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Abstract

Data consisting of a graph with a function mapping into R arise in many data
applications, encompassing structures such as Reeb graphs, geometric graphs,
and knot embeddings. As such, the ability to compare and cluster such objects
is required in a data analysis pipeline, leading to a need for distances between
them. In this work, we study the interleaving distance on discretization of these
objects, called mapper graphs when d = 1, where functor representations of
the data can be compared by finding pairs of natural transformations between
them. However, in many cases, computation of the interleaving distance is NP-
hard. For this reason, we take inspiration from recent work by Robinson to find
quality measures for families of maps that do not rise to the level of a natural
transformation, called assignments. We then endow the functor images with the
extra structure of a metric space and define a loss function which measures how far
an assignment is from making the required diagrams of an interleaving commute.
Finally we show that the computation of the loss function is polynomial with a
given assignment. We believe this idea is both powerful and translatable, with
the potential to provide approximations and bounds on interleavings in a broad
array of contexts.

Keywords: Interleaving distance, Mapper graph, Reeb graph, geometric graph,
topological data analysis



1 Introduction

Graphs with additional geometric information arise in many contexts in data analysis.
For instance, a geometric graph is generally defined as an abstract graph along with a
well-behaved embedding of the graph into R?, while a graph with a well-behaved map
into R is called a Reeb graph. In particular from the viewpoint of the Reeb graph, these
types of input data can arise by studying connected component structures from more
general input R%spaces, meaning a topological space X with a function f : X — R<.
Such graphs are a fundamental object used to model a wide range of data sets, ranging
from maps and trajectories [1, 2], to commodity networks (e.g. transportation networks
[3, 4]) and shape skeletons for object recognition [5, 6]. The ability to compare, cluster,
and simplify such representative objects is essential in a data analysis pipeline, leading
to a need for theoretically motivated and computable distances. In this paper, we
study a distance for a discretization of the input data, known as mapper [7]. That is,
starting from a topological space X with a function f : X — R¢ (resp. a point cloud
P with a function f: P — R9), mapper is an encoding of the connected components
(resp. clusters) of f~1(U,) for some cover U = {U,} of R? defined as the nerve of the
pullback cover. When d = 1, this results in a graph structure called a mapper graph
(see Fig. 1). Since there are higher dimensional cells, we call the resulting construction
for d > 1 an R%-mapper complex; however we abuse terminology and generally call
this construction a mapper graph whether the dimension is 1 or not.

There has been extensive work on metrics for general graphs, geometric graphs,
and Reeb graphs (see surveys [8—11], [2], and [12, 13] respectively). In this paper, we
will draw inspiration from the interleaving distance; specifically, we develop a natural
extension of the interleaving distance on Reeb graphs [14] to the setting of map-
per graphs. Interleaving distances arose in the context of generalizing the bottleneck
distance for persistence modules [15] and were subsequently translated to more gen-
eral categorical frameworks in [14, 16]. With the exception of 1-parameter persistence
[17], the interleaving distance is NP-hard in many contexts including multi-parameter
persistence [18, 19], and Reeb graphs [14]. However, some additional structural infor-
mation can give better algorithms such as FPT computation for merge trees [20],
and polynomial time for formigrams [21] and labeled merge trees [22, 23]. Indeed, the
closest work to our approach is work providing bounds for the interleaving distance
restricted to merge trees: [24] use the Gromov-Wasserstein distance to find a leaf label-
ing that gives an upper bound using the easy to compute labeled interleaving distance
[22, 23]; while [25] uses the map formulation of [20, 26] with an integer linear program
to provide a bound. See [18] for a recent summary of interleaving distance complexity
results.

When d = 1, there is already work using the interleaving distance to relate the
Reeb graph and its mapper graph [27-31]. We will encode the structure of our more
general R%-mapper complexes in a discretized setting by imposing a grid structure K
on R%. Then we can represent the input data f : X — R? as a cosheaf of the form
F : Open(K) — Set where we store the path-connected components of inverse images
of open sets mo(f~(U)). The idea of the interleaving distance, in this context, is to
compare two cosheaves F, G : Open(K) — Set using a pair of natural transformations
p: F = G" and ¢ : G = F™ mapping into relaxations of the original inputs.
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Fig. 1 (Left) An example of a Reeb graph (d = 1) where the discretization of R is used to generate
a mapper graph. (Right) An example of a pair of geometric graphs (d = 2) which we study using the
connected components restricted to the grid.

The complexity of computing this distance then relies on finding the smallest n with
available ¢ and 1 maps, which in our setting immediately connects to hard underlying
problems such as graph isomorphism.

The ideas building this distance are rooted in previous work that study interleav-
ings in related contexts. In some sense, we can view this distance as a discretized
cosheaf version of the continuous sheaf version of the interleaving distance that was
previously studied [32]. It can fit into the more general framework of an interleaving
distance arising from a category with a flow [33], or as an interleaving distance on gen-
eralized persistence modules with a family of translations [16], but prior work in these
areas focused on theoretical properties and did not address computational aspects, as
the more general framework makes such study incredibly difficult. Perhaps the closest
version of this distance is mentioned as a special case of a general categorical frame-
work [31]; however, that setting keeps the thickening of the open sets structure tightly
bound to thickening in R?, whereas we choose to define the distance entirely over the
combinatorial structures.

While all this prior work is powerful in theory, the computational complexity of the
construction in more general settings has meant a lack of the use of the interleaving
distance in practice. To circumvent these issues, we take inspiration from recent work
of Robinson [34] to define quality measures for families of maps that do not rise to the
level of a natural transformation, in order to allow for non-optimal maps ¢ and ¥ in
this framework. We then apply these quality measures to R%-mapper complexes, in the
hopes of utilizing algorithms from geometry and graph theory to make computation
more feasible.

In particular, in [34] the object of study is a single input assignment of data of the
form P : Open(X) — Set and, with the added structure of a pseudometric for each
set P(U), provides a measurement for how far the input data is from having a global
section. In our work, we instead work with a pair of functors F,G : Open(K) — Set
as input, and study collections of maps ¢ = {¢py : F(U) = G(U") | U} and ¢ = {¢y :
G(U) — F(U™) | U} which we call an assignment when they do not necessarily form a



true interleaving. We then endow the image with the extra structure of a metric space,
so that we have pairs (F'(U),dy) for every open set U. Using this metric structure,
we define a loss function L(p, ) which measures how far the required diagrams of an
interleaving are from commuting, given any input assignment (Thm. 3.8). We modify
this bound by only focusing on the loss function computed for a basis of the topology,
Lp(p,¥) (Thm. 3.16), which not only improves the computational complexity but also
improves the bound. Then, we show that the computation of the bound is polynomial,
opening up the potential for algorithmic approximation of the interleaving distance.
Throughout, we show examples encoding the data of a geometric graph (i.e. a graph
G with a straight line embedding f : G — R?) or a Reeb graph (a graph G with a
straight line map to R); see Fig. 1 for an illustration. However, this kind of input is
not a requirement for our framework.

We note that this paper is the first step in a larger project. That is, the paper
here presents a loss function that can be computed given an input n-assignment ¢, ¥
and results in a bound on the distance by explicitly constructing an (n + Lg (¢, v))-
interleaving. As with many garbage-in-garbage-out settings, this bound is only as
good as the input, but this study seeks to determine the most general possible bound
with no guarantees on the input at all. In the followup work [35], we include this loss
function as part of an optimization strategy to update a given assignment in order to
find better bounds as well as provide further study on how close to optimal is possible.
Outline. In Sec. 2 we provide the necessary technical background to set up the inter-
leaving distance for mapper graph inputs. In Sec. 3, we define the loss functions and
bounds. We discuss algorithmic requirements of the bound in Sec. 4. Next, we show
how this loss function can be used to similarly bound the Reeb graph interleaving dis-
tance by approximating the Reeb graph with a mapper graph in Sec. 5. We include
all technical proofs in Sec. 6. Finally, we discuss broader implications of this work in
Sec. 7.

2 Technical Background

We will assume several example types of inputs in this paper. All are tied together
by having data of the form f : X — R?, where X is a topological space. In particular,
we will require that mo(f~1(U)) is a finite set for some reasonable collection of open
sets U C R%. We thus assume that X C R* is a semi-algebraic set and that f is a
semi-algebraic map since this results in our desired restrictions.

2.1 Functors and Cosheaves

We give basic definitions for the category theoretic notions required in this paper,
and direct the interested reader to [32, 36] for further details. A category C consists
of a collection of objects X,Y,Z, ... and morphisms f,g,h,... with the following
requirement: morphisms f : X — Y have designated domain X and codomain Y’; every
object has a designated identity morphism 1x : X — X, and any pair of morphisms
f: X =Y and g:Y — Z has a composite morphism go f : X — Z. These objects
and morphisms satisfy an identity axiom, where f : X — Y is the same as the 1y o f
and f o 1x; and composition (denoted by o but often dropped when unnecessary) is



associative, so ho(go f) = (hog)o f. Some example categories are Set where objects
are finite sets and morphisms are set maps; Top where objects are topological spaces
and morphisms are continuous functions; and Open(X) for a given topological space
X, where the objects are open sets and morphisms are given by inclusion.

A functor F : C — D is a map between categories preserving the relevant struc-
tures. Specifically, for every object X € C there is a an object F'(X) € D, and for every
morphism f : X — Y, there is a morphism F[f] : F(X) — F(Y). To be a functor, F'
must further satisfy that for any X € C, F[lx] = 1p(x) and for any composable pair
fyg € C, we have F[gf] = F|g]F|f]. Given functors F,G : C — D, a natural transfor-
mation 1 : F' = G consists of a map nx : F(X) — G(X) for every X € C (called the
components) so that for any morphism f: X — Y in C, the following diagram

X F(X) 5 G(X)
lf Fi1]| Jeu
Y F(Y) 25 G(Y)

commutes. One example is 7y : Top — Set, where m(X) is the set of path-connected
components of X, and morphisms are set maps mo[f] : m(X) — 7o(Y) sending a
connected component A in X to the connected component of f(A) in Y. Note that
throughout the paper, we use the term component to mean path-connected component.

A diagram is a functor F' : J — C where J is a small category. In essence, this
construction picks out a collection of objects F(j) and a collection of morphisms
F(j) — F(k). A cocone on a given diagram is a natural transformation A : F — ¢
where we abuse notation to write that ¢ : J — C is the constant functor returning the
object ¢(j) = ¢ € C for all j € J. We often call the components \; : F(j) — ¢ the
legs, and note that this requirement says that for any f:j — k in J, Ay o F[f] = ;.
A cocone A : F' — cis called a colimit if for any other cocone X' : F — ¢/, there is a
unique morphism u : ¢ — ¢’ such that

F(j) —]> F(k)

commutes for all f:j — kin J.

We will be particularly interested in functors of the form F : Open(X) — Set,
which can also be called pre-cosheaves. A pre-cosheaf is a cosheaf if it satisfies a gluing
axiom, meaning that F(U) is entirely determined by F(U,) for any cover {U,}q.
Specifically, given an open set U and a cover {U, | @ € A} of U, define a category
U={U,NUy | o, € A} with morphisms given by inclusion. Then we have a
diagram F' : U — Set, and as such can consider its colimit A : F' — L. If the unique



map L — F(U) given by the colimit definition is an isomorphism, then F' is called a
cosheaf.

2.2 Functorial Representation of Embedded Data

Assume we are given as input a pair of compact topological spaces with valued
functions f : X — R% and ¢g : Y — R We will construct a cover controlled by
diameter § > 0 of the images f(X) U g(Y) in order to define the discretized map-
per complex. Assume that a bounding box containing f(X) U ¢g(Y) can be written as
[-B, B]¢ = [~ L, Lé]“.

Following [37], § induces a discretization of [—Ld, L] into a cubical complex in the
following way. An elementary interval is an open interval in R of the form?! (¢4, (£41)6)
or a single point viewed as a degenerate interval [¢] := [¢5, £6] for £ € [-L,--- , L] C Z.
These are called non-degenerate and degenerate intervals, respectively. An elementary
(open) cube @ is a finite product of d elementary intervals, i.e. 0 = I} X [y X -+ - X I C
[~ B, B]¢. The dimension of a cube ¢ is given by the number of intervals used which are
non-degenerate. This means that 0-cubes are vertices at grid locations (id, jd, ..., kd) €
§ - Z%, 1-cubes are edges (not including their endpoints), 2-cubes are squares (not
including their boundaries), 3-cubes are voxels, etc. The collection of elementary cubes
discretizing [~ B, B]? is a finite cubical complex K. This construction comes with a
face relation which gives a poset structure, where we write 0 < 7 iff ¢ C 7, where 7
denotes the closure of the set. In order to differentiate between the combintorial and
continuous settings, we write || for the geometric realization in R? of a combinatorial
object 0 € K.

This complex K induces a cover U of [~ B, B]? as follows. For any cube ¢ € K,
we can find the upper closure of o using the face relation, i.e. ¢ = {r € K | 7 > o}.
The cover element associated to o is Us = |J ¢+ |7|. Then we write the cover as
U ={U, | o € K}. Note that there is a poset relation on ¢ given by inclusion, and in
particular, U, C U, iff 7 < o.

We next endow the poset (U, C) with the Alexandroff topology, following [38]. For
any set S C U, the upper closure, or upset, is ST ={U eU | V C U, V € S} and the
downward closure, or downset, is S¥ = {U eU | U C V, V € S}. We give (U, C) the
Alexandroff topology Open(), where a set S C K is open iff the following holds: for
any U € Sand any V C U, V € S. Equivalently, this means that S is its own downset,
i.e. S = St. See Fig. 2 for an example of this notation in the case of d = 1, where the
open set Uy, is associated to the point o; = id, and open set U, is associated to the
edge 7; = (40, (i + 1)0).

It can be checked that this topology has a basis given by the collection {S,}secx
where we write

Sy = {Uo}i = {U‘r eu | U. C Ua} = {UT eu | TE UT} (21)

and call S, a basic open set. This complex is constructed so that for any subset S C U,
the geometric realization S| := (J,;cq U C R is an open set; and further the notation

1Note our use of open intervals here in order to have open sets in our cover later, which differs from the
definition given in [37].
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Fig. 2 Example of the notation for the case d = 1, where a discretization of the real line (top)
induces a cover, and the poset representation of this cover can be seen in the bottom row. The basic
open associated to Uy, is the three element set So; = {Ur,_,,Us;,Ur, }.

is reasonable since the geometric realization of the basis set associated to o is the same
as the open set associated to o, i.e. |S,| = U, for all 0 € K. Again, see Fig. 2 for an
example of this notation.

We assume that the inputs f : X — R? and ¢g : Y — R? are semi-algebraic maps
defined on semi-algebraic sets in R¥, as well as being compact as assumed earlier.
Recall that the class of semi-algebraic sets is the smallest class of sets defined by a
finite number of polynomial (in)equalities {z € R* | p(x) > 0} that is closed under
complement, finite union, and finite intersection. A map f: X — R? is semi-algebraic
if the graph of f is a semi-algebraic set in R* x R?. A semi-algebraic set is semi-
algebraically connected if it cannot be written as the disjoint union of two non-empty
open semi-algebraic sets. Analogously, a semi-algebraic set X is path connected if for
any two points z,2’ € X there is a continuous semi-algebraic map v: [0,1] — X
such that v(0) = 2’ and (1) = 3. Note that, by definition, a semi-algebraically path
connected semi-algebraic set is also path connected. From this observation, combined
with Theorem 2.4.5 and Proposition 2.5.13 in [39], we see that any connected semi-
algebraic set is also path-connected. We make this restriction so that we have the
following property.

Lemma 2.2. Given a semi-algebraic map f : X — R¢ with X semi-algebraic, and any
semi-algebraic open set U C R, mo(f~H(U)) is finite.

We refer the reader to [40] for an overview of the basic properties of semi-algebraic
sets and maps, from which this lemma easily follows.

Because each grid cell itself is a semi-algebraic set, we have that for any open set
S € Open(U), the set of (path) connected components o f~1(|S]) is finite.

Then we have a functor F : Open(i/) — Set given by

F: Open(U) — Set
S = mof1(]S]).

Functoriality of 7wy means that for S C T, there is an induced map

F[S S T): mof T (IS]) = mo f~H(T)),



Fig. 3 Examples of open sets for d = 2. The basic open S, is given in light purple for each cell type
shown in dark purple (vertex o1, edge o2 and square o3). The 1-thickening of the open sets are given
by including the green portion.

so that F' satisfies the requirements of a functor. Indeed, this functor is actually a
cosheaf so moving forward, we assume that F' and G are cosheaves, even if they was
not obtained from some input topological space. When the sets involved are obvious
in the notation, we will write the induced map as F[C]: F(S) — F(T).

2.3 Thickenings

Given any set S € Open(U), the 1-thickening? is defined by taking the downward
closure of the upper closure of S, written as S* = (ST)¥. This operation can be thought
of as taking the star of the closure of the set; see Fig. 3 for examples. The n-thickening
is defined to be n repetitions of the process given recursively as

S n=20
S™ =
{(S”_l)N n>1.

Each S™ is itself an open set in Open(U), and if S C T, then S™ C T™. Thus we can
view this operation as a functor on the category Open(U) with morphisms given by
inclusion:

(=)™ : Open(U) — Open(U)

S = ST

In Sec. 6, we show that (—)™ is a functor. Because of the cosheaf assumption, we
also have that F(S™) = lime o, F(S,). Another useful property of this thickening,
proved in Sec. 6, is described in Lem. 2.3.
Lemma 2.3. For any n,n’ >0 and S € Open(U),

(Sn)n' — Sn+n' .

We can use this thickening to build an interleaving distance on cosheaves of the
form F : Open(U) — Set. The first necessary ingredient is the composition of functors
Fo(—)": Open(ld) — Set, which we denote by F™. This means F"(S) = F(S"),
followed by a similar setup for G™. With this notation, an interleaving is a pair of

2We note that this definition is distinct from the morphological operation of thickening that is a tool in
image processing, although quite similar to the concept of dilation from that field.



natural transformations ¢ : F' = G™ and ¢ : G = F", so a component of ¢ is a set-
map pg : F(S) — G(S™). There is another component at S™, pgn : F(S™) — G(S?"),
which can also be viewed as a component of a different natural transformation ™ :
F™ = G*". For this reason, we use the notation ¢g» and ¢% interchangeably when ¢
is indeed a natural transformation.?
We are now ready to introduce our notion of interleaving distance.

Definition 2.4. Given cosheaves F,G : Open(d) — Set and n > 0, an n-
interleaving is a pair of natural transformations ¢ : FF = G™ and ¢ : G = F™ such
that the diagrams

F[SQSZ"]

F(S) F(s%) F(S™)

G(S™) G(S)

G[SCS2™]
commute for all S € Open(U). The interleaving distance is given by
d;(F,G) = inf{n > 0| there exists an n-interleaving},

and is set to be d(F,G) = oo if there is no interleaving for any n.
As shown in Sec. 6, this definition fits in the framework built by Bubenik et al. [16]
and thus it is an extended pseudometric.

3 Loss Function and Bounds

In this section, we introduce a loss function for interleavings on R¢-mapper complexes.
We give the definition of the loss function (Defn. 3.4) in Sec. 3.1, and present our
first version of the bound as Thm. 3.8 in Sec. 3.2. However, this version of the bound
requires checking diagrams for all possible open sets S € Open(K) which creates a
combinatorial explosion that is counterproductive in practice. Thus, in Sec. 3.3, we
prove this loss function can be replaced with an improved loss function which only
needs to check the open sets for a basis of Open(lf).

3.1 Loss Function Definition

We start by turning each non-empty F'(S) (similarly G(S)) into a metric space, as
follows.

Definition 3.1. Define the distance d5(A, B) for A, B € F(S) to be the smallest n
such that A and B represent the same connected component when included into S™.
Specifically,

d5(A,B) = min{n > 0| F[S C S"](A) = F[S c S"|(B)}.

If no such n exists, then we set d5 (A, B) = .

3We are implicitly using Lem. 2.3 to write the maps this way.
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Fig. 4 An example geometric graph used to calculate example distances in dg and d;.

It is easy to see that this definition satisfies the definition of an extended
metric. Indeed, it is actually an extended ultrametric since dk(A,C) <
max{d% (A, B),d5(B,C)}, although we will not need that additional structure here.

Consider the example of Fig. 4 with a single input graph encoded by a cosheaf
F : Open(U) — Set. The set F'(S) has two elements, which we denote by A and B as
they represent the connected components containing the points a and b respectively.
Then dg(A,B) = 1, since thickening the set S by 1 puts a and b in the same con-
nected component. Likewise, denoting the elements of F/(T') by W and Z, we see that
dE(W, Z) = 2 since we must expand the set T' twice before w and z are in the same
connected component.

As a first useful property of this distance, thickening a set implies that the dis-
tance between components will only decrease. For an example, consider W, Z € F(T)
representing points w and z in Fig. 4. As noted previously, df.(W, Z) = 2. However, if
the elements W', Z’ € F(T") represent the connected components in the 1-thickening
of T, then d%, (W', Z') = 1, and in particular, d%-(W, Z) > df, (W', Z’). This idea is
formalized in the following lemma:

Lemma 3.2. Fiz k > 0 and any A, B € F(S) with images A’ = F[S C S¥](A) and
B' = F[S C S*|(B) in F(S*). Then

0 ifk>n
dE. (A, B) = 0,d5(A,B) —k} = -
s+(4, BY) = max{0,ds (4, B) — k} {dg(A,B)—k if0<k<n

and in particular, d§ (A, B) > d%,.(A’, B').

Proof. Let n = d5(A, B), so that we know the image of A and B in F(S") is the
same. If k > n, then we use the functor maps F(S) — F(S") — F(S*) to see
that the images of A and B are the same in F(S™) so they are the same in F(S*).
Then d%, (A, B') = 0. If k < n, then we have the maps F(S) — F(S*) — F(S™).
Because we know that A and B do not map to the same thing prior to n, we have
d,. (A, B") = n — k, completing the proof. O
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We use this framework as follows: first, assume we are given F' and G but our
attempts at finding an interleaving do not necessarily satisfy the requirements of a
natural transformation. Normally, a natural transformation 7 : H = H' is a collection
of component morphisms 7 : H(S) — H'(S) which commute with the inclusions:

H[C]

H(S) H(T)
m'(5) L mrer.

The following definitions, inspired by [34] and [41], give names to collections of
component morphisms used to define an interleaving where the square might not
commute.

Definition 3.3. Given functors H, H' : Open(U) — Set, an unnatural transforma-
tion* n : H — H' is a collection of maps ns : H(S) — H'(S) with no additional
promise of commutativity.

For a fixed n > 0 and cosheaves F' and G, an assignment, or more specifically an
n-assignment, is a pair of unnatural transformations ¢ : F = G™ and ¢ : G = F™.

In order to clarify notation, for the remainder of the paper, we will be using n-
assignments to build (n + k)-interleavings, which by definition will be required to be
natural transformations. When the n-assignment might not commute, we denote its
maps by lower case ¢ and ; for (n + k)-assignments which are constructed to be
natural transformations, we denote them by ® and W.

In addition, we assume for the remainder of the paper that n is large enough for
an assignment to exist. That is, it is possible that for some given F'(S), G(S™) might
be empty for n small enough and thus there is no available map from one to the other.
However, because we have assumed a compact input, f(X) and ¢g(Y) is contained in
a compact interval, and thus, we have that the o for which F(S,) is not empty is
contained in some interval (in the poset sense). So long as n is large enough that the
Hausdorff distance between the images f(X) and ¢(Y) is at most on, G(S™) will be
non-empty for any non-empty F(S) (and vice versa).

In the spirit of [34], we measure the quality of a choice of an n-assignment ¢, ¢
using the collections of distances {df | S € Open(i)} and {d§ | S € Open(U)}.
First, note that checking that ¢ and 1 are natural transformations means ensuring
the diagrams

FlC]
—

F(S™) BT

F(s) 5L Py
w\ w\

G(S") oz GT™) G(S) —z GI(T)

4A natural transformation is an unnatural transformation which just happens to follow commutativ-
ity properties. In other words, natural and unnatural transformations are not mutually exclusive. This
vocabulary follows from [41] so we accept no responsibility for the linguistic implications.
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commute. As we use them repeatedly, we will denote these diagrams by \N\,(S,T)
and /7,(S,T), dropping the subscript when it is clear from context. Then checking
whether the pair constitutes an interleaving involves checking commutativity of the
diagrams

F[SCS52™]

F(9) F(S%m) F(S™)

Lpsn
¥s

G(S™) G(S)

2n
T G(S5™)

which we denote by V, (S) and A, 4 (S) respectively, again dropping the subscripts
when unnecessary. We measure quality of the given assignments by checking how far
these four diagrams are from commuting in the sense of the distances defined at the
terminal vertex of the shape.

Definition 3.4. Fiz an n-assignment (¢,v). We define four diagram loss functions:

L3(0) = max dff. (o1 o FIS € T](@), GIS" € T"] 0 s(a))

LET(0) = max din(r o GIS C T)(0), FIS" € "] 0 ¥s(a)

L (o) = max |1 abe. (FIS € 52)(a), ¥sn 0 p5(a)|

LA () = max |} -d5(GIS € 57")(a),psn 0 s(a)) .

a€eG(S)

N|—=

Then the loss for the given assignment is defined to be
. ST ST 1S 18

These loss functions are defined in a way so that while the diagram in question
might not commute, pushing n forward by the loss value will send the elements to the
same place. For example, if L%T(cp) = k, then in the diagram

F[C]

F(S) 5 p(r)

\ \ (3.5)

G(S") 5z G(I") — G(T" )

12
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Fig. 5 An example of two input geometric graphs, X and Y.

the image of a point from F(S) is the same in G(T™**) following both paths. Similarly,
if L% (p,1) = k, then in the diagram

FlC]

F(S) F(S?") —— F(52(n+h)

m (3.6)

G(S™)

the image of a point in F(S) is the same (following both paths) in F(S2("*5)) even if
not in F(S%").

An Example: Consider Fig. 5 and fix n = 1. Denote the connected component of
the point a in F(S), F(S'), and F(S?) by A, A’, and A”, respectively. Similarly, the
connected component of the point b is denoted by B” € G(S?). Follow the same form
for the connected components of points w and z in G. The interleaving diagrams can
be collected together as

F[SCS!) F[S'Cs?

{A/} {A//7B//}

ps @sN (37)

™~ ~

A7 %A T

{A}

noting that the horizontal maps are determined by sending a letter to the same letter
with an additional prime. The distances between the points in their respective sets are

dE, (A", B") = 1;

d§W,Z) =3, d5\(W', Z') =2, d5,(W", Z") = 1.

13



Consider the following example assignment:

@s:A'—)W/, 1/)5:VV,Z'—>A/,

©ps1 - A VVH7 wsl : Ig,/:j?,,,,.
In this case, we then have that L%’Sn =0, L%Sn =1, L% =0, and L“Z = 1, so again
L(p,v) > 1. For this particular example, no n = 1 interleaving is possible so any
choice of assignment will have a non-zero loss (the easiest check is to see that any
choice of assignment will force L% = 1).

3.2 Bounding the Interleaving Distance

We now use the loss function to give an upper bound for the interleaving distance.
Theorem 3.8. For an n-assignment, ¢: F = G"™ and ¢¥: G = F™,

dr(F,G) < n+ L(p, ).

To prove this, we require the following technical lemma, proved in Sec. 6.
Lemma 3.9. Assume we are given an n-assignment ¢ : F = G™ and ¢ : G = F™.
For a fized k, define (n+ k)-assignments ®5 = G[S™ C S"T*|opg and Vg = F[S™ C
Stk oqps for all S € Open(U). Then the following hold:

1. LET(9) < k implies N (S, T) commutes, and thus L% (®)
(

2. L%T ) < k implies /7y (S, Tzk commutes, and thus L*}T )
7S'Vl

0.
0

3. L%((p,d)) < k and Lgl () < k imply Vow(S) commutes, and thus
S _
L5(®, W) = 0. o

4. L (p,9) < k and L% STUN) <k oimply Dew(S) commutes, and thus
L3 (®,¥) =0.

In particular, if ¢ and ¥ have L(p,9) = 0, then ¢ and ¢ constitute an interleaving,
and so di(F,G) < n.

Proof of Thm. 3.8 . Set k = L(p,1), so by definition, L%T(go) < k, L%T(w) < k,
L% (0,) <k, and L3 (p,1) < k. As in Lem. 3.9, construct two (n + k)-assignments:
® given by &5 = G[S™ C S"**] o, and ¥ given by ¥g = F[S® C S"tF] o .
By Lem. 3.9, this means the diagrams \\¢(S,T), ZZ¢(S,T), Va,w(S), and Ag, v (S5)
commute for all pairs S C T. This implies that ® and ¥ are an (n + k)-interleaving,
giving the theorem. O

First, notice that this proof works by explicitly constructing an interleaving from
a given n-assignment. Second, we have no reason to believe that this bound is tight.
In particular, in Sec. 3.3 we improve the bound by way of restricting the computation
to the basis for the topology of K but even that is depending on input quality and
gives no guarantee.

We include one additional note about when this loss function can be promised to
be finite. Define the diameter of a metric space to be the largest distance between

14



X// S\ [\
! St < \—'\
e [V Y

Fig. 6 An example of the comparison of two geometric graphs with different numbers of connected
components. In this case, because X has one connected component and Y has two, the loss function
will be infinite for any assignment.

points, which we denote by diam(X, d) = sup{d(a,bd) | a,b € X}, and note that here,
the sup can be replaced with a max since we are working in finite metric spaces. To
simplify statements, we define the diameter of the empty set to be zero.

Lemma 3.10. The loss function for an n-assignment (p,1) is bounded above;
specifically,

Ly, ) < max ({diam(F(Sk), d5") | S € Open(U), k € {n, 2n}}
U {diam(a(sk),dg’“) | S € Open(U), k € {n, 2n}} )

In particular, if the inputs come from f : X — R and g : Y — R with both X and Y
connected, then L(p, ) is finite.

Proof. The parallelogram portions of the loss function Lw and L/ take values from
distances in F(S™) and G(S™). The triangle portions Ly, and La take values from
distances in F(S?") and G(S?"). So, the maximum for the loss function must be
attained on one of these sets, giving the inequality. For the second statement, if the
input graphs each have a single connected component, then any pair of elements
a,b € F(S) map to the same element under the inclusion F(S) — F(S¥) for a large
enough K. This in turn implies that the diameter of df is finite for every S. O

Consider the example in Fig. 6. Let {4, B}, {A’,B’}, and {A”, B"”} be the rep-
resentatives of the connected components of the points a and b in F(S), F(S!) and
F(S?) respectively. Because there is no n for which the two points are the same con-
nected component of X, the distance between A and B is oo in all three sets. Then
no matter the choice of 1-assignment, L, = oo, making the loss function infinite.
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3.3 Restriction to Basis Elements

We have so far measured the loss function by studying all possible open sets S. While
this is helpful for definitions, it does not make for a reasonable computational setting.
To that end, we now focus on a basis of the topology, and prove that this basis suffices.
Recall that an open set S, € Open(U) (Eqn. (2.1)) given by the downset of U,
for some o € K is called a basic open set. Note that {S, | 0 € K} is a basis for
the Alexandroff topology. We next give a name to the case where we are only given
n-assignment information for basis elements, or equivalently, if we are given a full
assignment but ignore the maps for non-basis open sets.
Definition 3.11. A basis unnatural transformation for functors H and H' is a col-
lection of maps ns, : H(S,) — H'(S,) for all basis elements S, from o € K.
A basis n-assignment (or simply a basis assignment) is a pair of basis unnatural
transformations

{ps, : F(S,) = G(S?) |o € K} and {s, : G(Sy) = F(SZ) | o€ K}

In this section, we prove that we can focus our loss function efforts on only those
diagrams associated to basic opens, and the solution can be extended to any open set.
Definition 3.12. The basis loss function is defined to be

S:.S0 78,8+ 78, 1S,
Lp(p,9) = I?g?r({LQ L7 LS ’LV }

It is immediate from the definitions that Lp < L as the Lp maximum is taken over
a subset of those used to determine L. This means, in particular, that if L = 0 then
Lp = 0. These values are not always equal; for instance, we might have chosen a basis
assignment for which every diagram commutes (making L = 0), but ¢ defined on
non-basis elements causes a non-zero loss function so L > 0. However in the special
case where Lp = 0, and thus the basis open diagrams are commutative, we do have
the ability to extend the information checked to a full interleaving. This can be seen
in the following lemma, proved in Sec. 6.
Lemma 3.13. Given a basis unnatural transformation

{®s, : F(S,) = G(SY)| 0 € K}

with L%T’S“ =0 for all 0 < 7, we can extend this to a full natural transformation ®;
i.e. we can define ®g for all S such that L%T =0 forall SCT.

Note that the symmetric version extending a basis unnatural transformation ¥ to
a natural transformation ¥ : G = F¥ is obtained in exactly the same way. Next, we
can take these natural transformations and ensure the triangles commute (thus giving
an interleaving) by only checking the basis set triangles, again proved in Sec. 6.
Lemma 3.14. Given natural transformations ® : F = GY and ¥ : GN = F such
that L*;“ =0 for allc € K, then L% =0 for all open sets S.

Taken together, we immediately have the following proposition.
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Proposition 3.15. Fiz a basis N-assignment (®, V). If Lp(®, V) =0, then ® and ¥
can be extended to natural transformations with L(®, V) = 0, and thus constitute an
interleaving.

Finally, we arrive at our main theorem, where we can use the provided basis
n-assignment and the calculated loss function to give a bound for the interleaving
distance.

Theorem 3.16. Given a basis n-assignment

o={ps, |c€ K} andp = {ts, | 0 € K},

we have
di(F,G) <n+ Lp(p,v).

Proof. This proof proceeds in the same way as that of Thm. 3.8 with some minor
modifications of input assumptions. First, let k = Lp(p,¥); and define a basis (n +
k)-assignment by

{®s, =G[Cloys, |0 € K} and {Vg, = F[C]ovg, | o € K}.

By Lem. 3.9, we know that L5757 (®) = 0 and LY7%7(¥) = 0 for all 7 < . Then
by Lem. 3.13, we can extend ® and ¥ to full natural transformations defined for all
S € Open(U).

To show that ® and ¥ constitute an (n 4 k)-interleaving, we must check triangles;
i.e. ensure that L3 (®, W) = L3 (®, ¥) = 0. With the goal of using part 3 of Lem. 3.9,

n n+k
first note that L@”(gp,w) < k for basis elements. We can see that L;”S" < k by
using the (non-commutative) diagram

FlC]

F(S2) F(szmh) L5 F (8500

G(SFHh).

n
G(53) G[C]
The leftmost and rightmost triangles commute by definition of W, and the orange
parallelogram commutes because ¥ is a natural transformation. Then chasing any

x € G(S?) up to the top right F (53(“’“)) results in the same element, giving the

required bound on L?’S;M. Using Lem. 3.14 for ® and V¥, L%(@,\I/) = 0 for all

open sets S. The proof that Li((I),\I!) = 0 is similar. Therefore ® and ¥ are an
(n + k)-interleaving, giving the bound. O

What is surprising about this bound is that despite checking fewer open sets, the
loss function for Lp is actually lower than that found using L. One reason for this is
that when we work with the smaller set of input maps, we extend the collection to
a “better” full assignment, potentially getting rid of some of the causes of a nonzero
loss function in the first place. For example, a full assignment would be required to
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provide a map pg for a S with multiple connected components, say S = T1 UT5. Since
no requirements were made of this map based on the ¢, and ¢r, maps, there is a
reasonable chance that the loss function contribution from the Lg"s is higher than
necessary. However, in the basis version, we can build the best possible ¢ given the

information over g, and ¢g,, providing a potentially better, but certainly no worse,
bound.

4 Computation

In this section, we show that given an n-assignment ¢ and v, we can compute the
loss function Lg(¢,%) in polynomial time. For simplicity, we describe the algorithm
explicitly in the case where d = 1 for clarity of exposition, before addressing the run
time in higher dimensions.

4.1 Data Structures for d =1

In this section, we build a pair of graphs representing a pair of input functors F, G,
and use pointers between the vertex and edge sets to represent a given n-assignment
o and 1. For ease of exposition, we will carefully focus on the case d = 1, following
the example of Fig. 7 to illustrate our construction. While we acknowledge an overuse
of the term “graph” throughout this paper as it is used in many different contexts,
for this section we use the term graph to mean a network; i.e. a combinatorial pair
consisting of vertices and edges. Throughout, we denote edges interchangeably by
either (x,y) or zy depending on the context and notational complexity.

At a high level, we will construct graphs for F' and G, which we denote by (Ve, Er)
and (Vg, Eg). Then we will build data structures to encode the natural transforma-
tions ¢ and . For clarity, we use phi and psi to denote a collection of pointers that
will store the information of ¢ and ), respectively. These will be viewed as set maps®
phi : (Vp, Er) — (Vg,Eq) and psi : (Vg, Eq) — (Vr, EF), which map each vertex
to a vertex in the other graph and each edge to an edge in the other graph. We give
explicit constructions of phi and psi as well as further restrictions on allowable maps
in what follows.

Focusing on d = 1, the complex K, i.e., the discretization of R, consists of vertices
which we write as o_p,, -+, o, with heights in our bounding box [—Ld, Lé], and with
edges 7; = (0j,0j41). Then we construct the graph for F' : Open(i{) — Set by
generating a vertex for every object in every F(S,,) and connect them using the
morphisms of the functor. This results in a vertex set

5This notation is meant to imply that phi is composed of two maps, phi : Vi — Vg and phi : Ep — Eg.
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T1
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Fig. 7 From left to right: an example input Reeb graph (d = 1), a discretization of R, the generated
mapper graph, and the data structure encoding the mapper graph.

and an edge for every object in every F(S.,), giving edge set

B-1

Ep =[] F(S-).

i=1
The endpoints of any edge e € F(S;,) C Er can be found via the attaching maps:

F[S;, C S,,](e) € F(S,,) and
F[S;, C SUHJ(B) € F(SUH»I)'

For example, e = (vq4,v5) € F(S;,) in Fig. 7 has endpoints vg € F(S,,) and vy €
F(S,.). We store this data in a standard adjacency list. In addition, each vertex
also keeps track of its height, so a vertex v € F(S,,) also stores the value i as a
representation of its height.

Next, we encode the information for an assignment (y,v) between F,G
Open(U) — Set by constructing the set maps phi and psi using the graphs (Vz, Er)
and (Vg, Eg). Assume we are given n-assignments ¢ and . We start by focusing on
the vertex set. For this, we need to represent the map ¢s, : F(S5,) — G(Sg,). The
elements of F(S,,) are already given as vertices, however the elements of G(S7,) are
not. But, because of the cosheaf structure of G, the elements of G(S7) can be seen
as the connected components of particular subsets of the (Vi, Eg).
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We emphasize that we are using the term “subset” because the resulting objects
will not be subgraphs in the usual sense. These subsets will consist of a subset of the
vertex set and a subset of the edge set (V’, E’), but without the promise that both
endpoints of an edge are included in the set. However, we can still define connected
components in this setting to consist of vertices and edges which can be connected by
paths.

For some vertex o; of K, let

VGoim =1{v|veG(S,,),j €[i —n,i+nl}

and
Ego;n=1{elecG(S;),jeli—n—1,i+n]}
and write (Vg, Eq)o;n = (Va,0;.m, EG,0; n)- Similarly for the edges of K, we can define

Varin=1{v|veG(S,,),j€li—n+1,i+n]

and
Egq n=1{elecG(S;),j€li—n,i+n]}

with notation (Va, Eq)r,n = Va7, EGr.n). Note that because of the endpoints,
these are not induced subgraphs; see Fig. 8 for examples. We call either (Vig, Eg)r;n
or (Va, EG)o, n a slice of the graph since they are each a portion of the graph which
gives the connected components over an open interval as seen in the following lemma.
Lemma 4.1. The elements of G(S7,) (resp. G(S})) are in one-to-one corre-
spondence with the connected components of the subset of the graph (Va, EG)o;n

(resp. (Va, Ec)r,.n)-

Proof. This lemma is immediate from noting that G(S7,) is the colimit of the diagram
given by G(S5) for S, C S}, where o is taken over all cells in K (of both dimension
0 and 1), and then carefully tracking indices of these cells from the above notation.
The edge version is similar. O

With this, we can return to storing a given n-assignment ¢ and . To store the
unnatural transformation ¢, for each v € F(S,,), we choose a vertex phi(v) € Vg 5,1,
where phi(v) is in the connected component of (Va, Eg)o,,n represented by ps, (v) €
G(Sg,). We note that given a collection of choices of vertices

{phi(v) € G(S,,) C Vo |v e F(Ss,) C Vp, |i —j| <n}
and edges
{phi(e) € G(S,) |e € F(S;,) CVp, i — j| <n}
we can immediately reconstruct an unnatural transformation ¢ by setting ¢s, (v)
to be the element of G(S7) representing the connected component of (Vg, Eg)o, n
containing phi(v). As these processes are inverse of each other and the parallel setup

can be done for ¥ and psi, we are justified in using this data structure to represent
the assignment.
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Fig. 8 At left are two example input mapper graphs. In the middle are a subset of an example phi
and psi input assignment used throughout the text. At right are two example slices of the graphs
used when checking connectivity.

For an example, consider Fig. 8 where we assume n = 1. If phi(b) = w, then ¢, (b)
is the connected component that includes w of (Vi, E¢)o,,1 as shown on the right. We
can similarly find the edge map phi(e) for e € F(S;,) by setting it to be an edge in
EG 7, n representing the connected component of ¢, (e) € G(S7) in (V, Eg)r, n- So,
for example, in Fig. 8 where n = 1, the input data might have phi(ab) = (zy) € E¢
and phi(bc) = (uv) € Eg.

4.2 Algorithm and Complexity for d = 1

In this section, we discuss the complexity of determining Lg(p, ) given phi and psi.
First, we will proceed using a binary search on k € [0,--- ,2L] where the maximum
is determined by the diameter of the bounding box. For a fixed k, we will determine
if Lg(p,v) < k by checking if L%”S”, L@", L%’S” and Li" are all less than k for all
o and 7 in K. We will describe the cases for L%*’S" and Lé", as L?’S" and L‘Z" are
symmetric.

Start with L“gg S and note that in the case where d = 1, there are two pairs
necessary to check for each edge: 7;,0; and 7;,0;41. Fix o4 to be either o; or oj1.
For each edge e € F(S;,), we need to check if the two possible images in G(SZ)
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under the diagram

F[C]

F(S;,) F(S,,) er——— v
\ Y‘
G(S2) 5 G(S3,) — G(SH) ) s ==t
(4.2)
are the same. Note that we use [—] to represent the connected component in the

relevant slice of the graph containing that edge or vertex. Following the top of diagram
Eq. (4.2), we know that e has a unique endpoint vertex v € F(S,,), and that vertex has
an image under ypg» , which is a connected component represented by phi(v) = w €

Va. Following down, the edge e has an edge image phi(e) = e’ € Eg. So the question
becomes: are ¢/ and w in the same connected component of the slice (Va, EG)o, ntk;
whose components represent the elements of G(S2*)? In order to answer this question
easily for all starting edges in F'(S;,), we use a breadth first search algorithm to label
all the connected components of the slice once. Then the two images of each edge
starting from F(S;,) can be checked in constant time [42, Sec. 5.6]. This results in a
total time (when d = 1) of O(|Vz| 4+ |Eg|) time taken for checking the parallelogram.
There are 2L dimension 1 cells in K, and after computing connected components
for the two parallelogram diagrams, all edges in a cell can have each parallelogram
diagrams checked in O(1) time, thus the time to determine if max,<, L%T’S" < kis
O(L- ([Val + | Eal))-

In the example of Fig. 8, assume n = k = 1 and assume the given input phi is
as noted. Then for the diagram of Eq. (4.2) with £ = j and chasing bc € F(S,), this
comes down to checking if the connected component of phi(b) = w and phl(bc) =y
are the same in the portion of (Vi, Eg)s, 2. In this particular example, there are two
connected components in this slice and the images are not in the same component.

Then we know that Lo’ 7 > k so we would skip all other commutative diagram
checks and 1mmed1ately move on in our binary search. If it were the case that the two

S.,.5,

images were in the same connected component, then Lo’ "/ < k and thus we would
move on to the next commutative diagram check.
Checking if L‘;T < k is similar so we briefly highlight the differences. First, there

T'7 o

. . S,
are two types of basis elements in our case where d =1, so we need to check L < k

. . . S, . .
(meaning checking vertices) and Ly <k (meaning checking edges). We focus on the
case of vertices since the edge version is similar. For any vertex v € F(S,,), we need
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to chase it around the diagram

F[S,, CS8%"

o =o;

F(S,,) F(S2) —— F(S5").

PSg,

i s ) U/}] (4.3)

v} | [
Ui) \ /[U]}—g[v
w

If phi : v — w, and psi : w — v’, the question again becomes: are v and v’ in the
same connected component of (VG,EG)O-j)Q(n+k)? Similar to the parallelogram case,
we take the relevant slice of the graph and check this connectivity question by finding
connected components once in the slice in O(|Vg|+ |E¢|) time, and then the check for
each vertex in F'(S,,) is done in O(1) time. As before, either the elements checked are
in the same connected component of the relevant slice of the graph, in which case we
move to the next diagram; or it does not, and we move to a different k in our binary
search. There are O(L) cells (counting both 0- and 1-dimensional cells) in K, meaning
there are O(L) triangle diagrams to check. Thus, checking if max,cx L@” < k can
also be done in O(L - (|Vg| + |Fgl) time.

In our example case of Fig. 8 with n = k = 1, we have 2(n + k) = 4. Then chasing
b, we need to check that b and psiophi(b) = ¢ are in the same connected component
of (Vg, Eg)s; 4. As this slice has one connected component, this triangle commutes.

We can check another triangle Ligj < k by chasing w. In this case, we must check if
w and phiopsi(w) = z are in the same component of (V, Eg)s, 4, which again, they
both are. In either case, if they were not, we would know the loss function is at least
k and continue in the binary search.

Putting this together, this means that if the graph representations of F' and G are
(Vr, Er) and (Vg, Eg) respectively, the time for computing the loss function is

0<LlogL mmax { [Vie| + | B, [Val + |EG|}>

where the log L term comes from the binary search.

4.3 Generalization for d > 1

The generalization to higher dimensions makes relatively minor modifications for the
algorithm, with the expected curse of dimensionality result in the running time. In this
case, we build a graph with vertex set Vp = [[ ., F(S5) so that vertices represent all
dimensional cubes rather than only 0 as earlier. An edge is given between every pair
of vertices v and w for which F[S; C S,](v) = w. Denote the sizes of these sets by
|Vr| and |Er|. Note that these sizes are in some sense already hiding an exponential
term in d since the number of cells in the grid K is O(L?).
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As in d = 1, we proceed using a binary search on [0,--- ,2L] where [—L6, L8]¢ is
the bounding box of the images of f : X — R? and ¢ : Y — R?. Again, for a fixed k,
we will determine if Lg(p, 1) < k by checking if L%T’S", L@”, L%’S" and Li” are all
less than k for all o and 7 in K.

If we count in terms of the open sets S, every set F'(S,) needs to be checked as
the starting point for one triangle diagram Vg ¢ (S5), and as the starting point for
one parallelogram diagram \\¢(S,,S;) for every 7 > o. The grid structure means
there are worst case O(29) adjacent cells, so this results in 1+ O(2%) diagram checks
to be done per vertex. Each of these checks involves determining if two vertices are
in the same connected component of the higher dimensional analogue of a slice for
o with indices 7 € Z% involves checking a portion of the graph with indices in a d-
dimensional box [¢; — (n+k), {1+ (n+ k)] x - X [lg— (n+k),lqs+ (n+k)] and hence
takes worst case O(|Vr| + |EF|) time. However as before, this connected component
needs to only be found once per diagram. The result is a running time of

O(log L - 2¢ - max{|Vr| + |Er|, |Va| + |Ec|}).

5 Extension to Reeb Graphs

We now take a brief diversion into understanding how the loss function framework can
be used to approximate the Reeb graph interleaving distance. In this case, we consider
a 1-dimensional mapper graph to be an approximation of the Reeb graph [27-31]. We
show that in order to bound the Reeb graph interleaving distance, we can compute the
mapper graph for a resolution ¢, and then use the loss function to provide a similar
bound.

5.1 Definitions

Given input data f : X — R, the Reeb graph of (X, f) is computed as follows. Define
an equivalence relation by setting x ~ y iff z and y are in the same path-connected
component of the levelset f~1(a). With enough restrictions on the space and function
(for example, a Morse function on a manifold), the resulting Reeb graph is a topological
graph; i.e. a 1-dimensional stratified space. Similar to the vantage taken for the mapper
graphs in this paper, the data of a Reeb graph can be stored in a cosheaf.
Definition 5.1. For a given (X, f), the associated Reeb cosheaf is given by

F:Int —» Set
I — 7T0f_1(])
N 1 m[C]
J = Fof_l(J)

where morphisms are induced by the gy functor.

For clarity, we write the Reeb cosheaf with a tilde to distinguish it from the mapper
cosheaf without a tilde. Given this input, we have the Reeb graph interleaving distance
[33], given as follows.
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Definition 5.2. Define the functor (—)° : Int — Int by (a,b) — (a —e,b+ ¢) with
morphisms induced by inclusion. Then F. : Int — Set is given by F.(J) = F(J¢).

For given ﬁ, é: Int — Set, an c-interleaving is a pair of natural transformations
¢: F=G. and ¢ : G = F. such that

F(r) — = B F()

G(Im) G(I) G(I*)

G[ICI*™
commute for all I € Int. The (categorical) Reeb graph interleaving distance is given by
dr(F,G) =inf{e > 0| there exists an e-interleaving}.

Fix a 4. Following Sec. 2, denote the vertices of K by {o_p, -+ ,0} where o;
is at the point id € R. Denote the edges by 7, = (id, (i + 1)0) which has faces o;
and ;. Given some input data f : X — R, we can either construct its Reeb cosheaf
F :Int — Set, or by fixing some choice of d, we can construct its mapper cosheaf
F : Open(K) — Set, F(S) = f~(|S)).

We next show that the loss function we have computed here on the mapper version
dy can be used to similarly bound the Reeb interleaving distance dr. We do this by
showing that d; is an approximation of dg, which can be viewed as a special case of
[31, Thm. 5.15]; however, for clarity, we include a direct proof in Sec. 6 as our setting
allows a proof with considerably less use of category theoretic machinery.
Proposition 5.3. For inputs f : X — R and g : Y — R, denote the respective
Reeb cosheaves as F,G : Int — Set, and the respective mapper cosheaves as F,G :
Open(K) — Set. Then

dr(F,G) < (d1(F,G) +1) 3.

Given this bound, we combine Prop. 5.3 with Thm. 3.16 to show that the loss
function for the mapper graph discretization bounds the Reeb graph interleaving as
well and that, in particular, this bound is controlled by the diameter ¢ chosen for K.
Corollary 5.4. Given a basis n-assignment ¢ = {py, |0 € K} and ¢ = {¢y, | 0 €
K} for F,G : Open(K) — Set, we have that

dr(F,G) < 8(d;(F,G) +1) < 8(n + Lp(p,) + 1).
6 Technical Proofs

In this section, we include the technical proofs from the previous sections.

6.1 Proofs from Sec. 2

Lemma 6.1. (—)" is a functor.
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Fig. 9 Given the purple set U, we have an edge o and a square ¢’ which are elements of U3. Then
we provide an example sequence for each satisfying Eq. (6.2) leading to 7 and 7/ in U.

Proof. First, we check that the images of morphisms are well defined, which is to say
that if S C T, then S™ C T". The statement is clear if n = 0, so by induction, we
assume that S”~! C T"~!. Given an arbitrary U, € S", the statement is immediate
if U, € S"~1 C 8", so we assume U, € S™\ S"~!. For this to happen, there must
be a U, e sn1 and 7 € K with v > 7 < o and thus U, € U, 2 U,. But as
U, € S"~1 C T™~! this sequence also implies that U, € T™, finishing the well-defined
check.

To ensure this is a functor, we need to check that the identity morphism is sent to
the identity, and that composition holds. For the former, we see that S C S gets sent
to S™ C S", and each is an identity. The latter is immediate from the property that
Open(U) is a poset category, meaning that there is at most one morphism between
any pair of objects. O

One property of this construction that will be useful is as follows. For any U, € S,
there is a U, € S and a sequence of cells of K

T2Nn<nz2r<n>--27y% <0 (6.2)
and thus also a sequence of sets in U
UT > U’y1 < UT1 > U’yg < U7-2 Z 2 U’yn < Ua- (63)

Further, given such a sequence with 7 € U, we know that ¢ € U™. Two examples
of this can be seen in Fig. 9, where ¢ and ¢’ from U? are given, along with a path
satisfying Eq. (6.2). Of course, the choice of sequence for Eq. (6.2) is not unique, so
other options are possible.

Next we show that the distance of Eq. (2.4) is indeed a distance using the super-
linear family of translations framework of [16]. This construction can be generalized to
the concept of a category with a flow [14], but the added generality is not needed here.
Definition 6.4 ([16]). Let P = (P,<) be a preordered set. A translation on P is a
functor I' : P — P along with a natural transformation n : 1p = I'. A super-linear
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family of translations is a collection {Tc}e>o such that T'.T'e(p) < Teyer(p) for all
p € P, and g,¢' > 0.
Lemma 2.3. For any n,n’ >0 and S € Open(U),

(Sn)n’ _ Sn+n’ )

Proof. First, we check that (—)™ is indeed a translation using the above terminology. In
particular, we define v : Topenw) = (—)" to have components 7§ : S — S™ as simply
the inclusion, and we can easily check that this satisfies the naturality requirements.

Fix S € Open(U). We need to show that (S™)" = S+ Let U, € (S™)". By
previous remarks, this is true if and only if there is a sequence in K

TZ2Mm<m27m<n2 2% <0
with U, € S™. But this property of T happens iff there is also a sequence in K
T2 <> <> > <7
with U, € S. Concatenating the two sequences giv,es a sequence of lgngth (n + n')
from U, € S to U,. Thus U, € "™ iff U, € (S™)™, and hence (S™)" =St . O

Theorem 6.5. The interleaving distance of Defn. 2.4 is an extended pseudometric.

Proof. Because Lem. (2.3) is a stronger requirement than needed for Defn. 6.4, the
collection {(—)"},>0 forms a super-linear family of translations. Then the result is
immediate from [16, Theorem 3.21]. O

6.2 Proofs from Sec. 3

To simplify notation, throughout the proofs of this section we often use a e symbol to
represent the set indexing a particular map when the subscript would be obvious from
the given map. For example, we write @o : F(S™) — G(S?") rather than writing ¢gn.
Lemma 3.9. Assume we are given an n-assignment ¢ : F = G™ and ¢ : G = F™.
For a fized k, define (n+ k)-assignments ®5 = G[S™ C S" ¥ o pg and g = F[S™ C
S"tk] o 4hg for all S € Open(U). Then the following hold:

1. L%T(gp) < k implies \N\g (S, T) commutes, and thus L%T((P) =0.

2. L%T(w) < k implies [74(S,T) commutes, and thus L%T(\I/) =0.

3. L%((p,i/)) < k and L%n’snﬂ(w) < k imply Vo w(S) commutes, and thus
LE(2,9) =0

4. L3 (o,9) < k and Lg"snﬁ(g@) < k imply New(S) commutes, and thus
LS(,0) =0

In particular, if ¢ and ¥ have L(p,v) = 0, then ¢ and 1) constitute an interleaving,
and so di(F,G) < n.
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Proof of Lem. 3.9. We prove the lemma for the first and third entries only as the other
arguments are symmetric. Assume L%T(go) < k and consider the diagram

F(s) — S pr)
‘Psxs) é\\
G(S") g ——— G(T™) (6.6)
Jete) B \ Jete)

a(smtry —GEL, Gpmtky.

Note that the top of the diagram (Eq. 6.6) given by

F(s) L per

¥s YT (6~7)

asmy S g

does not necessarily commute in the case that £ > 1, and the bottom of the diagram
(Eq. 6.6) given by
FIC]
F(S) ——— F(T)
Jos |or (6.8)
G(anrk) GlE] G(TnJrk)

is \N\g (S, T), for which we wish to check for commutativity. For any « € F(S), following
around the top square, Eq. 6.7, gives

r — o

[

@y

with d%.(a’,b’) < k. By definition, the image of a’ and b’ is the same under the map
G(T™) — G(T"**). Then since the front square of Eq. 6.6 given by

Gsm) == (1)

lc[g lc[g

G(S'n) GE]; G(Tn)
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commutes by functoriality of G, and the side triangles of Eq. 6.6 given by

F(S) —2 G(s™) F(T) 22 G(T™)
PaNEE o, oo
Sn-i-k Tn—i—k

commute by definition of ®, we have that the image of = under either direction of the
back square, Eq. 6.8, commutes, proving claim (1).
Turning to claim (3), consider the noncommutative diagram

FlCl (€]

F(sy 8 pegentry FIEL g

N o, e %

n n+k
G(5™) el G(S™)

(S2(n+k) ) .

(6.9)
The two yellow triangles

F(S2n+k) F(S%(n+k)

\/

n n+k:
*>G[C G(S

commute by definition of ® and ¥. The blue parallelogram

a(sm) S g gntky
lw- wao

F(SZn) G[C] F(SQnJrk)

is the diagram HMS",S"*"“) which also has loss function bounded by k, thus ele-
ments of G(S™) are not necessarily the same in the image of F(S?"**) following the
parallelogram, but are the same in F(S2("+k)),

Checking that Vg ¢ (S) commutes amounts to a diagram chase. For an arbitrary
a € F(5), consider the following elements
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aligning with the diagram of Eq. 6.9. Both « and z map to 2’ because of the yellow
triangle commuting, and both b and 2’ map to the same c for the same reason. Even
if & and 2 map to different elements in F'(S?"), they must map to the same element in
F(S?(+k)) and this element must be ¢, since both ¥’ and b” map to the same element
by the bound on the blue parallelogram. As this was done for an arbitrary «, we have
that Vg ¢(S) commutes.

Claims (2) and (4) are similar with appropriate choices of diagrams. The final state-
ment is immediate since L(p,1) = 0 implies all diagrams needed for an interleaving
commute. O

Lemma 3.13. Given a basis unnatural transformation
{®s, : F(S,) = G(SY) | o € K}

with L%T’S" =0 for all 0 < 7, we can extend this to a full natural transformation ®;
i.e. we can define ®g for all S such that L‘%’T =0 forall SCT.

Proof of Lem. 3.13. We start by defining ®g for arbitrary open sets. Note that since
L%”S" =0, for any o < 7, the diagram of the form

F(s,) —h p(s,)

‘I’sTl l‘l’sa

G(sm) = G(sp)
commutes.

For an arbitrary open S, define Us = {S, | U, € S}. Any nonempty intersection
U, N U, is also an element of U, and so any nonempty intersection of S, N .S, is an
element of Ug, so it is a cover of S. Then we use the fact that F is a cosheaf, and in
particular this means that F(S) is the coequalizer of the diagram

]] 170

F[S,NS,/CS,
I F(S-nSo)

o,0’

F[SUHSG/ CS,/

Rephrased, this means that for any set @@ with maps F(S,) — @ such that the solid
arrow diagrams of the form

F(S, NSy ) —

F[Q]J{

F(S,) _Fe




commute for any o, c’, then there is a unique map F(S) — @ whose addition still has
all diagrams commute. In our case, set Q = G(S™), and define the legs of the cocone
to be G[C] o ®g_ as seen in the bold purple arrows of the diagram

F(Sy N Sp) ——22— G((Sy N Syr)™)
FIC] G Glc]
\ P \\ n
FIC] F(S5) > G(53)
F[C] l (6.10)
F(S,) — ACCONN
~ T
o) JE— B » G(S™)

Note that the diagram prior to the inclusion of the dotted line commutes, since we
can check the relevant faces as follows. The left and right squares commute because F’
and G are functors. The back and top panels commute because they involve only basis
opens; equivalently, because we assumed L 5o =L 50815 — 0. Then, because
F(S) is a colimit of the diagram, there ex1sts a unique map ®g : F(S) — G(S™) as
noted, making any diagram of this form commute.

To ensure that the resulting &g maps make diagrams of the form

F(S) —— G(S™)

| |

F(T) —— G(T")

commute for arbitrary S C T, fix such a pair and an z € F(S). Because F'(S) is the
colimit, there is a ¢ and an z, € F(S,) such that z, — z. In this case we have the
diagram

F(S,) SLLIN G(S

RN

*>GS"

AN

F(T) —2 G(T™)
The top and bottom squares of the wedge commute because they are the front of the
cube of the diagram in Eq. (6.10). The left and right triangles commute since F' and G
are functors. Thus the front square commutes. This means the resulting ® is a natural
transformation, and thus L%’T =0. O

Lemma 3.14. Given natural transformations ® : F = GV and U : GV = F such
that L‘;" =0 for all 0 € K, then L% =0 for all open sets S.
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Proof of Lem. 3.14. Because Lé” = 0 for all basis elements, diagrams of the form

Flel]

F(S,) F(S3")

‘mﬁsg

G(57)

commute for any o € K. Given an arbitrary open set S, let © € F(S) be given. As in
the proof of Lem. 3.13, there is a ¢ and an z, € F(S,) with 2, — 2. Then consider
the diagram

S2n
F[C]

F[C

S2n)

G(S™).

The top square commutes because F' is a functor. The back triangle commutes by
this lemma’s assumption. The left and right squares commute because ® and ¥ are
natural transformations. Taken together, this means that the front triangle commutes
as required. O

6.3 Proof from Sec. 5

Proposition 5.3. For inputs f : X — R and g : Y — R, denote the respective
Reeb cosheaves as F,G : Int — Set, and the respective mapper cosheaves as F,G :
Open(K) — Set. Then

dr(F,G) < (d;(F,G) + 1) 6.

Proof. Let ¢, be an n- interleaving for F,G : Open(U{) — Set. We will construct an
e = 0(n + 1)-interleaving @, w for F,G : Int — Set.

We start by defining ¢ : F = G° as 1/) is analogous. Given an arbitrary interval
I = (a,b), let J = (jo,k0) be the smallest grid-aligned interval containing I; i.e.
jo<a< (j+1)d and (k—1)0 <b < kd.

Note that T C J C Jo» C T+D8 =5 Tet S ={S,, |j <i<k—-1}U{S,, |j <
i < k}. A quick check shows that S € Open(i), that J = |S|, and that J" = |S"|.
Chasing definitions, this means that F(J) = mo(f~1(J)) and F(S) = mo(f~2(9]))
are equal; similarly F(J%") = F(S™). Then define @; to be the map defined by the
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composition

F(S) —5> G(S™).

Notice that setting I to be an axis aligned interval J gives the map ¢; marked.

Now that we have built ¢ and 1, we need to check (i) that each is a natural
transformation and (ii) that they satisfy the triangle diagrams of Defn. 5.2. For (i)
we check only @ as, again, {/}v is symmetric. To this end, assume we have I C I’ with
minimal grid-aligned intervals J and J’, and let S, 5" € Open(U) be such that |S| = J
and |S’| = J'. Then consider the diagram

ﬁ([ b1 é([(nJrl)&)

ﬁ[gl

)
F(J)

G112

Té[g

G(()°™)

T:

G((5)")-

Note that the front and back panels of the cube are the diagrams that were used
to define p; and ¢/, so they commute. The bottom panel commutes because ¢ is
a natural transformation. The left and right panels commute because F' and F arise
from computing connected components on the same underling input data. Thus, the
top square commutes, and this is exactly what is needed to say that ¢ is a natural
transformation.

33



To check (ii), fix an interval I with grid aligned J C I and S € Open(U) with
|S| = J. Then consider the diagram

F(I) o G(1(+D9) e F(12v+1) )
Fil| | 5
FU) G o Gt R

P

F(8) £ G(s™) 255 G(smh) = F(sPr)

Psn /
F[C] F[C]

F(S?").

The left and right hexa-laterals commute by definition of ¢ and QZ respectively. The
middle top triangle commutes because G is a functor, and the middle square com-
mutes because G and G are defined as connected components of the same input data.
The bottom left triangle commutes because ¢ and v are an n-interleaving. The right
quadrilateral commutes because 9 is a natural transformation. All this shows that the
outside boundary of the diagram commutes. Swapping out the interior, we have

é([(n+1)5)

V ’LZIE

F(I) s F(12 1))
Flq] Tﬁ[g]

ﬁ(]) FIC] ﬁ(J6(2n+1))
F(S) FIC] F(52n+1)

Ph /{Q]’

F(S?).

The bottom triangle commutes because F' is a functor, the next square up commutes by
definition of F" and F', and the top square commutes because F is a functor. Combining
this with the outside ring commuting means that the top triangle commutes, which is
the final ingredient needed for the definition of an interleaving. O

7 Discussion

In this paper, we defined a loss function that quantifies how far a diagram is from being
commutative, and used such a loss function to bound the interleaving distance, both
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for mapper and Reeb graph settings. This work provides a way to evaluate a particular
set of maps, which immediately suggests the question of utilizing this quantification
to iteratively improve our comparison. Here, the quality of the bound is dependent
on the quality of the input n-assignment, but we assume no control over that input
in this paper and so we cannot evaluate the tightness of the bound. In the followup
work [35], we will use this bound in the context of an ILP framework, where an
input n-assignment can be improved incrementally thus finding a better bound on the
distance. The potential for not only getting better approximations but also returning
the actual interleaving maps used in the bound is an exciting step toward computing
interleaving distances for graph-based signatures available in practice. Of course, we
know that deciding if two Reeb graphs are e-interleaved (for ¢ > 1) is NP-hard [18],
so our ILP has no guarantee of reaching the global optimal solution. This is related
to other available work providing bounds similarly lacking tightness guarantees for
the interleaving distance restricted to merge trees [24, 25]. The first of these ([24])
uses the labeled merge tree distance [22, 23] which has more limited properties when
generalizing to Reeb graphs [43] so it is unclear if this would generalize. The latter
uses the map formulations on the topological spaces that arise in the special case of
merge trees, so major modifications would need to be made for this to apply to the
Reeb graph setting as seen here.

We believe that our loss function based framework is applicable in a broader context
where data are modeled as sheaves or cosheaves in the category of sets, as sheaf theory
is emerging as a tool in data science to study, e.g., distributed systems [44, 45], sensor
networks [46], model fit [47], and uncertainty quantification [48]. In particular, one
interesting next step is to study how to extend our framework to work with persistence
modules as cosheaves in the category of vector spaces (e.g., [49]). As the interleaving
distance for multiparameter persistence modules is similarly NP-hard [19], this would
be an exciting step toward computational efforts in this broad class of topological
signatures.
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