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ABSTRACT

Advances in high-performance computing require new ways to rep-
resent large-scale scientific data to support data storage, data trans-
fers, and data analysis within scientific workflows. Multivariate func-
tional approximation (MFA) has recently emerged as a new continu-
ous meshless representation that approximates raw discrete data with
a set of piecewise smooth functions. An MFA model of data thus
offers a compact representation and supports high-order evaluation
of values and derivatives anywhere in the domain. In this paper, we
present CPE-MFA, the first critical point extraction framework de-
signed for MFA models of large-scale, high-dimensional data. CPE-
MFA extracts critical points directly from an MFA model without
the need for discretization or resampling. This is the first step to-
ward enabling continuous implicit models such as MFA to support
topological data analysis at scale.

Index Terms: Multivariate functional approximation, critical
points, topological data analysis, implicit models

1 INTRODUCTION

Advances in high-performance computing (HPC) require new ways
to represent large-scale scientific data to support data storage, data
transfers, and data analysis. To that end, there has been a growing
interest in replacing discrete data with continuous, high-order, and
differentiable representations, such as functional models and implicit
neural networks [50, 51, 34, 37], to enhance scientific workflows.

Among the functional models, multivariate functional approxima-
tion(MFA) [43, 42] has recently emerged as a new continuous mesh-
less representation of discrete data. It approximates the raw discrete
data by a set of piecewise smooth polynomial functions, and sup-
ports high-order evaluation of values and derivatives anywhere in the
domain. An MFA model offers a compact representation as it con-
sumes less storage space than the original discrete data, and serves as
a surrogate in supporting spatiotemporal analysis in the continuous
domain.

MFA is a technology supported by the United States Department
of Energy (DOE) under the SciDAC RAPIDS Institute [2] and has
been applied to large-scale projects in high-energy physics [1] and
climate science [3]. MFA was originally proposed as a tool for mod-
eling structured scientific datasets [43], and has been expanded to
handle complex unstructured point clouds [26, 27] and operates in
distributed parallel environments [32, 56]. It can also be used as an
intermediate representation for high-quality volume rendering [55].

However, an unexplored area of research is to utilize continuous
implicit models such as MFA for topological data analysis (TDA)
and visualization. A fundamental step to recovering topology from
an MFA model is to extract its critical points. In Morse theory, criti-
cal points correspond to topological changes in scalar fields and they
play a crucial role in TDA [15]. In this paper, we present CPE-MFA,
the first critical point extraction framework designed for MFA mod-
els of large-scale, high-dimensional data. Our method represents the
first approach to enable topological feature extraction from implicit
continuous models (such as MFA). A standard MFA model is de-
signed as a forward model to evaluate variables at query locations. In
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contrast, our CPE-MFA framework facilitates inverse evaluations for
such a forward model, broadening the applicability of MFA in TDA.

In MFA, piecewise functional approximations replace discrete
data with linear combinations of basis functions (e.g., nonuniform
rational B-spline functions or NURBS) and a set of reference points
called control points [43]. The places where the piecewise functions
meet are known as knots, and the interval between knots are knot
spans (or just spans). The function value in a span depends on a set
of control points. Based on the known control points, we can first
bypass spans devoid of critical points. We then employ Newton’s
method to extract critical points in the remaining spans. Since each
piecewise functional is a polynomial, we could use its closed-form
derivative to obtain the critical points, greatly reducing the complex-
ity of Newton’s method. Finally, we introduce spatial hashing to re-
move duplicated copies of critical points. Our contributions include:

* We introduce a novel framework, called CPE-MFA, for critical
point extraction from MFA models. Our framework extracts
critical points directly from an MFA model without the need
for discretization or resampling.

* We propose multiple strategies to enhance the efficiency dur-
ing critical point extraction, including multithreading, bypass-
ing specific spans devoid of critical points, and removing dupli-
cates using spatial hashing.

* We demonstrate the efficacy of our framework across multiple
scientific datasets.

Our work is the first step toward enabling continuous implicit models
such as MFA to support topological data analysis at scale.

2 RELATED WORK

We review relevant work on MFA and critical point extraction.

Multivariate Functional Approximation, or MFA, is a method for
representing a scientific dataset with a continuous B-spline function
for the purposes of analysis and visualization [43, 42, 26]. MFA
may be considered a form of scattered data approximation (SDA), a
field of mathematics concerned with constructing continuous func-
tions that approximate a spatial dataset [59]. Numerous SDA meth-
ods have been developed over the years, with popular functional ap-
proximations based on wavelets [23], radial basis functions [33], and
splines [12].

MFAs are built on geometric basis functions, specifically, B-
splines. B-splines and their generalization, nonuniform rational B-
splines or NURBS are smooth, flexible curves widely used in mod-
eling and visualization software [46, 29]. Before MFA, Martin and
Cohen proposed a model using NURBS to represent data in 2D and
3D [36]. This work was extended by Martin et al. [35] to parameter-
ize 2D triangular and 3D tetrahedral data with tensor product splines.
MFA is an extension of this method to model data with any number
of dimensions.

Some visualization algorithms have been built upon geometric
functional representations in the past. In 1997, Park and Lee [41]
utilized a high-dimensional trivariate NURBS representation to visu-
alize fluid flow data. In 2001, Martin and Cohen [36] constructed iso-
surfaces and achieved ray tracing using NURBS. More recently, Sun
et al. [55, 56] developed techniques for scalable, interactive volume
visualization of MFA representations. Their techniques produced
high quality renders with moderate time complexity, and introduced
fewer visual artifacts than traditional local filtering techniques.



Critical point extraction. TDA utilizes topological descriptors and
provides robust feature extraction techniques for large-scale scien-
tific data; see [21, 60] for surveys. These techniques have been
applied to diverse research fields such as chemistry [40, 7], astro-
physics [54, 49], and biomedical imaging [5, 8]. Critical points may
correspond to atoms in chemistry [7], galaxy clusters in astrophysics
[54, 49], and serve as good seed points for neuron reconstruction in
biomedical imaging [11]. For scalar field data, critical points are
part of the foundational structures of topological descriptors, such
as merge trees, contour trees [9, 53], Reeb graphs [45], and Morse-
Smale complexes [14, 13]. Morse theory [38] plays an important
role in the study of critical points. Forman [16] generalized the the-
ory from the smooth setting to the discrete setting, referred to as the
discrete Morse theory, making it practical for studying discrete data.
The challenge of extracting critical points for discrete data arises due
to the absence of proper differentiability. Banchoff [6] characterized
piecewise-linear (PL) critical points for an input PL scalar field de-
fined on PL manifolds, based on lower- and upper-links of vertices.
In particular, a vertex is regular if both its lower- and upper-links are
simply connected, and critical otherwise. While there are various
notions of PL critical points in the literature, they are shown to be
equivalent, and correspond to discrete Morse cell in discrete Morse
theory [18].

Recently, Vidal et al. [58] introduced a progressive method to
extract critical points from PL functions defined on triangulated
meshes. Their method utilized the fast identification of topologically
invariant vertices using a hierarchical data representation. We use
this method in Sec. 5 as a reference to evaluate our framework.

There are numerous studies on the numerical extraction of criti-
cal points, especially from a vector field perspective. Helman and
Hesselink [22] first located isolated non-degenerate critical points of
vector fields based on the Jacobian. A number of methods focused
on solving a system of linear equations in a PL vector field, for each
cell in a triangulated domain [28, 25]. Skala and Smolik [52] approx-
imated discrete vector fields with radial basis functions (RBFs). In
particular, based on a vector field represented as an RBF approxima-
tion, they constructed a function related to the speed of a particle and
extracted its critical points.

3 TECHNICAL BACKGROUND
3.1 Multivariate Functional Approximation

At their core, MFA models are tensor-product B-spline functions that
serve as an approximation to a dataset. In this section, we provide
an overview of the basic definitions and constructions necessary to
describe B-spline models for scientific data. A thorough presentation
on the fundamental theory of B-splines can be found in the books by
de Boor [12] and Piegl and Tiller [44].

B-spline curves. First, we consider the 1-dimensional case to illus-
trate the main components of a B-spline. Consider a set of point
locations {ug,...,u,—1} C [0,1] with a value f; associated to each
point.! A best-fit B-spline curve is a function F : R — R such that
F(u;) = f; for all indices i, subject to certain conditions that we will
define shortly.

A B-spline curve of degree p is a piecewise-polynomial function
with p — 1 continuous derivatives, where the pieces are polynomials
of degree p. The points where the curve transitions between polyno-
mial pieces are called knots, and the interval between two subsequent
knots is a knot span. The overall shape of the B-spline is determined
by the location of geometric control points scattered throughout the
domain. The B-spline curve smoothly follows the polyline given by
the control points, but does not coincide with the control points. Intu-
itively, it can be seen that B-splines with more control points can twist
and bend with greater flexibility than those with fewer control points.
Fig. 1 (left) shows examples of a 1-dimensional B-spline curve (top)
and a 2-dimensional B-spline surface.

'We assume the input are re-scaled to lie in [0, 1].

Throughout this paper, we will denote the degree of a B-spline by
p- The set of control points is {P;}; | and the set of knots is denoted

{t J}';:g . We note that the number of knots and control points in a
B-spline are closely linked: a degree-p spline with n control points
must have n+ p + 1 knots [12]. Mathematically, B-splines may be
described as linear combinations of B-spline basis functions, where
the coefficient on each basis function is a control point. Namely,

n—1

F(u)=). Njpu)P; @

Jj=0

where the functions N; , are bump functions that are nonzero in the
subinterval [t;,;,41] and zero elsewhere. For a full description of
the basis functions we refer to the canonical text by de Boor [12].

The purpose of MFA is to construct the B-spline that minimizes
the root mean squared (RMS) error between a set of values and the
spline’s approximation to those values. Given a set of point-value
pairs {u;, f;}, a degree p, and a set of knot locations {t;}, the best-
fit B-spline is the B-spline function F that solves the minimization
problem:

1 m—1 1/2
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MFA can also construct a B-spline model using an adaptive feed-
back loop. Fig. 1 (right) reproduces the pipeline to construct an MFA
model from the raw input data with an adaptive refinement algorithm.
MFA begins by rescaling input data points to the interval [0, 1] and
initializing a knot distribution with a small number of control points.
The loop begins by computing the best-fit B-spline given the coarse
distribution of knots, and checking if the desired error tolerance is
achieved. If not, MFA repeatedly adds new knots, computes a new
best-fit B-spline over the new knots, and checks the error again. The
process ends when the resultant B-spline has the desired pointwise
errors, or a maximum number of knots are added.
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Figure 1: Left: a 1-dimensional B-spline curve (top), and a 2-
dimensional B-spline surface (bottom). P; are control points, control
meshes are in black, approximated curve/surface are in green. Right:
an overall MFA model pipeline reproduced from [42, Fig. 1.4].

B-Splines in higher dimensions. The preceding discussion can
be extended to 2- and higher-dimensional data with tensor-product
B-splines. In a tensor-product B-spline, the basis functions are
still bump functions and are formed by multiplying 1-dimensional
B-spline basis functions from each dimension together. For a 2-
dimensional case, a B-spline of degree p has two sets of knots

{tj(ll)};lll:g and {t<.22) };’22:6’ for the x and y dimensions, respectively.



The 2-dimensional basis functions are of the form Nj, j,(u,v) =
Nj(.]UP(M)NJ(.Zz)p(v). Consequently, the mathematical expression for
a 2-dimensional tensor-product B-spline is as follows, visualized

in Fig. 1 (left bottom),
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For the general d-dimensional case, the form of a tensor-product B-
spline is
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In one dimension, the term “knot span” refers to the subinterval
[tj,¢j+1] between any two adjacent knots. In higher dimensions, a
knot span refers to the tensor product of 1-dimensional knot spans.
Thus a d-dimensional span would be a region like
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Strong convex hull property. Unlike other continuous models for
scientific data, B-splines have a useful property that can be leveraged
to dramatically accelerate the extraction of critical points. The idea
behind the strong convex hull property of B-splines is that, within
a given knot span, the values of the spline function are entirely con-
tained within the convex hull of the neighboring control points. More
specifically, we can say the following:

Theorem 1 (Strong Convex Hull Property) If (uy,-
1)
ir!

-,ud) is a point
in the span [t;”,1; ] % [tjd ’1/+l] then F(uy,--- ,ug) lies in

the convex hull defined by control points Py, .. ,, where j; < hy <
Jitp for1 <I<d.

3.2 Critical Point Extraction

Newton’s Method, also known as the Newton-Raphson method, is a
widely used numerical algorithm to find the roots of a differentiable
function.

Suppose f: R — R is a differentiable scalar function. Starting
with an initial guess of a value xp, the iterative process is repeated as

Vf(xn)_lf(xn)v ©)

where 7 is the iteration number, x;, is the current estimate of the root,
and Vf(x,) is the gradient of f at x,,. The iteration stops after step n
when ||V f(x,)|| is smaller than a predefined threshold €.

MFA is a continuous polynomial function, and its high-order
derivatives can be calculated analytically. Suppose f : RY — R is
a general differentiable function defined on a d-dimensional domain.
Finding the critical points of MFA is equivalent to solving the equa-
tion V f(x) = 0. Newton’s method fits well in this scenario. Starting
with an initial guess, a d-dimensional vector x, the iterative formula
is

Xn+1 = Xn —

'V f(xn). (6)

Here, x,, is a d-dimensional vector at the nth iteration, H (x,) ! is the
inverse of the Hessian matrix of f at x,, Vf(x,) is the gradient of the
function f at x,,. Iteration terminates when ||V f(x,)|| < €.
Critical points. Geometrically, the goal of studying critical points is
to extract features surrounding them that help scientists understand
and represent data for downstream analysis (e.g., [4]). Critical point
detection is the identification of extrema and saddles that assists in
understanding the topology of a scalar field.

Morse theory [38] is a mathematical tool to detect and classify
critical points. Given a function f : M — R defined on a smooth

Xp+1 =Xn —H(xy)™

manifold M, the gradient V f vanishes at a critical point p. A critical
point p is non-degenerate if its Hessian matrix H(p) is not singular.
A Morse function requires all its critical points to be non-degenerate
and have distinct function values. The index A (p) of a critical point p
is defined by the number of negative eigenvalues of its Hessian H (p):
local maxima have zero negative eigenvalues, local minima have all
negative eigenvalues, and saddles have some (but not all) negative
eigenvalues. Extraction critical points in a PL setting is described in
the supplement.

4 METHOD

Our CPE-MFA framework consists of three main stages. First, we
bypass spans devoid of critical points and work with the remaining
valid ones. Second, we utilize Newton’s method to extract critical
points from each valid span. Since each piecewise functional is a
polynomial, we use its closed-form derivative to obtain the critical
points, greatly reducing the complexity of Newton’s method. Finally,
we remove duplicated critical points using spatial hashing.
CPE-MFA is designed for seamless integration with multithread-
ing to enhance its efficiency in span filtration and critical point ex-
traction from spans. In these two stages, each span can be processed
independently, which naturally aligns with multithreading.

4.1 Span Filtration

By applying the strong convex hull property of B-splines (c.f.
Sec. 3.1), we are able to quickly determine that some regions in the
domain cannot possibly contain a critical point. This allows us to ex-
clude these (potentially large) regions from our fine-grained search
for critical points.

First, we note that the derivative of B-spline function is also a B-
spline function [44]. The partial derivative of Eq. (3) with respect to
the first dimension is:
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Partial derivatives in the other directions follow by analogy. We ab-
breviate the derivative notation as d;F = a‘i F.

To locate all critical points of the B-spline defined in Eq. (4),
we will identify points where every first partial derivative is zero.
But since the partial derivatives of a B-spline are also B-splines, the
problem of finding vanishing partial derivatives simply reduces to the
problem of finding roots of the associated “derivative B-spline.”

For each dimension, we compute the derivative spline us-
ing Eq. (7). Next, we scan the control points of the derivative spline
to find regions in the domain that cannot contain zero values; if the
derivative spline is not zero in this region, then there cannot be a crit-
ical point in this region. To achieve this, we utilize the strong convex
hull property.

Consider an individual knot span and a direction /. From The-
orem 1, we know that throughout this entire span, the value of the
derivative spline d;F is within the convex hull of its neighboring con-
trol points. Should this convex hull fail to encompass zero, it must
follow that d;F never vanishes within this knot span. Thus, this knot
span cannot contain a critical point. Therefore, by iterating through
each span and computing the convex hull of the associated control
points, we can find spans guaranteed to not harbor a zero derivative
in at least one dimension. By excluding all of these spans, we can
focus our search only on spans that may contain critical points.



This span filtration stage significantly streamlines the computa-
tional effort by discarding spans that do not contain critical points.
As a result, this focused strategy not only saves computational re-
sources but also time, enhancing the efficiency of extracting critical
points.

4.2 Critical Point Extraction in a Single Span

For a point (uy,--- ,ug) in the span [u;,,u;, 1] X -+ X [wj,, uj,+1], the
polynomial function f := F(uy,--- ,uy) is decided by control points
Py, ... n,- The derivative of this polynomial function f, described in
Eq. (7), is crucial for extracting critical points in the span.

Specifically, the critical points are identified by locating all points
in the span whose first derivatives are zero in every dimension. MFA
provides accurate high-order derivatives. Given the availability of the
first and second derivatives of f, Newton’s method becomes a natural
choice for finding zeros of the first derivative of MFA.

Critical points within each span are computed using Newton’s
method, detailed in Algorithm 1, with a set of initial points X uni-
formly sampled in the span. We sample (p + 1)" initial points in
each span. Let i, be an upper bound on the number of iterations
using the Newton’s method. We set iy, = 20 to ensure convergence,
although the average number of iterations is often much lower as
shown in Tab. 3. During an iteration of Newton’s method, if a point
moves beyond a certain distance £ from the center of the span, then it
is unlikely to return (as a critical point), prompting the termination of
the iteration to enhance the efficiency of the algorithm. In our exper-
iments, setting & to be five times the span’s diagonal length appears
to be adequate. We focus on extracting non-degenerate, isolated crit-
ical points with non-zero (> &) determinant of the Hessian matrix.
We choose 8 = 10~!3 to be a sufficiently small positive number that
strikes a balance between precision and efficiency.

Throughout the process, when we identify a critical point within a
span, we compare it against the set of already identified critical points
Z within the span. If the distance from newly identified critical point
x to the existing points in Z is less than 7, we consider this point
to be a duplicate and ignore it. Otherwise, if x is within the span,
we include it into the list of critical points Z. € is the threshold to
decide if the gradient is small enough to stop the iteration. 7 and €
are user-defined parameters discussed in Sec. 5.

Algorithm 1 Critical Point Extraction in a Single Span

Require: An input span s, and a function f defined on the span.
Ensure: A set of critical points Z in the span s.

1: Z=0.

2: Uniformly sample a set of initial points X in the span s.

3: Compute the center ¢ of the span s.

4: for all initial point x € X do

5: i=0,x;=x

6: while i < i, do

7: if det(H (x;)) < O then

8: break

9: Xip1 =X —H ' (x;)Vf(x;), H is the Hessian matrix.
10: if ||xir1 —c|| > & then
11: break
12: if ||Vf(xi11)|] < € then
13: if [|xi+1 — || > 7,Vy € Z and x;;| € s then
14: Z =ZJxit1
15: break

4.3 Duplication Removal

After removing duplicated critical points within each span in Algo-
rithm 1, there may still be duplicates near the junctions of spans.
We address this issue by introducing spatial hashing. Assuming that
critical points within a distance less than 7 are considered to be du-
plicates, our duplication removal algorithm ensures that such points
are assigned to the same hash buckets.

For a point x = (x,---,x4), we would like to “snap” it to the
nearest integer grid point and apply spatial hashing. To do so, let
k= 5z = (ki,--- ,kq). We consider a hash index associated with x,
I=(I;,---,1;). Depending on the approximation, each I; can have
two distinct values | ;] and [k;]. We choose k = -, and two round-
ing methods (floor and ceiling) so that x shares at least one hash index
with all points within a distance 7.

By choosing floor or ceiling for each dimension /;, we obtain a
set of hash indices, Z = {I}, where there are 2¢ distinct hash indices
in Z. For each I € Z, we employ boost: :hash_combine() from
the Boost C++ Libraries as the hash function to compute the hash
values V for I. Finally, we compare x to all the points y already in
the hash buckets determined by V. If x and y are less than 7 apart,
then x is flagged as a duplicate. The pseudocode for spatial hashing
is available in the supplement.

4.4 Time Complexity

We give a summary of complexity here; see the supplement for de-
tails. In span filtration, p(p -+ 1)?~! control points are utilized in ev-
ery span of the first derivative. The cost of span filtration is O (dp?n),
where 7 is the number of spans. Each iteration of Newton’s method
involves computing the Hessian and gradient at O (d? pd) and solving
linear system at O(d*). Since (p+ 1)¢ initial points are used in each
span, the cost of finding critical points in all spans is O(imaxd2 pzdn),
whereas the spatial hashing takes O((2p)?dn). When p > 2, the
overall time complexity is (’)(inwd2 pZdn). In practice, p,d < n (and
can be treated as constants). In all the experiments conducted, more
than 95% of the time was spent finding critical points using Newton’s
method, corroborating the analysis of time complexity.

5 EXPERIMENTAL RESULTS

We perform a sanity check for the validity of our framework with
a synthetic dataset (Sec. 5.1) followed by a number of scientific
datasets in 2D (Sec. 5.2 and Sec. 5.3) and 3D (Sec. 5.4 and Sec. 5.5)
with complex topological features. We employ adaptive fitting
MFA [43] and use degree-3 and degree-2 polynomials for the syn-
thetic and scientific datasets, respectively. After fitting an MFA
model into a discrete dataset, the MFA model serves as the input
and basis for all further experiments.

Implementation. We conduct experiments on a desktop equipped
with an Intel 3.5 GHz Core i9 CPU featuring 8 hardware cores and
8 threads, along with 32 GB of DDR4 RAM. Our code is compiled
using g++ version 11.4.0 with -O3 optimization. We use threading
building blocks (TBB) for parallelization. TBB balances the work-
load in every thread dynamically. The number of threads is set to be
the number of hardware cores.

TTK. The Topology ToolKit (TTK) [57] is a toolbox for topolog-
ical data analysis. TTK assumes that the input data is a piecewise
linear (PL) scalar field f defined on a PL manifold M of dimension
2 or 3 (e.g., a mesh interpolating a discrete set of points). f has
value at the vertices of M, and is linearly interpolated on the higher-
order mesh elements. In the PL setting, a vertex is regular if both
its lower link and upper link are simply connected; otherwise, it is
a critical point of f. TTK extracts critical points from M that com-
ply with a discrete gradient [57]. We call these critical points the PL
critical points, to differentiate them from those extracted from MFA
using our approach. From an implementation perspective, we call
the ttkScalarFieldCriticalPoints() function from TTK [58]
to extract PL critical points from a PL function defined on a mesh.
Evaluation. Our initial objective is to evaluate whether our CPE-
MFA framework could extract all critical points from each scientific
dataset. However, since the “ground truth” critical points from each
dataset are unknown, we evaluate the output of CPE-MFA against
those obtained by applying TTK to an MFA model. We aim to
demonstrate that critical points extracted by our approach align well
with the expectation. That is, the critical points extracted from an



MFA model using our approach are similar to those extracted by a
different critical point extraction method (e.g., TTK) applied to the
same MFA model. The results of TTK are used as a reference, not as
the “ground truth”.

First, we apply MFA to obtain a continuous implicit model. Sec-
ond, we extract critical points from the MFA model using our ap-
proach based on Newton’s method; this process is called CPE-MFA.
Third, since TTK is not natively equipped to extract critical points
from continuous implicit models, we construct a PL dataset by sam-
pling a set of discrete points from the MFA model, and apply TTK
to compute its PL critical points. We assume that a higher resolution
PL dataset aligns more with a continuous model and captures the
critical points more accurately. This process is called TTK-MFA. In
summary, CPE-MFA processes critical points as elements of a con-
tinuous model, whereas TTK-MFA operates on a PL dataset sampled
from an MFA model.

Despite the fundamental difference between these two approaches,
the TTK-MFA output provides a valuable reference for assessing
the effectiveness of CPE-MFA. We demonstrate across all scientific
datasets in this paper that despite minor differences, CPE-MFA criti-
cal points are similar to those from TTK-MFA.

Technical details. For TTK-MFA, we sample a PL dataset (with a
grid size of 1) from the MFA model that is identical in size to the orig-
inal input data, to maintain consistency in our comparative analysis.
Thus, in Secs. 5.2 to 5.5, we set a threshold 7 = 0.999 for duplica-
tion removal in CPE-MFA, based on the grid size 1 to sample the PL
dataset for TTK-MFA. TTK-MFA may identify some points on the
boundary of the domain to be critical points (referred to as boundary
critical points) due to partial neighborhood information. However,
it cannot be ascertained that these points are genuine critical points
with zero gradient. Therefore, we exclude boundary critical points
identified by TTK-MFA in our result presentation.

To quantitatively evaluate the similarity, we utilize the Jaccard

index, defined as %, where |A| and |B| are the number

of critical points from CPE-MFA and TTK-MFA, respectively, and
|ANB| denotes the number of critical point alignments. A critical
point from CPE-MFA is aligned with one from TTK-MFA if they are
less than a grid size apart from each other (and thus considered to be
co-located).

Datasets and blocks. For each scientific dataset, visualized in Fig. 2,
we extract three blocks of data to highlight the extracted critical
points from both CPE-MFA and TTK-MFA. The sizes and locations
of these blocks are described in the supplement.

Original  Actually Evaluated Skipped
Dataset #Spans #Spans (%) #Spans (%)
CESM 276740 43039 (15.55%) 233701 (84.45%)
S3D 44377 9908 (22.33%) 34469 (77.67%)
QMC 18432 8229 (44.65%) 10203 (55.35%)
RTI 1741932 1707319 (98.01%) 34613 (1.99%)

Table 1: Results of span filtration, reporting the number of original
spans, the number of spans (and percentage) actually being evaluated,
and the number of spans (and percentage) being skipped during the
optimization.

Span optimization. We report the number of spans identified in each
dataset before and after the span filtration process, as shown in Tab. 1.
Our optimization process ignores a substantial number of spans (up
to 84%). Even for the most complex RTI dataset (Sec. 5.5), a number
of spans are excluded from the final phase of critical point extraction.
These exclusions highlight the effectiveness of our span filtration pro-
cess in reducing irrelevant or redundant spans, thus substantially ac-
celerating the overall critical point extraction algorithm.

Running time. Finally, we report the running time of CPE-MFA and
TTK-MFA for all scientific datasets in Tab. 2.

|7
400400

Figure 2: Scientific datasets: CESM (top), S3D (middle left), QMC
(middle right), and RTI (bottom).

Block CPE-MFA TTK-MFA | CPE-MFA TTK-MFA
original original upsample upsample
CESM

Entire domain 3.30 1.66 343 -
A 0.314 0.0759 0.391 7.305
B 0.187 0.0724 0.189 7.720
C 0.122 0.0823 0.122 7.306

S3D

Entire domain 0.554 0.101 0.560 -
A 0.017 0.0256 0.017 0.756
B 0.169 0.0228 0.169 0.772
¢ 0.169 0.0289 0.167 0.773

QMC

Entire domain 3.310 0.517 3.375 -
A 0.180 0.0316 0.222 15.247
B 0.149 0.0304 0.151 15.646
C 0.159 0.0316 0.161 16.002

RTI

Entire domain 1003.1 15.50 985.1 -
A 0.887 0.0186 0.876 1.823
B 1.079 0.0165 1.124 1.840
C 1.209 0.0189 1.165 1.973

Table 2: Running time (in seconds) across all scientific datasets. The
upsampling ratio is at 102 for the 2D and 103 for the 3D datasets.

5.1 Schwefel Dataset

A (scaled) Schwefel function is a non-convex function that can be
generated in any dimension [47], that is, for x = [x,x2,...,X4],

d
f(x) = % (418.9829d— insin(\/W)) ) ©)

i=1



where d is the dimension. It serves as a good synthetic
dataset as it is complex and contains many local minima.
There are (2k —2)? non-degenerate critical points in the domain
[— ((k+ %)7[)27((k+%)7t)2]d, where k is a natural number. We
scale the function by 1/2 for a better visualization. Among all the
critical points, there are (k — 1) local maxima, (k — 1)¢ local min-
ima, and 2(k — 1)? saddles.

Figure 3: The Schwefel function with red critical points identified by
CPE-MFA: (left) top view (right) side view.

To evaluate the efficacy of our method, we generate a Schwefel
dataset by sampling from a 2D Schwefel function uniformly, select-
ing 200 points within the domain [—2400,2400]. Theoretical anal-
ysis predicts the existence of 900 critical points in this domain. We
apply MFA to this dataset with a polynomial degree of 3 and 1002
control points. Using a span filtration, 2809 spans are identified for
critical point extraction out of all 9409 spans. As shown in Fig. 3,
CPE-MFA accurately identifies 900 critical points, aligning perfectly
with the theoretical expectation. Meanwhile, CPE-MFA successfully
classifies them into 225 local minima, 225 local maxima, and 450
saddles. We set 7 to be 107 times the minimum width of each di-
mension in the domain.

Utilizing this dataset, in Tab. 3, we illustrate the impact of € on
both the number of iterations (required by Newton’s method) and the
accuracy of the extracted critical points, accessed by the magnitude
of the gradient. The theoretical average gradient magnitude of crit-
ical points is zero. Setting € = 10~7 achieves an optimal balance
between the number of iterations and the accuracy of the extracted
critical points. This € is tested across several synthetic datasets and
consistently performs well. Therefore, we use £ = 10~ for all the
experiments.

€ 1073 1073 1077 100 10-1t
Avg #itr 3.16 3.51 3.78 391 19.34
Avg gradmag  9.00e™>  7.91le”7  2.20e™°  1.36e 10

Table 3: Average number of iterations and average gradient magni-
tude of the extracted critical points with different . When £ = 10711,
Newton’s method cannot find all critical points within iy, = 20 iter-
ations.

5.2 CESM Dataset

The Community Earth System Model (CESM) offers comprehensive
global climate data, spanning the Earth’s land, oceans, atmosphere
and sea ice. Our analysis focuses on the FLDSC variable, which
represents the clear-sky downwelling long-wave flux on the surface,
within the Community Atmosphere Model (CAM) developed at the
National Center for Atmospheric Research (NCAR) [39]. The CESM
dataset we use comprises a 3600 x 1800 2D domain, with each grid
point representing a singular value of the FLDSC variable.

For qualitative and quantitative analysis, Fig. 4 visualizes the crit-
ical points identified by both methods, whereas Tab. 4 reports their
numbers, position and type alignments. In Figs. 4 to 7, critical points
where CPE-MFA and TTK-MFA align are depicted in yellow. The
critical points exclusive to TTK-MFA are colored in purple, and those
exclusive to CPE-MFA are shown in pink. In Fig. 4 A, B, and C, the
extracted critical points from CPE-MFA and TTK-MFA mostly align

with each other (observing all yellow points), with small discrepan-
cies between the two methods across all three blocks. The Jaccard
indices between these two sets of critical points are shown in Tab. 4
(original), valued at 0.76 for the entire dataset, and 0.76,0.74,0.75
for blocks A, B, and C, respectively.

There are minor discrepancies (misalignments) in certain regions
where critical points are detected by one but not the other method (see
independent purple or pink points within the boxes 1,2, and 3, with
zoomed-in views). We hypothesize that these discrepancies are due
to the sampling process that generates a PL dataset for TTK, which
may not capture all the features from the continuous MFA model and
may contain spurious critical points due to the PL approximation. We
hypothesize further that upsampling the PL dataset will improve the
alignment between the two methods.

To validate this hypothesize, we increase the sampling resolution
for TTK to better preserve the features of MFA. By applying an up-
sampling ratio of 10?, we expand the size of the PL dataset in every
dimension by a factor of 10 relative to the original sampling reso-
lution. Critical points extracted using TTK from the upsampled PL
dataset demonstrate improved alignment between the two methods,
see Fig. 4 A*, B¥, and C*, as well as zoomed-in boxes: 1 vs 1%, 2
vs 2%, and 3 vs 3*. As shown in Tab. 4 (upsample), the number of
perfectly aligned critical points increases with upsampling, and the
Jaccard indices (upsample) also increase from around 0.75 to 0.86
across all three blocks. For points that do not align, we observe
closely situated points in different colors.

For the remaining misaligned critical points, an increased upsam-
pling ratio of 10* gives rise to perfectly aligned critical points be-
tween the two methods in these regions (results not shown).

In summary, the improved alignment with upsampling validates
our hypothesis regarding the initial discrepancies.

Details on critical point alignment. Tab. 4 reports the number of
critical points identified by CPE-MFA and TTK-MFA, respectively.
The column TTK-MFA original lists the number of critical points
identified by TTK-MFA in the original resolution (= 1). To ensure
comparability between the results of CPE-MFA from a continuous
model and those of TTK-MFA from the corresponding PL dataset,
we align T with the grid size. Thus, the column CPE-MFA origi-
nal displays the number of critical points detected by CPE-MFA at a
duplicate removal threshold T = 0.999. The column TTK-MFA up-
sample reveals the number of critical points identified by TTK-MFA
after upsampling at a ratio u = 10%. Correspondingly, the column
CPE-MFA upsample uses a threshold of 7 = 0.0999 under the same
upsampling condition.

Highlighted results. We would like to emphasize that we do not ex-
pect the critical points to align perfectly between the two methods, in
both locations and quantities, since they are fundamentally different
extraction methods. Using TTK-MFA extracted critical points as a
reference, we demonstrate a strong alignment between the two sets
of critical points (in terms of location and type), indicating the va-
lidity of our CPE-MFA framework. Furthermore, as we increase the
upsampling ratio for TTK, the alignment between the two sets of crit-
ical points improves, validating our hypothesis that the discrepancies
are due to the sampling resolution (thus approximation quality) for
TTK.

5.3 Turbulent Combustion Dataset

The dataset is from a turbulent combustion S3D simulation [10] that
models the combustion of a fuel jet influenced by an external cross
flow [17, 20, 42]. The simulation uses a 3D domain of size 704 x
540 x 550. The variable of interest represents the magnitude of the
3D velocity within the domain. For our experiment, we use a 2D
cross-section of the dataset of size 704 x 540.

The critical points extracted by CPE-MFA and TTK-MFA are vi-
sualized in Fig. 5 A, B, and C across all three blocks. Mirroring
similar observations from the CESM dataset, we observe reasonable
critical point alignments between the two methods, despite minor dis-



Figure 4: CESM dataset with critical points identified by CPE-MFA and TTK-MFA. Top: critical points from blocks A, B, and C, respectively.
Middle: critical points from upsampled blocks A, B, and C (labeled as A*, B*, and C*), respectively, with a ratio of 102. Bottom: zoomed-in
views of regions in the domain with and without upsampling (at a ratio of 10%).
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Figure 5: S3D dataset with critical points identified by CPE-MFA and TTK-MFA. Top: critical points from blocks A, B, and C, respec-
tively. Middle: critical points from upsampled blocks A, B, and C (labeled as A*, B*, and C*), respectively, with a ratio of 10%. Bottom:
(1,1*,2,2*,3,3%): zoomed-in views of regions in the domain with and without upsampling at a ratio of 10%; (a**, b**): better critical point
alignments (in regions a*, b*, respectively) after upsampling at a ratio of 10*.

crepancies; see the zoomed-in views of boxes 1, 2, and 3 with blocks
A, B, and C, respectively. The number of critical points and their
similarities (reported as Jaccard indices) are shown in Tab. 4.

Again, these discrepancies can be mitigated following an upsam-
pling for TTK at a ratio u = 10?. As shown in the zoomed-in boxes
2 vs. 2* and 3 vs. 3* in Fig. 5, the critical points from both methods
become more aligned in these regions with upsampling. In box 1%,
even though each method has an unaligned point, the points nearly
overlap with each other. The distance between these two points is

smaller than the distance between the corresponding points in box 1.
Thus, points in box 1* is more aligned than in box 1. The Jaccard
indices among the two sets of critical points also increase drastically
with upsampling, as shown in Tab. 4.

A few discrepancies remain (at an upsampling resolution 102),
they are highlighted in regions enclosed by small red boxes labeled
as a* and b*. Critical points in these re§ions become more aligned
with further upsampling at a ratio of 10%; see the zoomed-in views
of a**, b** in Fig. 5. For all unaligned points, nearly overlapping



CPE-MFA TTK-MFA Aligned Jaccard index CPE-MFA TTK-MFA Aligned Jaccard index
Block .. . .
original #cp  original #cp #ep / type original upsample #cp ~ upsample #cp  #cp / type upsample
CESM (2D)

Entire domain 7940 8759 7204 /7149 0.76 8549 - - -
A 714 765 641/636 0.76 783 865 7671766 0.87
B 421 461 374 /373 0.74 473 527 461 /461 0.86
C 208 218 1837182 0.75 228 254 2237222 0.86
D 623 676 553 /551 0.74 688 772 664 /661 0.83
E 636 703 5917588 0.79 684 801 6741672 0.83

S3D (2D)

Entire domain 1317 1732 1150/ 1116 0.61 1569 - - -
A 27 31 25/24 0.76 27 36 26/26 0.70
B 485 646 415 /405 0.58 608 813 596 /595 0.72
C 450 552 379 /363 0.61 562 717 541/536 0.73
D 72 98 70/ 68 0.70 74 100 73173 0.72
E 44 62 43/43 0.68 45 63 44 /44 0.69

QMC (3D)

Entire domain 210 262 167/ 161 0.55 244 - - -
A 64 61 46 /45 0.58 75 91 73773 0.78
B 14 20 13/11 0.62 14 52 14/ 14 0.27
C 23 20 17/17 0.65 26 29 2517125 0.83
D 9 17 9/9 0.53 9 13 8/8 0.57
E 9 10 715 0.58 10 10 10/10 1.00

RTI (3D)

Entire domain 711504 670156 425906 /292248 0.45 1258055 - - -
A 118 81 61/50 0.44 181 253 161/ 156 0.59
B 438 292 256 /172 0.54 827 1352 7357710 0.51
C 415 344 280/ 185 0.58 807 1198 733 /712 0.58
D 503 315 2897186 0.55 952 1482 858 /825 0.54
E 467 346 300/211 0.58 852 1223 771/753 0.59

Table 4: Number of critical points (#cp) extracted by CPE-MFA and TTK-MFA within each of the four scientific datasets as well as their

corresponding selected blocks: original #cg
critical points at an upsampling ratio of 10

shows the number of critical points at the original resolution; upsample #cp shows the number of
for the 2D and 103 for the 3D datasets; aligned #cp shows the number of critical points perfectly

aligned between the two methods; aligned type shows the number of aligned critical points that share the same critical point type; Jaccard
index reports the similarity between the two sets of critical points extracted from CPE-MFA and TTK-MFA respectively. Critical points
from TTK-MFA in the upsampling setting are not reported as it runs out of memory when processing the large data. We add two additional
randomly selected blocks (block D and block E) per dataset to collect more statistics on the distributions of critical points.

points in different colors can be found. As the threshold for align-
ment decreases with upsampling, the criteria for alignment become
increasingly stringent. For critical points in a** and b**, even if they
do not align, they remain very close to each other.

Highlighted results. Recall that TTK-MFA extracts critical points
from PL dataset sampled from an MFA model, whereas CPE-MFA
extracts critical points directly from the same continuous MFA
model. The output from TTK-MFA depends on the sampling res-
olution, whereas the output of CPE-MFA does not depend on dis-
cretization or sampling. However, we do observe an increase in the
number of critical points from CPE-MFA as we increase the sam-
pling resolution. This is because we decrease the threshold used to
remove duplicates to be aligned with the upsampling resolution. The
key observation is that as the sampling resolution increases, the result
of TTK-MFA becomes more aligned with that of CPE-MFA. Since
CPE-MFA operates directly on a continuous model, its output is not
severely impacted by discretization or sampling, as does TTK-MFA.

5.4 Quantum Monte Carlo Dataset

The QMC (or QMCPACK) dataset [61] comes from an open-source
Quantum Monte Carlo program designed for high-level ab initio
calculations of the electronic structure in atoms, molecules, solids,
and 2D nanomaterials [24]. The dataset we use comes from a
69 x 69 x 115 x 288 Einspline dataset in QMC. We choose the 10th
orbit among all the 288 orbitals as the 3D scaler field of interest.
The results of this 3D dataset are presented in Fig. 6 and Tab. 4. As

shown in Tab. 4, we observe that at the original resolution, there are
some reasonable alignments between the two methods. Specifically,
in the entire domain, 80% of CPE-MFA critical points align with 64%
of TTK-MFA critical points, giving a Jaccard index of 0.55 between
the two sets of critical points.

To facilitate clearer observation, we display results only within
specific value ranges. For block A in Fig. 6, points with
value in [—6.4¢~% 1¢=3] are shown. For block B, the range is
[—2.5¢7%,2¢73], and for block C, it is [-6.3¢~¢,6.3¢7>]. As shown
in Fig. 6 A*, B*, and C* respectively, upsampling with ratio 10°
greatly reduces the discrepancies.

For an in-depth investigation, for the discrepancies observed with
an upsampling ratio at 103, we could apply a higher upsampling ratio
at 10° for TTK-MFA to obtain further improved critical point align-
ment. For instance, within the red cube 1 from Fig. 6 A* at an upsam-
pling ratio of 103, there are unaligned points from both TTK-MFA
and CPE-MFA. Upon increasing the sampling ratio to 10%, all points
from CPE-MFA align, the unaligned TTK-MFA points are very close
to an aligned CPE-MFA point, as shown in Fig. 6 1*. Similar results
appear in 2 vs. 2*. In cube 3*, corresponding to the red cube 3, the
unaligned point from CPE-MFA and TTK-MFA are almost aligned.
Highlighted results. The above results suggest that upsampling ef-
fectively bridges the gap between the sampled PL-dataset used by
TTK-MFA and the continuous model used by CPE-MFA. This ex-
periment confirms the efficacy of CPE-MFA in identifying critical
points from MFA.
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Figure 6: QMC dataset with critical points identified by CPE-MFA
and TTK-MFA. Top: critical points from blocks A, B, and C, respec-
tively. Middle: critical points from upsampled blocks A, B, and C
(labeled as A*, B*, and C*), respectively, with a ratio of 103. Bot-
tom: better critical point alignments 1*, 2*, 3* (in regions 1, 2, 3,
respectively) after upsampling at a ratio of 10°.

5.5 Rayleigh-Taylor Instability Dataset

When two fluids of different densities interact with each other, and
the lighter fluid pushes the heavier fluid under constant acceleration,
the phenomenon called the Rayleigh-Taylor instability [31] emerges.
We use a 3D RTI dataset generated by simulating this instability with
a CFDNS [30] Navier-Stokes solver. We use the velocity vector mag-
nitude as the scalar field of interest. We sample a single time step
within a domain of size 144 x 256 x 256.

Fig. 7 and Tab. 4 display the results of CPE-MFA and TTK-MFA
across all three blocks. This is a particularly challenging dataset due
to the complexity of the flow, which gives rise to densely distributed
critical points. We set the display range for point value in blocks
A, B, and C to [8,16], [2,5], and [8,13], respectively. We observe
some critical point alignment, see Fig. 7 A, B, and C. Upsampling
with a ratio of 10% has proven effective in reducing the discrepancies
between the two methods; see Fig. 7 A*, B*, and C*.

Upsampling further at a ratio of 10 aligns the critical points better

in highlighted regions (red cubes 1, 2, and 3). All unaligned critical
points in cube 1 become perfectly aligned after upsampling, shown
in 1*. Compared with cube 2, the purple and pink points in 2* are
almost overlapping. Although they do not align under the stringent
threshold for the upsampled data, their positions are very close to one
another. Similar results are observed in cubes 3 and 3*.
Highlighted results. The RTI dataset is topologically the most com-
plex one in our experiments. We observe a reasonable alignment
between the two sets of critical points extracted by CPE-MFA and
TTK-MFA both qualitatively in Fig. 7 and qualitatively in Tab. 4, in-
dicated by Jaccard indices between 0.44 and 0.58 in the original res-
olution. Upsampling for the TTK-MFA further improves the align-
ment, again, showcasing the efficacy of our method.

6 CONCLUSION AND DISCUSSION

We introduce CPE-MFA, the first framework in extracting critical
points from multivariate functional approximation (MFA) models of
large-scale datasets. Our framework processes the continuous MFA
models directly without resampling or discretization, utilizing multi-
threading. The framework’s ability to bypass spans devoid of critical

©Alignment @TTK-MFA @CPE-MFA

Figure 7: RTI dataset with critical points identified by CPE-MFA
and TTK-MFA. Top: critical points from blocks A, B, and C, respec-
tively. Middle: critical points from upsampled blocks A, B, and C
(labeled as A*, B*, and C*), respectively, with a ratio of 103. Bot-
tom: better critical point alignments 1*, 2*, 3* (in regions 1, 2, 3,
respectively) after upsampling at a ratio of 10°.

points further enhances its efficiency. Although our experiments fo-
cus on 2D and 3D datasets, our framework is dimension independent
and generalizes easily to high-dimensional data. We demonstrate the
effectiveness of CPE-MFA across various scientific datasets. This
is the first step toward enabling continuous implicit models such as
MFA to support topological data analysis at scale. In the future, we
are interested in leveraging our current findings to extract topological
descriptors from MFA models, such as contour trees and Morse com-
plexes. We will also explore how critical points vary with different
MFA approximation levels.

Our framework has its limitations. Since TTK is a widely-used
tool for critical point extraction, we compare our CPE-MFA results
against those obtained by TTK based on a PL interpolation of points
sampled from an MFA. Alternatively, we could also compare against
trilinear interpolation (e.g., following Globus et al [19]). Note that PL
and trilinear interpolation work with points sampled from an MFA
model, thus they do not perfectly approximate the continuous do-
main. They serve as references, not as ground truth for critical point
extraction. For certain dataset, even though the Jaccard index is low
between CPE-MFA and TTK-MFA, (almost) all critical points from
CPE-MFA are aligned with TTK-MFA. However, TTK-MFA tends
to extract more (spurious) critical points than CPE-MFA (c.f., Tab. 4)
due to the noisy PL reconstruction of an MFA model (e.g., critical
points lie in adjacent zigzags). Applying persistence simplification to
the PL approximation might remove spurious critical points of TTK-
MFA, thus increasing the Jaccard index. This is left for future work.

Recall a critical point x is isolated if there is a neighborhood U
around x and x is the only critical point in U; otherwise, it is non-
isolated. Our framework only handles isolated critical points, but not
non-isolated ones (e.g., a manifold of critical points). Additionally,
we omit boundary critical points at the moment, which might not
have zero derivatives. Furthermore, the choice of initial points for
Newton’s method may affect the results. For some MFA models, we
may need more initial points in a span to extract all critical points. Fi-
nally, Bézier clipping [48] (also known as interval Newton’s method)
offers an alternative approach for root finding with guaranteed con-
vergence. It utilizes the convex hull properties of Bézier curves and
iteratively subdivides the domain to narrow down the root-finding re-
gion. Replacing Newton’s method with Bézier clipping in our frame-
work will be an interesting future direction.
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A DETAILS ON SCIENTIFIC DATASETS

For each scientific dataset, we extract three blocks of data to highlight
the extracted critical points from both CPE-MFA and TTK-MFA. The
sizes and locations of these blocks are detailed in Tab. 5.

Dataset Size Block A

CESM 3600 x 1800 [0,720] x [989,1349]
S3D 704 x 540 [422,633] x [270,431]
QMC 69 x 69 x 115 [48,68] x [48,68] x [40,74]
RTI 144 x 256 x 256 [74,90] x [66,78] x [88,98]

Dataset Block B Block C

CESM [900,1620] x [450,810] [2159,2879] x [1079,1439]
S3D (176,387] x [189,350] [70,281] x [28,189]
QMC [24,44] x [24,44] x [68,102] [41,61] x [7,27] x [34,68]

RTI  [57,73] x [23,35] x [156,166]  [44,60] x [51,63] x [204,214]

Table 5: The sizes of four scientific datasets and the locations of their
corresponding blocks.

B CRITICAL POINT EXTRACTION IN THE PL SETTING

In the PL setting, Banchoff [6] proposed a method to detect criti-
cal points, and Edelsbrunner and Harer [15] gave a detailed descrip-
tion as follows. Assuming the input data is modeled as a scalar
field f defined on a PL manifold M, the sublevel set of the data is
f N (—eo,t] = {x e M| f(x) <t} for some ¢ € R. A proper face T
of a simplex o € M is the convex hull of a non-empty, strict sub-
set of vertices in 6. We call ¢ a proper coface of T and denote it
by T < 0. The star St(v) of a vertex v € M is a set of its cofaces
St(v) = {0 € M|y < o}. The smallest complex that contains the star
is the closed star St(v). The link Lk(v) of v is the set of simplices
in the closed star but not in the star. The link can be thought as the
boundary of a small neighborhood around v. The lower link Lk~ (v)
is a set of simplices in the link whose vertices all have values smaller
than v:

Lk (v)={o e Lk(v)[Vu e o, f(u) < f(v)}. (10)

Correspondingly, the upper link Lk™ (v) is a set of simplices in the
link whose vertices have values larger than v. Vertex v is a PL regular
point if both Lk~ (v) and Lk™ (v) are simply connected. Otherwise, it
is a PL critical point.

In a PL 2-manifold, there are three types of critical points: local
minimum (Lk~ (v) = 0), local maximum (Lk™ (v) = 0), and saddles
(when Lk~ (v) or Lk (v) is not simply connected). We show exam-
ples of lower links in Fig. 8. For a PL 3-manifold, there are four types
of critical points: local minimum, local maximum, and two different
types of saddles.
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Figure 8: From left to right: the lower link of a regular point, a local
maximum, a local minimum, and a saddle.

C PSEUDOCODE FOR SPATIAL HASHING

We provide the pseudocode for spatial hashing used to remove dupli-
cated critical points in Sec. 4.3.

Algorithm 2 Removing Duplicated Critical Points

Require: A set of critical points X and a threshold 7.
Ensure: A set of critical points Q after duplication removal.

1: Y =0, a duplicated set of critical points to be removed from X.

2: for all x € X do
k==

20t
duplicate_label = false
foric [1,d] do
L1 = ki), Tip = [ki]

We obtain all hash indices inaset Z = {I=(Ij,---,I;)} where
each dimension I; is chosen from I; ; or I; ».
8:  for all hash index I € 7 do

A

9: V = boost::hash_combine(I)
10: for all point y in the hash buckets corresponding to V do
11: if ||x — y[| < 7 then
12: Identify x as a duplicated critical point.
13: duplicate_label = true
14: Y =YUnx
15: Goto line 16, exit the two innermost for loops.
16:  if duplicate_label is false then
17: Register x to all the hash buckets corresponding to Z.

18: return Q =X \Y

D DETAILED COMPLEXITY ANALYSIS

In span filtration, for every dimension’s first derivative, p(p +1)4~!
control points are utilized in every span. Let n denote the number of
spans. In the experiments, we consistently maintain p > 2. Within
each span, it is necessary to evaluate all the utilized control points.
The cost of span filtration is O(dp?n). In Newton’s method, the com-
putation cost for every element in the Hessian matrix is O (p? +dp?).
Each iteration of Newton’s method involves computing the Hessian
and gradient at O(d?(p? +dp?)) and solving linear system at O(d>).
Since (p+ 1)¢ initial points are used in each span, the cost of finding
critical points in all spans is O (imaxd?(p*@ +dp3t9)n). During spa-
tial hashing, registration and comparison of at most (p + l)d points
occur 2¢ times per span. The spatial hashing takes O((2p)?dn). In
practical applications, p and d are always 2 or 3 which are much
smaller than 7 (and can be treated as constants). The complexity of
span filtration and spatial hashing are smaller than finding all critical
points via Newton’s method. The overall time complexity of CPE-
MFA is O (ipaxd?® (p* +dp*+?)n), which matches the time complex-
ity of finding critical points in all spans. In all the experiments con-
ducted, more than 95% of the time was spent finding critical points
using Newton’s method, confirming the analysis that this step domi-
nates the overall time complexity.
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