0.000134 0.203245 0.015065 0.000478 0.000129
[6, 6] 0.235489 0.039737 0.012636 0.010582 0.104499 0.022884 0.005838 0.004300 0.086557 0.005517 0.000302 0.000170 0.072497 0.003869 0.000210 0.000105 0.205837 0.015488 0.000482 0.000187 0.201469 0.014333 0.000492 0.000159
[6, 8] 0.105150 0.024111 0.007958 0.006616 0.055382 0.013191 0.003861 0.003017 0.082592 0.005871 0.000342 0.000186 0.066915 0.004282 0.000244 0.000144 0.219285 0.015605 0.000618 0.000301 0.194538 0.017186 0.000518 0.000187
[8, 4] 10.579720 9.741066 3.665045 3.383233 9.065552 2.504865 0.262102 0.079539 0.068850 0.004751 0.000362 0.000228 0.066891 0.003938 0.000304 0.000207 0.206363 0.013851 0.000622 0.000246 0.205913 0.015392 0.000566 0.000213
[8, 6] 11.840756 8.123253 2.027380 1.131475 9.641712 1.966346 0.152597 0.040992 0.082675 0.004370 0.000341 0.000238 0.071471 0.004025 0.000260 0.000156 0.206732 0.013048 0.000637 0.000315 0.197799 0.011822 0.000516 0.000186
[8, 8] 8.073314 7.739241 4.040486 4.051986 7.983617 7.612440 4.040674 4.059320 0.100450 0.006299 0.000480 0.000333 0.073517 0.004194 0.000301 0.000197 0.204938 0.015042 0.000721 0.000350 0.196439 0.011611 0.000532 0.000206

Table 1: The performance evaluation of the model architecture on 2D and 3D datasets. Each row ([E,D]) represents the number of encoding
layers (E) and decoding layers (D). The hidden vector dimension is either 1024 or 2048. The table presents the maximum (Max), maximum
of within three standard deviations from the mean (Max(< 3std), mean (Mean), and median (Med) errors, aggregated over 5,000 seeds and
computed along the trajectories (Eqn. 3 in the manuscript). Most models achieve accurate results with errors smaller than one grid size. The
optimal model architecture providing the lowest mean and median errors is highlighted. Increasing the dimension of the hidden vector leads to
lower errors for all data sets. However, utilizing more encoding layers than decoding layers results in higher errors in our experiments. The
maximum errors indicate that the model’s performance is impacted by the hyperbolic of the flows. However, the deep-learning-based approach
yields smaller maximum errors than the traditional interpolation method (refer to Fig. 1.

3.2 Comparison with Interpolation Methods
Our study contrasts our deep learning methodology with the tradi-
tional barycentric coordinate interpolation method. The performance
evaluation uses Euclidean distance, comparing the interpolated and
predicted outputs to the actual ground truth. As suggested by Isabelle
et al. [2], the mean distance of closest distances provides a global sim-
ilarity measure integrated along the whole curve, which can be used
to identify the similarity of trajectories. We assess the discrepancies
between our deep-learning approach and the conventional method by
applying the mean-closest-point metric (refer to Fig. 1). Our deep-
learning-based method demonstrates equivalent or enhanced accuracy
across all structured datasets with dense seeding. When applied to
unstructured datasets, its performance is comparable to the traditional
method. However, to attain greater accuracy in unstructured datasets,
dense seeds is necessary for training.

Fig. 2 and Fig. 3 present a comparative analysis between trajectories
computed by our method and the established ground truth, demon-
strating a significant overlap. This overlap shows the accuracy of
our prediction approach, surpassing traditional interpolation methods.
Moreover, our method achieves this accuracy with minor visual arti-
facts, highlighting its effectiveness in precise trajectory computation.

3.3 Demonstration of Temporal Coherence
In our experiments, particle end locations are recorded at specific
intervals. For instance, in the case of the Double Gyre, Gerris Flow,
and ABC datasets, the end locations are saved at every fifth interval.
The following approach is used to demonstrate the temporal coherence
of our predicted trajectories. We train models using this five-interval
approach, and then employ these trained models to make predictions
at more frequent intervals, specifically at every single interval. This
method allows us to represent the complete paths of the particles over
time, providing a more detailed and continuous trajectory analysis.

Fig. 4 and Fig. 5 present both the visual comparison and error distri-
bution when contrasting predicted pathlines with the ground truth. Our
deep-learning-based method can predict end locations at untrained time
steps accurately. This accuracy indicates the method’s effectiveness in
preserving the temporal coherence of the pathlines.

4 DETAILS ON INTERACTIVE VISUALIZATION

We use ONNX Runtime (ORT) 1 as the library to deploy our neural
network. After the seeds are placed, the loaded model may trace and
display the tracing results.

To render line primitives, however, the web-based renderer lacks
visual effects such as transparency, global illumination, and ambient

1https://onnxruntime.ai/

occlusion. To visualize high-fidelity results, we also develop and study
the performance of a PC-based viewer using the OSPRay [6] render-
ing engine to support photorealistic effects (Sec. 4.2). Moreover, by
altering the Trace function, users can easily apply neural networks with
alternative architectures to both viewers.

4.1 The Web-Based Viewer

The web-based viewer is developed using the React framework 2 and
implemented in JavaScript. The user interface elements of the applica-
tion, including tabs, checkboxes, buttons, and selections, are created
using Material-UI 3. We utilize React-Grid-Layout 4 to design a re-
sponsive and flexible grid layout system. The renderings of seeds,
trajectories, and interaction with rendered objects are managed by
react-three-fiber 5 and its expanded libraries drei 6.

In the Model Info panel, users can begin by selecting the dataset for
visualization (Sec. 4.1.1 and Panel 2 in Fig. 7). Upon model loading,
the primary 3D display presents the bounding box, seed box, seeds,
pathlines, and scalar field (Panel 1 from Fig. 7).

The bounding box, referred to as the global domain, confines seed
placement and is depicted as a gray outline. Seeds reside within the
global domain, whereas pathlines can extend beyond it, as demonstrated
in Fig. 7.

The seed box, a subset of the global domain, offers users finer control
over seed placement. It is manipulated using sliders in the Seedbox
Config panel (Panel 3 from Fig. 6 and detailed in Sec. 4.1.2). Seeds
appear as colored spheres, and pathlines as colored tubes, with styles
adjustable through the Line Style Config panel (Panel 5 from Fig. 7
and discussed in Sec. 4.1.4).

The scalar field can be visualized as a volume or three axis-aligned
slices, with rendering parameters modifiable in the Scalars Config and
Transfer Function panels (Panel 4 from both Fig. 7 and Fig. 6, with
further information in Sec. 4.1.3).

4.1.1 Model Conversion and Model Loading

Our approach employs the PyTorch framework for both model training
and storage. We deploy the trained neural network in the browser
using onnxruntime-web, which is a JavaScript API based on the ONNX
Runtime (ORT)7. The onnxruntime-web accelerates model inference in

2https://reactjs.org
3https://mui.com
4https://github.com/react-grid-layout/react-grid-layout
5https://github.com/pmndrs/react-three-fiber
6https://github.com/pmndrs/drei
7https://onnxruntime.ai/



BC DL

Ground Truth

Interpolated

Ground Truth

Predicted

(a) Gerris (Re 101.6)

(b) Gerris (Re 445.7)

(c) Heated Cylinder

Fig. 2: Comparative visualization of trajectories. Left: results from
barycentric coordinate interpolation (BC). Right: outcomes from our
deep learning (DL) approach. The ground truth trajectories are marked
in red for reference with the computed trajectories highlighted in blue.
This figure demonstrates that our approach accurately traces pathlines
compared to the traditional approach.

the browser by utilizing separate WebAssembly (Wasm)8 and WebGL9

backends on CPUs and GPUs. The ORT is compatible with popular
deep learning frameworks, such as PyTorch [3], TensorFlow [1], and
scikit-learn [4]. The conversion of a PyTorch model to an ONNX

8https://webassembly.org/
9https://www.khronos.org/webgl/

(a) ABC

(b) Hurricane

(c) Hurricane (FTLE)

Fig. 3: (a) and (b) show the comparative visualization of trajectories
rendered by OSPRay. This figure contrasts trajectory visualizations
from barycentric coordinate interpolation (BC) on the left and deep
learning (DL) on the right. Ground truth trajectories are marked in red
for reference, and computed trajectories are highlighted in blue. In the
ABC dataset, there is a notable overlap of computed trajectories with
the ground truth in both methods. However, our approach yields more
accurate trajectories for the Hurricane dataset. Moreover, (c) compares
the ground truth FTLE on the left with the results computed using our
method on the right. These visualizations underscore the proficiency of
our method in accurately tracing pathlines.

model is facilitated by the torch.onnx.export method, and the size of
the ONNX model is identical to that of the original PyTorch model.
The conversion technique is available on our project’s Github website.

We use a JSON file to store the necessary dataset information to
facilitate data processing, including the bounding box, the directory
containing the models, the start and stop file cycles, the interval, and
the step size. When users select a dataset from the drop-down list, the
viewer automatically loads the models by parsing the information in
the corresponding JSON file. After successfully loading the model, the
viewer displays the dataset’s bounding box, and information about the
bounding box and flow maps appears in the Model Info panel (Panel 2
in Fig. 6).



(a) Gerris (Re 445.7)

(b) ABC

Fig. 4: This visualization compares the predicted pathlines with the
ground truth. We train our models using data at intervals of five and
then apply these models for predictions at both five-interval (left) and
one-interval (right) frequencies. The ability of our deep-learning-based
approach to accurately predict pathlines at every time step demonstrate
its effectiveness in preserving the temporal coherence of the pathlines.

4.1.2 Seeding Approaches
Our viewer allows users to add seeds in the global domain or a seed
box to display trajectories in their desired regions. In the web-based
viewer, the seed box is defined by size and position. Users can specify
a seeding-plane or seeding-line by setting the sizes of one or two
dimensions to zeros. The Seedbox Config panel contains two triggers:
Display to control the seed box visibility, and Active to set the seed
box area as the active seeding area (Panel 3 in Fig. 6). The seeds are
scattered in the global domain by default if the seed box is not active.
For seed placement, users can distribute new seeds uniformly, randomly,
or manually add individual seeds in the Seed Placement panel (Panel 3
in Fig. 7). When the Add Seeds button clicks, the viewer will visualize
the seeds in real time.

4.1.3 Visualization of Scalar Fields
Scalar fields such as the FTLE or velocity magnitude can provide more
context for users to identify interesting regions to explore. In our
viewer, scalar field data in VTI format can be uploaded through the
Scalars Config panel (Panel 4 in Fig. 7). Once the data is uploaded,
users can choose to render the volume or slices (Panel 3 in Fig. 7), and
apply transfer functions with support for multiple colormaps (Panel 3
in Fig. 6). Visualizing scalar fields, in addition to the pathlines, helps
users understand the spatial context of the flow features. It can also
help user identify important features and patterns in the flow data.

4.1.4 Particle Tracing and Line Style
After placing seeds, users can initiate particle tracing by clicking the
Trace Particles button located in the Model Info panel (Panel 2 in
Fig. 7). Our viewer also provides users with the option to apply a
constant color to the seeds and pathlines or to use the same color
mapping specified by the color transfer function in the Scalars Config
panel for enhanced visualization (Panel 4 in Fig. 7 and Fig. 6). Users

Interval = 5 Interval = 1

E
rr

o
rs

(a) Gerris (Re 445.7)

Interval = 5 Interval = 1

E
rr

o
rs

(b) ABC

Fig. 5: The violin plots illustrate error comparisons between the pre-
dicted pathlines (marked as blue) and the ground truth (marked as red).
Models are trained using data at five-interval frequencies and subse-
quently utilized to predict at both five-interval (left) and one-interval
(right) frequencies. Our approach maintains similar accuracy levels
in predicting end locations at untrained time steps, demonstrating its
capability to preserve temporal coherence effectively.

Fig. 6: Illustration of our web-based viewer for visualizing inferred
pathlines using our pre-trained model in the ABC dataset. The in-
terface includes panels for (1) main display, (2) model loading, data
information and particle tracing, (3) seed box configuration, (4) transfer
function for scalar field data visualization, and (5) seed and line style
configuration.

can also modify the radius of seeds and the line width for the pathlines.
Additionally, our viewer supports line smoothing by increasing the



Fig. 7: Illustration of our web-based viewer for visualizing inferred
pathlines using our pre-trained model in the Hurricane dataset. The
interface includes panels for (1) main display, (2) model loading, dataset
information and particle tracing, (3) seed placement, (4) scalar field
data visualization, and (5) seed and line style configuration.

Fig. 8: Multiworkflow visualization of the ScalarFlow dataset us-
ing our OSPRay-based viewer, which integrates our neural network
with the OSPRay renderer. The visualization displays the FTLE as a
volume and the pathlines inferred using our neural network. A clip-
ping plane is aligned along the y-axis. The model is trained with the
Lagrangianhybrid approach. Each pathline encompasses 15 time steps,
ranging from time step 135 to time step 150.

number of line segments in the Line Style Config panel (Panel 5 in
Fig. 7 and Fig. 6. The number of line segments equals one providing a
piece-wise linear path. A larger number of line segments will sample
more points along the Catmull-Rom spline [5] to provide a smoother
path for each pathline.

4.2 Integrating with OSPRay
Although using a web-based viewer is easier to access for nonpowerful
computers, integrating the viewer with rendering engines such as OS-
PRay [6] is essential to leverage fast and high-fidelity rendering. For
this purpose, we use the ORT C++ API to deploy the trained model. As
shown in Fig. 8, we visualize pathlines inferred by our trained model
and render them using OSPRay. While a user interface for the OSPRay
viewer is scheduled for future development, we demonstrate the effec-
tiveness of our approach for post hoc exploration of Lagrangian-based
flow data.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al. {TensorFlow}: A System for
{Large-Scale} Machine Learning. In 12th USENIX symposium on operating
systems design and implementation (OSDI 16), pages 265–283, 2016.

[2] I. Corouge, S. Gouttard, and G. Gerig. Towards a Shape Model of White
Matter Fiber Bundles Using Diffusion Tensor MRI. In 2004 2nd IEEE
international symposium on biomedical imaging: nano to macro (IEEE Cat
No. 04EX821), pages 344–347. IEEE, 2004.

[3] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An Imperative Style,
High-Performance Deep Learning Library. Advances in neural information
processing systems, 32, 2019.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn:
Machine Learning in Python. the Journal of machine Learning research,
12:2825–2830, 2011.

[5] C. Twigg. Catmull-Rom splines. Computer, 41(6):4–6, 2003.
[6] I. Wald, G. P. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers,

J. Günther, and P. Navrátil. OSPRay-A CPU Ray Tracing Framework for
Scientific Visualization. IEEE transactions on visualization and computer
graphics, 23(1):931–940, 2016.


	Overview of Supplementary Material
	Details on Datasets: Simulation Equations
	More Details on Experiments and Results
	Impact of Model Architecture
	Comparison with Interpolation Methods
	Demonstration of Temporal Coherence

	Details on Interactive Visualization
	The Web-Based Viewer
	Model Conversion and Model Loading
	Seeding Approaches
	Visualization of Scalar Fields
	Particle Tracing and Line Style

	Integrating with OSPRay


