
MSz: An Efficient Parallel Algorithm for Correcting Morse-Smale
Segmentations in Error-Bounded Lossy Compressors

Yuxiao Li , Xin Liang , Bei Wang , Yongfeng Qiu , Lin Yan , and Hanqi Guo

Abstract—This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compres-
sors. Today’s lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in
topology between original and decompressed datasets could potentially result in erroneous interpretations or even incorrect scientific
conclusions. In this paper, we focus on preserving Morse-Smale segmentations in 2D/3D piecewise linear scalar fields, targeting the
precise reconstruction of minimum/maximum labels induced by the integral line of each vertex. The key is to derive a series of edits
during compression time. These edits are applied to the decompressed data, leading to an accurate reconstruction of segmentations
while keeping the error within the prescribed error bound. To this end, we develop a workflow to fix extrema and integral lines
alternatively until convergence within finite iterations. We accelerate each workflow component with shared-memory/GPU parallelism to
make the performance practical for coupling with compressors. We demonstrate use cases with fluid dynamics, ocean, and cosmology
application datasets with a significant acceleration with an NVIDIA A100 GPU.

Index Terms—Lossy compression, feature-preserving compression, Morse-Smale segmentations, shared-memory parallelism.

1 INTRODUCTION

The rapid advancement of high-performance computing (HPC) tech-
nologies has enabled the generation of vast quantities of scientific data,
posing significant challenges to scientists regarding data storage, trans-
mission, and visualization. As such, scientists have recently started
to explore compression, especially error-bounded lossy compression,
to address the data challenges by ensuring efficient data management
and utilization while limiting the amount of distortion introduced by
compression. The adoption of error-bounded lossy compression tech-
niques, exemplified by algorithms like SZ [24, 26, 37, 41, 42], ZFP [27],
and FPZIP [28], offers a pragmatic solution for reducing scientific
data. These methodologies facilitate substantial data reduction while
maintaining a predefined accuracy threshold, thus ensuring the utility of
compressed datasets for immediate analysis and scientific exploration.

However, an emerging issue with lossy compressors is the inability
to preserve topological features such as Morse-Smale (MS) complexes
and merge trees in decompressed data, even with bounded error [25,39].
Topological inconsistencies between the original and decompressed
data may result in misinterpretation of the data, even leading to erro-
neous scientific findings. For example, in molecular dynamics, scien-
tists use MS complexes to segment electron density fields, identifying
regions with chemical bonds or weak interactions [33]. Inaccuracies
in the segmentations (as exemplified in Figure 1) could lead to wrong
interpretations of bonding characteristics and electrostatic interactions.
In combustion research, MS complexes help identify reaction, mixing,
and quenching zones [6, 7]. Erroneous segmentations could lead to
flame structure misinterpretations and subsequently affect the analysis
of combustion efficiency and reaction mechanisms. In the visualization
of Atmospheric Rivers (ARs) [20], elongated bands of water vapor
transport that originate from the tropics to North America and cause
flooding, scientists characterize the skeleton of ARs with MS complexes
and segmentations to understand the formation and development of
ARs better. In case studies later in this paper, we will further exemplify
how off-the-shelf lossy compressors distort such essential features.
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Even the tiniest variations, however small the compression error
bound is, could induce significant alternations in the MS segmentation,
thereby impacting scientists’ understanding of the data. In Figure 1,
we compress a molecular dynamics dataset using SZ3 and ZFP with
relative error bounds ranging from 10−5 to 10−2, which all introduced
discrepancies of topological segmentations induced by MS complexes
up to 100%; the specific metric measures the discrepancies of segmen-
tations by the percentage of points with a wrong segmentation ID, as
explained later in this paper.

(b) (c)

SZ3

ZFP

(a)

       False critical points

       False segm
entations

Fig. 1: Impacts of lossy compression (SZ3 and ZFP) on MS segmenta-
tions of the Adenine Thymine (AT) dataset: (a) percentages of vertices
with wrong segmentation labels w.r.t different error bound; (b) and (c):
critical points and separatrices in the original data and SZ3’s decom-
pressed data with a relative error bound of 10−3.

This research focuses on preserving Morse-Smale (MS) segmenta-
tions [32] in lossy compression workflows; such segmentations provide
a preview of the Morse-Smale complex. MS segmentation consists
of two significant components of the full MS complex: the extrema
designated for each MS complex region and the boundaries separating
adjacent MS segmentations. Due to the high computational complexity
of the MS complex, MS segmentations are used in diverse applica-
tions because they offer a cost-effective way to visualize topological
segmentation for visualization and analyses.

To tackle inconsistencies of topological segmentations, we introduce
a novel edit-based paradigm for preserving MS segmentations in error-
bounded lossy decompressed data in 2D/3D piecewise linear (PL)
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scalar fields. Unlike existing efforts that preserve other topological
features by tailoring a specific compressor [23, 25, 38, 39], our method
directly edits compression outputs, making it theoretically applicable
to any error-bounded lossy compressors that applications already trust
and engage. These edits also allow us to adjust and verify outputs
recurrently without repeatedly calling compressors with different input
parameters. Specifically, we identify a subset of data that requires
edits, such that the MS segmentation of the decompressed data remains
identical to that of the original dataset, while also guaranteeing the
global error bound. Since each MS segmentation region consists of
a pair of extrema and the points included in the region, our method
mainly focuses on preserving these two features by alternatively fixing
extrema and integral lines until convergence within finite iterations of
the loop: (1) computing the MS segmentation of the current data, (2)
identifying the false data points (false critical or regular points), and
(3) fixing the false data points until one can reconstruct the exact MS
segmentation with the edits during decompression.

We address the performance and scalability of our method with
shared-memory/GPU parallelism. While the efficient parallel computa-
tion of MS segmentation/complex is already a known challenge [32],
the full realization of our vision requires careful parallelization design.
Specifically, a key challenge is handling read-write and write-write
conflicts when multiple threads attempt to modify the data concurrently.
For example, if a vertex is adjacent to two critical points, during the
iteration to fix multiple critical points, two parallel threads could si-
multaneously change the vertex’s value; we use atomic intrinsics to
avoid such conflicts while maintaining high scalability. As part of our
implementation, we also introduce a GPU version of Maack et al. [32]
to boost the overall performance of our workflow. We perform a com-
prehensive performance analysis with CPUs and GPUs on a compute
node of Lawrence Berkeley’s Perlmutter supercomputer. In summary,
the contributions of this paper are multifold:

• A novel edit-based paradigm for preserving MS segmentation
within error-bounded lossy decompressed data in 2D/3D piece-
wise linear scalar fields, theoretically applicable to any existing
error-bounded lossy compressors;

• Efficient shared-memory/GPU parallelism that significantly accel-
erates individual components of our algorithm while addressing
read-write/write-write conflicts;

• Comprehensive evaluation of our method across various datasets,
two off-the-shelf base compressors (SZ3 and ZFP), and parallel
performance on both CPUs and GPUs.

2 RELATED WORK

We review related work on error-bounded lossy compression, topology-
preserving compression, and Morse-Smale complexes.

2.1 Error-Bounded Lossy Compression
Error-bounded lossy compressors can significantly reduce data by al-
lowing bounded pointwise error between the decompressed and orig-
inal data within a user-specified threshold. Note that the number of
points/vertices remains constant from the original to the compressed
data. However, few existing lossy compressors consider topology
features in the decompressed data, which will impact disciplines that re-
quire post hoc analysis of the topological structure, thereby introducing
deviations in the analytical results.

Error-bounded lossy compressors can be divided into prediction-
and transformation-based methods. Examples of prediction-based com-
pressors include the SZ series [8, 9, 24, 26, 37, 41, 42]. For example,
SZ1.4 [37] uses the Lorenzo predictor combined with linear-scaling
quantization to convert prediction residuals into integers, which are
then encoded with customized Huffman coding and lossless compres-
sors like ZSTD [2] and GZIP [1]. QoZ [31] is an optimization of
SZ3, focusing on improving the quality of decompressed data under
dynamic metrics with parameter auto-tuning. It automatically adjusts
the compression based on user-specified quality objectives. FPZIP [28]
allows a specified number of bit planes to be ignored, making the data
distortion controllable on demand. AE-SZ [30] and SRNN-SZ [29] are
examples of prediction-based compressors that use neural networks.

Transformation-based lossy compressors first transform data into
an alternative representation, such as wavelet transformation and ten-
sor decomposition, then compress data in the transformed domain.
For example, ZFP [27] uses a custom orthogonal block transform to
decorrelate data within blocks, transforming original data into sparsely
distributed coefficients. These coefficients are then encoded for efficient
compression, leveraging the reduced complexity of the transformed
data to enhance compression efficiency. TTHRESH [3] is a transform-
based lossy compressor that uses bit-plane, run-length, and arithmetic
coding to compress the transform coefficients of the higher-order sin-
gular value decomposition. SPERR [22] is another transform-based
compressor that uses the CDF9/7 discrete wavelet transform.

Metrics commonly used to evaluate the quality of lossy compres-
sion include mean square root error (RMSE), peak noise-to-signal
ratio (PSNR), and structural similarity (SSIM); see Di et al. [10] for
a comprehensive review of this topic. We further describe metrics for
evaluating MS segmentations later in this paper.

2.2 Topology Preservation in Lossy Compression
Topology preservation is an emerging topic in the context of error-
bounded lossy compression; to our knowledge, our work is the first
attempt toward preserving MS complexes by maintaining the consis-
tency of topological segmentations. For scalar fields, previous studies
primarily focus on contour/merge tree preservation. Yan et al. [39]
introduced TopoSZ to enhance the SZ 1.4 compression algorithm by
integrating topological constraints informed by segmentations induced
by contour trees. Soler et al. [35] developed a topology-controlled com-
pression scheme to adaptively quantize data in individual topological
features to preserve the persistence diagram subject to a persistence
simplification threshold. For vector fields, researchers have attempted
to retain critical points, yet the preservation of topological segmenta-
tions is studied empirically. For example, Liang et al. [23,25] presented
a methodology for preserving critical points in piecewise linear and
bilinear vector fields.

2.3 Morse-Smale Complexes and Segmentations
We summarize related work in MS complexes and segmentations and
leave a detailed review of key definitions in the next section. MS
complexes are a well-studied topological descriptor researched by the
topological data analysis (TDA) and visualization communities. Con-
stituents of MS complexes include critical points (maxima, minima, and
saddles) and separatrices that connect saddles and extrema. The separa-
trices also partition the input manifold into regions with monotonous
subregions, often referred to as MS segmentations.

In general, two flavors exist for MS complex computation: piecewise
linear (PL) Morse theory [4, 12] and discrete Morse theory [14]. We
refer readers to Lewiner et al. [21] for a comprehensive review and
comparison between the two approaches. Our work primarily relies on
the PL-based MS segmentation computation, and we formally review
key assumptions and concepts of PL Morse theory in the next section.

With the PL Morse theory, one can further divide algorithms into
boundary- and region-growing-based approaches. For boundary-based
algorithms, Edelsbrunner et al. [12] first introduced the MS complex for
PL 2-manifolds and 3-manifolds [11]. Gyulassy et al. [18] introduced
the region-growing algorithm for analyzing MS complexes, which is
scalable for 3D or higher dimensions. Banchoff et al. [4] explored the
critical points on PL 2-manifolds by analyzing the paths of the steepest
ascent and descent.

With Forman’s discrete Morse theory, Fugacci et al. [15] proposed
an efficient algorithm for large and high-dimensional simplicial com-
plexes. Gyulassy et al. [17] introduced an algorithm that computes MS
complexes across different data scales and dimensions, which was later
extended to a parallel computing framework [19].

In terms of parallel computation of MS complexes and segmenta-
tions, Beucher et al. [5] utilized watershed transformations to analyze
and construct MS complexes in the context of image processing and
data analysis, which was optimized by Gabrielyan et al. [16] by lever-
aging GPUs. Yeghiazaryan et al. [40] combined path simplification
with watershed transformations for efficiency.



3 BACKGROUND: MORSE-SMALE SEGMENTATION IN PIECE-
WISE LINEAR SCALAR FIELDS

We review key concepts in piecewise linear MS segmentations
(PLMSS) [32]. Formally, for a piecewise linear function (represented
with a triangular/tetrahedral mesh) with a distinct value fi for each ver-
tex i, PLMSS assigns a pair of minimum and maximum labels ⟨mi,Mi⟩
by tracing integral lines along the steepest ascending/descending direc-
tions along mesh edges.
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Fig. 2: Constituents of
MS segmentations.

Critical points in PL scalar fields reside
on the vertices of the underlying triangulation,
and they are extracted and classified based on
the function values of neighboring vertices.
The computation of PLMSS concerns only
minimum and maximum. For example, in Fig-
ure 2(a), vertices with scalar values 0 and 1 are
minimum because their values are the lowest
among their neighbors; likewise, vertices with
16 and 20 are maximum.

Integral lines. In PL scalar fields, integral
lines of gradient vector fields are constructed
by monotonic paths consisting of edges in the
triangulation. For example, in Figure 2(b),
5 → 14 → 15 → 20 is an integral line that ex-
tends toward the highest/lowest adjacent ver-
tices until a maximum/minimum is met. We
further distinguish backward and forward inte-
gral lines based on the ascending/descending
direction an integral line is tracing toward.

Ascending/descending segmentations.
Once integral curves are traced, one can find
the minimum/maximum that a vertex i flows
to and further define MS segmentation in PL
scalar fields. Starting from i, we denote its
converging critical points as the maximum
label Mi and minimum label mi following
the ascending and descending integral lines.
For example, in Figure 2, nodes in b and c,
respectively, are colored by maximum and
minimum labels; nodes in d are colored by
both maximum and minimum labels.

Compared with MS complexes, PLMSS is
suitable for applications that do not need to compute full MS complexes.
The most notable difference is that PLMSS does not concern saddle
points, leading to two limitations as reviewed by Maack et al. [32]:
(1) PLMSS cannot capture saddle-saddle separatrices, (2) downstream
tasks (e.g., persistence simplification) that rely on full MS complexes
do not apply to PLMSS. That said, PLMSS offers a fast and practical
tool to understand scalar fields.

4 PROBLEM STATEMENT

We formulate the preservation of MS segmentations in 2D and 3D
piecewise linear scalar fields. The inputs of our algorithm include
both original data f and decompressed data f̂ (with exactly the same
number of vertices), assuming both data versions are available at the
compression time. We assume all scalar field data are Morse; that is, for
any two vertices i and j, we have fi ̸= f j; otherwise, we use simulation
of simplicity (SoS) [13] to handle non-Morse regions for real-world
data. The outputs of our algorithm are a series of edits {δi}; with the
edits, one can derive the final edited value at vertex i as gi = f̂i + δi.
The edited value shall satisfy the following constraints:

Preservation of the global error bound. We must guarantee that
the final edited value is subject to the user-prescribed absolute error
bound ξ , that is, | fi −gi| ≤ ξ .

Preservation of MS segmentations. Let M and m, respectively,
denote the maximum and minimum labels in MS segmentations of the
original data, and let M̂ and m̂ denote the counterparts in the decom-
pressed data. This research aims to precisely align M̂ with M and m̂
with m. That is, for any vertex vi, we have Mi = M̂i and mi = m̂i.

Preserving PLMSS implies that all extrema are preserved without
any false positives or negatives. Under the premise that the location
and type of critical points in the decompressed data are identical to
those in the original data, to ensure that M̂ is precisely equal to M, it is
necessary to align the label of each regular point i in the decompressed
data with its corresponding label in the original data.

5 METHODOLOGY

This section describes the theoretical workflow of computing edits for
preserving MS segmentations, as illustrated in Figure 3. The derivation
of vertexwise edits is an iterative process involving two distinct loops:
the critical point loops (C-loops, Section 5.1) and the regular point
loops (R-loops, Section 5.2). The rationale for alternating the two
loops is that (1) the correctness of critical points is necessary for fixing
regular points, and (2) fixing regular points may introduce new false
critical points to be fixed further which are discussed in Section 5.3.

5.1 Critical Point Loops (C-Loops)
We fix four types of false critical points: false positive maxima (FPmax),
false positive minima (FPmin), false negative maxima (FNmax), and
false negative minima (FNmin). A sublevel loop handles each false
type; for example, the FPmax loop executes multiple times until no
FPmax exists, followed by the FPmin loop. A C-loop sequentially
executes the four subloops in each iteration and exits when no false
critical point remains.

Readers may skip the mathematical reasoning below, but the key to
(sub)loop convergence is incurring changes that only decrease (or keep)
scalar values at each iteration. That is, denoting g(k)i as the edited value
at vertex i during the kth iteration (k ∈ I), we have

f̂i = g(0)i ≥ ·· · ≥ g(k)i ≥ g(k+1)
i ≥ ·· ·> fi −ξ , (1)

where f̂i is the initial decompressed value, and g(k)i progressively ap-
proaches to the lower bound fi − ξ . As such, one can make the rela-
tionship between scalars on neighboring vertices consistent with that of
the original data; formally, for arbitrary two vertices i and j, we have

Lemma 1. One can find a finite number k of iterations such that
g(k)i < g(k)j , if initially g(0)i > g(0)j and fi < f j.

This holds because fi −ξ = lim
k→∞

g(k)i < lim
k→∞

g(k)j = f j −ξ . Backed by

Lemma 1, we design decreasing edits to fix four false cases. Each
decreasing edit applies to the vertex with a false critical point (FPmax
or FNmin) or a neighbor vertex of the false critical point (FPmin or
FNmax), as exemplified below.

5.1.1 False Positive Maximum
Definition 1 (FPmax). A maximum gi is false positive if gi > g j for all
neighboring vertices of i, but one can find at least one neighbor j such
that fi < f j.

We construct a sequence of iterations for all vertices, following Equa-
tion (1), to iteratively eliminate all FPmax:

g(k+1)
i :=

{ (
g(k)i + fi−ξ

)
/2, if g(k)i is FPmax

g(k)i , otherwise.
(2)

Note that g(k)i monotonically decreases toward the lower bound fi −ξ

as k increases. We speculate three possible outcomes:

• Case I: g(k)i remains an FPmax, requiring at least another iteration

• Case II: g(k)i becomes non-maximum without introducing any

new FPmax; for the moment, g(k)i is fixed;

• Case III: g(k)i becomes non-maximum but introduces at least one

new FPmax g(k+1)
j at a neighboring vertex j;
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Cases I and II are trivial. In Case III, the newly introduced FPmax at j
will be eventually fixed in later iterations without making i an FPmax
again. Specifically, per Definition 1, one can find a neighboring vertex
j that is ascending in the original data ( f j < f j′ ); no matter if j′ is i
or not, with additional iterations with whichever cases, per Lemma 1,
neither i nor j will become FPmax with additional finite iterations.

FPmax

FPmax

Current
Value

Lower 
Bound

FPmax

i j i ji ji j
(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration k

Fig. 4: Fixing an FPmax at vertex i. The height of the blue cylinder above
each vertex represents its lower bound ( f −ξ ), and the height of the pink
cylinder represents its current value.

We use Figure 4 to help further understand Case III. Initially, ver-
tex i is an FPmax, and the decompressed value is greater than all its
neighbors (shown in a). However, in the original data, we have at least
one neighbor j such that f j > fi. To turn i back into a regular point, in

the first iteration, we decrease the gi such that g(1)i < g(1)j . However, j
could become a new FPmax due to the decrement of gi (shown in b).
In the next iteration (c), as we fix the new FPmax j by decreasing g j,
vertex i could turn into FPmax again. The false positives may recur up
to a finite number of iterations but will guarantee to vanish because we
incrementally drive gi and g j closer to their lower bounds. Note that
fi < f j and the lower bound fi − ξ < f j − ξ , with a finite number k

of iterations, we have g(k)i < f j −ξ < g(k)j (shown in d). At this time,
vertex i will no longer become a new false positive maximum.

5.1.2 False Positive Minimum
Definition 2 (FPmin). A minimum gi is false positive if gi < g j for all
neighbors j but one can find at least one neighbor j such that fi > f j .

Unlike fixing FPmax, assuming g(k)i is FPmin, we decrease the value

at the ascending neighbor j, such that g(k)j is the maximal among the
neighbors of i, and we have

g(k+1)
j :=

{ (
g(k)j + f j−ξ

)
/2, if g(k)j is maximal among i’s neighbors

g(k)j , otherwise.
(3)

While one could alternatively fix the FPmin by increasing the value on
the same vertex, we impose decreasing edits across all types of false
critical points to guarantee convergence across the iterative workflow;
otherwise, incompatible strategies may not lead to convergence. Later
in this section, we demonstrate how an FPmin is fixed amid a complex
process and discuss the convergence.

5.1.3 False Negative Maximum/Minimum
Definition 3 (FNmax/FNmin). A non-maximum (or non-minimum) gi
is false negative if fi > f j (or fi < f j) for all j in neighbors of i.

Specifically, for an FNmax gi, we reduce its ascending neighbor’s
value:

g(k+1)
j :=

{ (
g(k)j + f j−ξ

)
/2, if g(k)j is maximal among i’s neighbors

g(k)j , otherwise.
(4)

For an FNmin gi, we decrease its own scalar value:

g(k+1)
i :=

{ (
g(k)i + fi−ξ

)
/2, if g(k)i is FNmin

g(k)i , otherwise.
(5)

Note that both strategies comply with Equation (1) so that the iterations
are provably convergent with finite iterations.

5.2 Regular Point Loops (R-Loops)
Once all false critical points are fixed, the next step is to fix all regular
points’ maximum and minimum labels in the decompressed data. For a
falsely labeled regular point, our method involves three steps in each
iteration: (1) compute the ascending/descending integral lines in the
current edited data g(k), (2) locate the troublemaker, which is defined
as as the first occurrence of discrepancy along the integral lines (as
illustrated in Figure 5(b)), (3) reroute the troublemaker by an edit.
Specifically, for a falsely labeled regular point i with a wrong minimum
(maximum), let vt represent the troublemaker’s descending (ascending)
neighbor, we decrease the value at vt :

g(k+1)
vt :=

(
g(k)vt + fvt −ξ

)
/2. (6)

Note that edits in an R-loop may introduce new false critical points; in
this case, we must return to the C-loop to address the new false cases.
Similar to C-loops, edits in R-loops always decrease decompressed
values such that no new false critical points are introduced after a finite
number of iterations.

5.3 Convergence of Alternating C- and R-loops
We alternatively execute C- and R-loops until all false critical/regular
points vanish. The workflow converges because all edits progressively



decrease decompressed values towards the lower bound. The conver-
gence is backed by Lemma 1; because the inconsistent ordering of
scalar values may cause changes to ascending/descending directions
and lead to false cases, the inconsistencies will guarantee to vanish with
a finite number of iterations with our decreasing edit strategies.

FNmax
Current
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Lower 
Bound

troublemaker

FPmin

FNmaxtroublemaker

(a) Iteration 0 (c) Iteration 2(b) Iteration 1

(d) Iteration 3(e) Iteration 4
C-Loop

C-Loop R-Loop

R-Loop
(e) Iteration 5

C
-Loop

j i k j i k j i k

j i kj i kj i k

Fig. 5: Fixing an FNmax (and subsequently, a troublemaker, FPmin,
FNmax, and another troublemaker) across multiple C- and R-loops. The
purple and green arrows in (b) and (d) show the ascending neighbor of
vertex i in the original and decompressed data, respectively.

Figure 5 demonstrates a specific case of alternating C- and R-loops
to fix an FNmax. We have fi > f j > fk in the original data, but initially
g j > gi > gk. The FNmax at vertex i is fixed in the first C-loop by
decreasing the neighbor j. However, i becomes a troublemaker that
causes false regular points. After the troublemaker is fixed by decreas-
ing its neighbor k, k becomes an FPmin, thus triggering another C-loop.
The second C-loop fixed the FPmin by decreasing i, which caused a
new FNmax case at i. With two additional C- and R-loops for newly
introduced false cases, we have no more false cases to address.

6 PARALLEL COMPUTATION AND COMPRESSION OF EDITS

This section describes the shared-memory/GPU parallelism that signifi-
cantly accelerates individual components of our algorithm.

6.1 Parallel C-Loop
We parallelize all subroutines in C-loops, including (1) finding false
critical points, (2) fixing false critical points, and (3) updating directions
for each vertex, as highlighted in Figure 3.

Finding false critical points checks each vertex in parallel to see if it
is a false critical point. We assign each thread with a vertex; if the vertex
is false critical, we push the case into a (lock-free) stack for further
processing. For both CPU and GPU architectures, we implement the
lock-free stack with atomicAdd operations with a pre-allocated buffer.
For each push, we record the current stack height as h while increasing
the height by one; this fetch-and-add operation guarantees to avoid race
conditions. We then write the false case (represented by vertex ID and
false type) into the hth position of the buffer.

Fixing false critical points derives and applies edits for each false
critical point with a thread. Because an edit may change the scalar
value of the false critical point or one of its neighbors, multiple threads
may edit the same value and cause write-write conflicts. In a conflict,
only one edit will be applied when multiple threads preemptively edit
the same vertex, but the specific choice made by hardware is random;
we call it preemptive mode. The preemptive mode would still converge
because the missing edits would be applied by a later iteration, albeit
of random execution orders. To make executions consistent, we incor-
porate atomic compare-and-swap (atomicCAS) operations in our CPU
and GPU implementations. Specifically, the operation compares the
incoming edit with the current edit value and arbitrarily applies the
most significant edit, making execution orderings deterministic.

Updating directions. We assign each vertex to a thread to update
its ascending/descending neighbor for identifying false cases. This step

involves a local comparison of scalar values between neighbors.

6.2 Parallel R-Loop
The only component we currently parallelize in the R-loop is the com-
putation of MS segmentation, which dominates the execution time. We
implemented path compression [34] used by Maack et al. [32], for the
computation of Morse-Smale segmentation. On GPUs, taking ascend-
ing segmentation as an example, path compression involves utilizing a
(lock-free) list to track regular points that have not yet found their max-
imum. For these points, the method seeks its largest neighbor, updating
each point’s value in the list to that of its largest neighbor’s largest
neighbor. If the value of a point v remains unchanged after the update,
meaning the largest neighbor’s largest neighbor is itself, it indicates
that v has been assigned to a maximum. The iteration concludes once
every point has successfully determined its maximum.

6.3 Lossless Compression of Edits
Once all iterations converge and exit with no false critical/regular points,
the last step is to store the edits compactly as metadata appended to
the lossy compressor’s outputs. Each edit δi is represented with a
key-value pair, the key being the vertex index and the value being the
floating-point representation of the edits (See Supplementary Material
for a visualization of the spatial distribution of edits). We compress
the indices and edit values separately. Regarding the indices, we first
sort them in ascending order and compress the differential sequence,
because storing the differentials makes it possible to maximize the use
of run-length encoding (RLE) and Huffman coding before offloading
the edits to a lossless compressor such as ZSTD [2] or GZIP [1].

7 EVALUATION OF EDITED DATA

We evaluate our method with datasets from diverse applications, rang-
ing from climate and cosmology to combustion, by measuring the
accuracy in MS segmentations based on two state-of-the-art error-
bounded lossy compressors, SZ3 and ZFP. Evaluation metrics are as
follows; detailed descriptions of datasets and metrics are in Supplemen-
tary Material. Overall Compression Ratio (OCR) is the compression
ratio after the combination of edits, calculated by the combined size of
compressed edits and data over the original data size. A higher OCR
indicates more effective compression, resulting in a smaller compressed
file. Edit ratio quantifies the proportion of data points that are edited
to fully preserve the MSS in the decompressed data. It is calculated as
the number of modified data points divided by the total number of data
points in the decompressed data. Overall bit rate (OBR) represents
the average number of bits required to encode each data point after
compression (after the combination of compressed data and edits). It
is calculated by dividing the total number of bits used by the total
number of data points. Lower bit rates indicate more efficient compres-
sion. Right labeled ratio is the percentage of points in the data with
correct MSS labels, calculated by the number of right labeled points
over the number of points in the data. PSNR distortion refers to the
trade-off between the bitrate and PSNR. It describes how the bitrate
affects the PSNR of the decompressed data, where a higher bitrate
generally results in a higher PSNR, indicating better quality. This is
typically represented as a curve with the x-axis showing the bitrate
and the y-axis showing the PSNR of the decompressed data. MSS
distortion is similar to PSNR distortion, with the y-axis changed to the
right labeled ratio. It reflects the trade-off between the bitrate and the
degree of preservation of the MSS.

7.1 Features of Interest Preservation
We exemplify features of interest characterized by MS segmentations
and how off-the-shelf lossy compressors distort the scientific insights.
Examples below are based on SZ3 with a 1% error bound.

Climate. Distortions in Atmospheric Rivers (ARs), based on feed-
back from domain scientists, could significantly impact scientists’ un-
derstanding of AR formation and development, potentially leading to
inaccurate evaluations of ARs’ impacts on precipitation and flooding in
North America. Scientists characterize AR skeletons by the boundaries
of descending segmentations of the Integrated Vapor Transport (IVT)
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Fig. 6: Feature preservation in SZ3-compressed data for (a) climate, (b)
cosmology, and (c) combustion.

field [20]. As shown in Figure 6(a), SZ3 led to distorted segmentation
boundaries of the AR and surrounding regions.

Cosmology. Scientists characterize cosmic walls in dark matter
distributions by ascending segmentation boundaries [36]. Distorted
sheet structures of walls, as exemplified in a zoomed-in view of the
Nyx data (a 503 crop of the entire volume) compressed by SZ3, could
lead to incorrect separation between voids and potentially impact the
understanding of the cosmic web as shown in Figure 6(b).

Combustion. Scientists use MS segmentations to identify flame
structures to understand the reaction, mixing, and quenching in the
burning dynamics [6,7]. We demonstrate feature distortion in a zoomed-
in region (1003) in Figure 6(c). SZ3 introduced false features and omit-
ted essential separatrices, potentially leading to incorrect identification
of burning zones and understanding of fuel consumption areas.

7.2 Fixed-Error-Bound Comparison
We demonstrate that our method can fix MS segmentations from arbi-
trary outputs with different compressors and error bounds, as shown in
Figure 7. We observe that the size of the edits required is roughly pro-
portional to the magnitude of the global error bound. This is reasonable
because as the global error bound increases, implying that more errors
are introduced into the data, the error rate in the MSS escalates, thereby
necessitating a greater number of edits. For more complex datasets,
such as CSEM, Nyx, and viscous fingering, the edit ratio is noticeably
higher than other datasets. Another observation is that edits for ZFP
are generally lower than those for SZ3, while OCR is higher overall
than ZFP because ZFP’s original compression ratio is lower than SZ3.

7.3 Fixed-Bit-Rate Comparison
We evaluate our method across various datasets to identify the optimal
overall bit rate (after the combination of edits) achievable on SZ3 and
ZFP, as shown in Figure 8. We run an ensemble of experiments with
various error bounds and find relatively the same (overall) bit rate
with both SZ3 and ZFP to evaluate the preservation of MSS. With
comparable bitrates, the original decompressed data from SZ3/ZFP
exhibit varying degrees of MSS distortion across different datasets.
Despite a certain bitrate increase due to the introduction of additional
edits, as illustrated in the MSS/PSNR distortion plots, our method still
ensures the precise preservation of the MSS. From the MSS/PSNR
distortion, we can observe that there is a certain balance between
OBR and the preservation of MSS. When the original bitrate is lower,
indicating a higher data compression ratio, this implies a higher error
bound during compression. For a global topological descriptor like
the MSS, even minor data alterations can lead to significant distortions
in the MSS, potentially necessitating more edits. Conversely, when

the original bitrate is higher, the deviation between the decompressed
and original data is reduced, lowering the error rate in the MSS and
decreasing the necessary edits.

8 PERFORMANCE EVALUATION

We evaluate the scalability and performance of our algorithm with
both shared-memory CPU and GPU implementations. We use two
datasets, Nyx (5123) and viscous fingering (1283), for performance
studies because of their larger size and higher topological complexity
than others. We use one CPU node (2× AMD EPYC 7763 with 512
GB of DDR4 memory) and one GPU node (single AMD EPYC 7763
CPU with 256 GB of DDR4 DRAM and four NVIDIA A100 GPUs) on
the Perlmutter supercomputer at National Energy Research Scientific
Computing (NERSC). Our implementation is based on C++, OpenMP,
and CUDA; only a single GPU is used for benchmarking.

We measure performance with the end-to-end running time and four
mini-benchmarks that evaluate the parallelization of (1) finding false
critical points, (2) fixing critical points, (3) updating directions, and
(4) MSS computation. For the mini-benchmarks, we artificially reset
the data to the initial status the first time the subroutine is called. To
ensure robustness and accuracy in our results, each mini-benchmark
was executed 1,000 times, and the mean running time was recorded.

8.1 Scalability on CPUs
While we recommend using GPUs for the practical use of our method,
we study the scalability of our parallel algorithms on CPUs with differ-
ent amounts of resources. Figure 9 shows the decreasing end-to-end
running time with increasing CPU threads. We also demonstrated the
timing breakdown for individual subroutines; for example, updating
directions takes up to 80% of the time because all vertices’ directions
must be updated whenever there is a change in the data.

Figure 10 demonstrates the timings of the four mini-benchmarks
with different numbers of threads. Note that the mini-benchmarks do
not equally scale to 128 cores because of (1) the number of parallel
tasks, (2) load balancing, and (3) locality and contention. First, the
number of parallel tasks vary in different components of our algorithm.
For example, the number of (false) critical points is usually much
smaller than the number of vertices; the former usually leads to insuf-
ficient utilization of hardware resources, thereby limiting scalability
(Figure 10(b)). Second, in the MS segmentation computation (Fig-
ure 10(d)), we follow Maack et al. [32] to terminate an integral line and
reuse existing integral lines; this strategy reduces computational cost
but leads to imbalanced workloads. Third, our CPU implementation
does not consider non-uniform memory access (NUMA) architectures,
while our compute node has 8 NUMA domains; meanwhile, concurrent
read/write also cause memory contentions even with lock-free data
structures. Besides, the underlying operating system may interfere
with our parallel execution with many threads. That said, the overall
workflow remains scalable as we continue adding threads because the
less efficient components (fixing critical points and computing segmen-
tations) only account for up to 23% of the end-to-end time.

8.2 Performance on GPUs

Table 1: Timings of various tasks of our method on the Nyx dataset.

Serial
OpenMP
(Optimal)

CUDA
GPU Accel.
cf. OpenMP

GPU Accel.
cf. Serial

End-to-end 1192.38s 110s 6.31s 17× 198×
Find false critical points 1.202s 0.26s 0.008s 32× 150×
Update directions 10.46s 0.6s 0.014s 42× 700×
Fix false critical points 0.009s 0.002s 0.00038s 5× 23×
MSS computation 17.87s 2.7s 0.051s 52× 350×

Table 1 shows GPU acceleration of the end-to-end and mini-
benchmarks. We achieved a 17× acceleration in the end-to-end per-
formance compared with using all 128 threads on the CPU node; the
acceleration is 198× compared with the serial execution. For the mini-
benchmarks, compared with serial execution with one single CPU, our
GPU implementation achieves up to 700× speed up across all tasks.
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Fig. 7: Fixed-error-bound comparison of lossy compressors on different datasets.

Figure 11 presents an additional performance visualization across
multiple C- and R-loops, comparing performance on a CPU (with 32
threads) and a GPU. Across both settings, a notable decrease in time
and the number of sub-iterations is observed with increasing iteration.
This is because the number of false critical/regular points decreases as
the iteration progresses. In each iteration, updating directions for each
vertex accounts for a significant portion of the time, approximately 80%
for CPU and 50% for GPU. This is followed by the process to find false
critical points, around 10% for CPU and 40% for GPU. Notice that
measuring the impacts of atomic operations for concurrent read/write
on GPU is an open challenge; we leave a formal evaluation of hardware
utilization, throughput, and power consumption for the future.

9 DISCUSSION AND LIMITATION

Computation and storage overhead. Preserving MS segmentations
comes with a cost, and users may need additional studies to balance
their applications’ data reduction, performance, and feature preser-
vation needs. Table 2 exemplifies the overhead in timings and com-
pression ratios with multiple datasets. We also compare performance
with GZIP and ZSTD, which losslessly compress data and preserve
MS segmentations accurately. Our method incurs costs to store the
edits as additional metadata attached to the native lossy compression
outputs, but still delivers reasonable overall compression ratio with
feature preservation. Our overall compression ratios are also better
than lossless compressors, which only deliver ∼ 2× ratios for most
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Fig. 8: Fixed-bit-rate comparison of lossy compressors on fixed bit rate on different datasets.

floating-point data [27] (except in cases with empty spaces like the Red
Sea data). With an error bound of 10−6 based on SZ3, our overall com-

pression ratio for the 5123 Nyx data is 7.76×, while GZIP is 1.17×.
On the computation overhead, our timings are within the same order as



Dataset Dimensions Ours-SZ (10−6) Ours-ZFP (10−6) Ours-SZ (5×10−6) Ours-ZFP (5×10−6) GZIP ZSTD
tcomp t f ix OCR tcomp t f ix OCR tcomp t f ix OCR tcomp t f ix OCR tcomp CR tcomp CR

AT 177×95×48 0.19 0.35 3.69 0.12 0.35 3.04 0.17 0.35 5.36 0.13 0.28 5.04 0.24 1.07 1.18 1.17
NYX 5123 13.8 3.80 7.76 11.8 4.80 4.20 12.98 6.56 7.48 10.75 8.17 4.74 67.8 1.17 9.25 2.03

Heated Flow 150×450 0.08 0.29 2.74 0.03 0.33 3.38 0.08 0.27 3.58 0.04 0.35 3.76 0.64 1.91 1.21 2.00
Red Sea 500×500×50 0.98 0.51 52.7 0.42 0.51 31.4 0.88 0.55 62.5 0.39 0.46 34.13 4.79 26.4 0.16 31.38

CESM-ATM 1800×3600 0.60 0.61 5.96 0.64 0.42 3.13 0.74 1.41 6.18 0.65 0.98 3.46 3.37 2.08 1.65 2.27

Table 2: Overhead in timings and compression ratios compared with lossy (SZ3 and ZFP) and lossless (GZIP and ZSTD) compressors across
different datasets. tcomp and t f ix, respectively, represents the timings (in seconds) of these compressors and our algorithm.
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Fig. 11: Timings of outer loop iterations on (a) GPU and (b) CPU with 32 threads; numbers above each bar chart denotes the number of sub-iterations.

the time to compress data with SZ/ZFP. For example, SZ3 takes 13.8s
to compress the Nyx data with 10−6 error bound, and our algorithm
takes an additional 3.8s to correct MS segmentations, while GZIP takes
62.8s. Although the computation and storage overheads vary across
different datasets with different dimensionalities and error bounds, we
justify the extra time cost considering the feature-preservation capabili-
ties essential for deriving scientific insights.

Preservation of saddles. First, preserving saddles is unnecessary for
preserving PLMSS because saddles are not constituents of PLMSS. For
example, in the AR application in Figure 6(a), the original and edited
data have identical MS segmentations, yet two false saddles exist in
the latter. Erroneous saddles do not affect this application because the
characterization of ARs relies solely on the segmentation boundaries.
Second, as reviewed in Section 3 and by Maack et al. [32], PLMSS
cannot capture saddle-saddle pairs and does not support downstream
tasks that require the full MS complex; in other words, PLMSS’s
limitations apply to our method. Third, it is possible to generalize our
method in the future to preserve saddles with additional computation

and storage costs. Preserving a saddle requires maintaining value
ordering among multiple neighboring vertices, making it nontrivial to
design an iterative strategy to guarantee convergence.

10 CONCLUSIONS AND FUTURE WORK

We introduce a novel method for preserving PLMSS in lossy decom-
pressed data. Our strategy generates a set of edits at the time of compres-
sion. These edits are then applied to the decompressed data, ensuring
precise MSS reconstruction while preserving the error bound. Our
approach also incorporates a parallel implementation that substantially
accelerates our algorithm. We evaluate our methods with datasets from
molecular dynamics, climate, combustion, and cosmology applications.

We plan to improve our method in various aspects. First, the com-
pression of edits is achieved through lossless compression, yet this
aspect offers substantial room for improvement, potentially enhancing
the final compression ratio. Second, our method can be extended to
preserve the full MS complex by incorporating the preservation of
saddles and saddle-saddle connectors.
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