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Abstract One of the biggest challenges in high-energy

physics is to analyze a complex mix of experimental and

simulation data to gain new insights into the underlying

physics. Currently, this analysis relies primarily on the

intuition of trained experts often using nothing more so-

phisticated than default scatter plots. Many advanced

analysis techniques are not easily accessible to scien-

tists and not flexible enough to explore the potentially

interesting hypotheses in an intuitive manner. Further-

more, results from individual techniques are often dif-

ficult to integrate, leading to a confusing patchwork of

analysis snippets too cumbersome for data exploration.

This paper presents a case study on how a combination

of techniques from statistics, machine learning, topol-

ogy, and visualization can have a significant impact in
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the field of inertial confinement fusion. We present the

ND2AV: N-Dimensional Data Analysis and Visualiza-

tion framework, a user-friendly tool aimed at exploiting

the intuition and current workflow of the target users.

The system integrates traditional analysis approaches

such as dimension reduction and clustering with state-

of-the-art techniques such as neighborhood graphs and

topological analysis, and custom capabilities such as

defining combined metrics on the fly. All components

are linked into an interactive environment that enables

an intuitive exploration of a wide variety of hypothe-

ses while relating the results to concepts familiar to the

users, such as scatter plots. ND2AV uses a modular de-

sign providing easy extensibility and customization for

different applications. ND2AV is being actively used in

the National Ignition Campaign and has already led to
a number of unexpected discoveries.

Keywords topological analysis · visualization ·
dimension reduction

1 Introduction

Some of the most exciting and challenging frontiers of

science are the ultra large-scale experimental facilities

such as the Large Hadron Collider at CERN or the Na-

tional Ignition Facility (NIF) at Lawrence Livermore

National Laboratory. These facilities allow us to ex-

plore physics in regimes far beyond previous capabil-

ities and virtually by design exceed the limits of our

theoretical understanding. To bridge the gap between

our current knowledge and the observed outcomes, the

experiments are typically accompanied by an equally

impressive effort in developing predictive simulations

of various fidelity. Such simulations are used to design

the experiments and to plan the facilities, to re-create
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observed phenomena to better investigate unobservable

aspects of an experiment, and to explore, as a test bed,

the influence different physical models may have on the

predicted outcome. Nevertheless, it is quite common

for even the most sophisticated simulations to devi-

ate significantly from the corresponding experiments,

a clear indicator of our still insufficient understand-

ing of physics. Together, the experimental results and

the simulation data form a complex mix of information

at various scales and fidelity that is often accumulated

over decades and represents investments of potentially

billions of dollars.

To gain new insights and discover new physics from

this data collection represents a challenge quite differ-

ent from more traditional scientific analysis problems.

When analyzing a medical scan, a climate simulation,

or a simulated fluid flow, there typically exists a more

or less specific question a scientist would like to ex-

plore. More importantly, the answer is expected to be

contained within the simulated data. Instead, in com-

plex systems such as NIF, the only known fact is that

the best current models and theories are insufficient to

explain reality. The corresponding gap may be due to

faulty theories, inadequate numerical models, or yet un-

known physical effects. As a result, the current analysis

process relies heavily on the intuition of highly trained

scientists and engineers to form and test new hypothe-

ses in order to better explain the underlying phenom-

ena. To gain the necessary insights, scientists will typi-

cally search for previously unknown or yet unexplained

interactions between the inputs and outputs of the sim-

ulations, among the experimental data, or between both

sets. However, currently this process is severely limited

by our ability to detect such relationships, especially in

the large, disparate, and high-dimensional datasets of

greatest interest.

This paper presents a case study on how a

visual-analysis-driven approach that integrates various

high-dimensional analysis techniques with an interac-

tive visual interface can lead to important new insights.

In particular, we introduce ND2 AV, an interactive

environment to explore, analyze, and visualize high-

dimensional and multivariate data. The framework

combines a number of established analysis techniques,

such as dimension reduction and clustering, with

state-of-the-art techniques in topological analysis and

high-dimensional neighborhood graphs. The former

provide insights into the shape and structure of a

domain of interest and the latter explore the structure

of a particular quantity of interest with respect to this

domain. ND2 AV, for the first time, combines these

two aspects of data analysis and allows scientists to

construct a more complete picture of their data. More

importantly, the system, while generally applicable,

has been specifically designed to extend rather than

replace the current scientific workflow and to integrate

the intuition of the domain scientists as much as

possible.

The system relies on simple and intuitive drag-and-

drop techniques to allow even novice users to quickly

create sophisticated hierarchical workflows. All modules

in a workflow are automatically cross-linked, allowing

users to intuitively explore the influence any parameter

choice in one module has on any other result. In this

manner, ND2AV provides an interactive feedback that is

vital in supporting a smooth and seamless exploration

process. Most results presented here could have been

achieved through a clever combination of existing tools,

but only the ability to effortlessly browse the vast array

of possibilities allowed scientists to find the relevant

components. Finally, ND2 AV is easily extendable to

include further analysis tools and readily adaptable to

a large number of application areas.

In the case study presented here, we discuss the

role ND2AV is playing in the National Ignition Cam-

paign (NIC), its original target application. The NIC, a

collaboration among Lawrence Livermore, Los Alamos,

and Sandia National Laboratories as well as The Uni-

versity of Rochester and General Atomics, is aimed at

demonstrating inertial confinement fusion (ICF), that

is, thermonuclear ignition and energy gain in a labo-

ratory setting. As will be described in more detail be-

low, the goal is to focus 192 beams of the most ener-

getic laser built so far onto a tiny capsule containing

frozen deuterium. Under the right conditions, the re-

sulting pressure will collapse the target to the point

of ignition where hydrogen starts to fuse and produce

massive amounts of energy, effectively creating a small

star.

The NIC has made significant progress, but the ul-

timate goal – ignition – has not yet been reached. One

of the primary challenges is that current simulation

codes based on the latest physical models disagree in

some fundamental aspects with the experimental re-

sults, making tuning the experiments extremely chal-

lenging. The discrepancies are widely believed to be the

result of our yet limited understanding of matter and

energy under extreme conditions (i.e., at the center of a

star). However, an NIF shot is an exceedingly complex,

highly coupled, and markedly nonlinear process and at

this time it is unclear whether our current models are

lacking, employ invalid assumptions, or are simply in-

correct. As such, there is a considerable effort being

spent in analyzing various simulation models, either of

the entire system or of individual components, in par-
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ticular as they relate to the experiments performed so

far.

ND2 AV has been designed to support this effort

and has already led to several unexpected discoveries.

In particular, a widely held assumption is that in the

high-dimensional parameter space of possible outcomes

there exists a single “plateau” of yield (the amount of

energy produced in a shot). Much of the past effort

has been focused on finding a way “uphill” to achieve

ignition. However, our analysis of several simulation en-

sembles suggests that the response of the models is far

more complex and localized than previously expected.

As will be discussed in Section 5, many quantities of in-

terest show decidedly local behavior with different cor-

relations among variables in different portions of the

parameter space. The ability to quickly browse such

data provided by ND2AV has significantly decreased the

amount of time and effort necessary to discover these

cases of unexpected behavior.

According to (Munzner, 2009), any visualization de-

sign includes four levels: characterization of the problem

domain, design of the data and operation abstraction,

design of the visual encoding of the data and the in-

teraction with the user, and finally algorithm design.

The algorithms and visualization techniques used have

been established in prior works; thus our contributions

are in the first two categories: domain problem charac-

terization and the specific operations we have decided

to employ for analyzing the data. Therefore, we make

a great effort to describe the challenges of bridging the

gap between high-end physicists and the data analysis

and visualization community. This work presents a first

step in the right direction by presenting the ND2AV

framework. The clustering, dimension reduction, geo-

metric analysis, and topological analysis performed are

standard, but the ease of use with which we combine

them and allow for other techniques to be used in ad-

dition is what we believe to be a novel contribution at

the second layer of the visualization design system.

In the remainder of the paper, we will first discuss

related work in visualizing high-dimensional data, and

then describe the NIC and in particular the different

types of simulations used in our case study in more de-

tail. We will next introduce the tool and its underlying

design philosophy, followed by an in-depth description

of several use cases and the results produced.

2 Related Work

We first review software systems that guide users

through multivariate and high-dimensional data explo-

ration and analysis, by encoding a wealth of techniques

in an interactive visual environment. XmdvTool

(Ward, 1994) offers visual exploration of multivariate

data, by integrating multiple analysis and visualization

techniques that focus on n-dimensional projection,

such as standard graphical presentations (e.g., scatter

plot matrices, glyphs, parallel coordinates), hierarchi-

cal clustering of dimensions, brushing, and linking.

Orca (Sutherland et al, 2000) is a extensible toolkit

designed for constructing interactive and dynamic

linked data viewers for rendering, manipulating, and

linking. GGobi (Cook and Swayne, 2007) (with plugin

designed for R (R Development Core Team, 2008))

focuses on providing expert users (e.g., statisticians

and scientists) interactive, high-dimensional data

investigation tools, such as a set of plot types including

scatter plot matrices, projection pursuit, and grand

tour, and a set of manipulations such as brushing,

scaling, visual and algorithmic (e.g., hierarchical)

clustering, supervised and unsupervised classification,

and statistical inference. Based on similar concepts,

Mondrian (Theus and Urbanek, 2008) is another

statistical data-visualization system, which in partic-

ular works well with categorical, geographical, and

large data, providing advanced data selection/query

techniques (e.g., boolean functions, selection sequence

manipulations, selection rectangles), plots (e.g., mosaic

plots, missing value plot), and linked analysis.

The prototype system developed by Guo (Guo,

2003) describes a human-centered exploratory environ-

ment that combines a suite of coordinated visualization

and analysis components, centered around identifying

interesting subspace via interactive feature selection

and searching arbitrary-shaped multivariate clusters

via hierarchical clustering. The rank-by-feature frame-

work (Seo and Shneiderman, 2005) guides users to

visually inspect and find important features using

certain ranking criteria with axis-parallel 1D and

2D projections of multidimensional datasets (e.g.,

hierarchical-clustering-based or scatter-plot-based

ordering). The system introduced in (Johansson

and Johansson, 2009) combines user-defined quality

metrics to preserve important features during di-

mension reduction, and offers automatic ordering of

variables to enhance perception of patterns selected

by the user. VisuMap (VisuMap Technologies Inc.,

2009) is designed for visual exploratory analysis of a

high-dimensional dataset, which includes mapping and

dimension reduction (e.g., Multidimensional Scaling,

Relational Perspective Map (Li, 2004)), clustering

(e.g., k-means, affinity propagation), linked data

views, scripting, and library interfaces for advanced

applications. (Tatu et al, 2009) presents relevance

measures (based on correlation and cluster separation)

for typical analysis tasks based on scatter plots and
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parallel coordinates, to assist the user in potentially

finding relevant visual structures and speeding up

the exploration process. For a survey on such quality

metrics in guiding high-dimensional data visualization,

see (Bertini et al, 2011).

DimStiller (Ingram et al, 2010) is a system that fo-

cuses on dimensionality reduction and analysis by pro-

viding local and global guidance to nonexpert users,

through expression and operator abstractions that en-

capsulate a sequence of transformations acting upon ta-

bles of data, workflows that bundle together commonly

used patterns of analysis, and immediate visual feed-

backs via linked views and control panels guiding in-

trinsic dimension estimation and data exploration. In

terms of topological methods, persistence-based clus-

tering (Chazal et al, 2011) and Mapper (Singh et al,

2007) have been proposed to construct useful combina-

torial representations for the analysis and visualization

of high-dimensional datasets. Such techniques could be

potentially integrated into a guided, interactive visual

environment.

The goal of the aforementioned techniques is to ex-

plore and visualize multidimensional scalar functions.

However, our proposed tool aims to visualize a function

as well as validate and compare its performance with

respect to models built using data collected. In the re-

mainder of this section, we discuss a body of work that

lies closer to our approach of using one or more data

representations with an end goal of reconciling simula-

tion results with predicted outcomes.

Hyperslice (van Wijk and van Liere, 1993), one of

the earlier works in the realm of scientific visualization

and interaction, uses a novel representation of multidi-

mensional functions as orthogonal 2D slices that leads

to faster rendering and ease of visual representation.

Hypermoval (Piringer et al, 2010) was proposed to val-

idate regression models (for car engine design) using

a combined visualization of high-dimensional functions

and available validation data. The tool World Lines

(Waser et al, 2010) builds on the concept of compu-

tational steering and allows users to interactively add

new information during the analysis process while com-

bining multiple simulations via linked views to choose

a final outcome. Vismon (Booshehrian et al, 2012) al-

lows interactive visualization of multidimensional rela-

tionships between input and output variables targeted

specifically for fishery applications. Built along similar

lines, both Paraglide (Bergner et al, 2013) and Tuner

(Torsney-Weir et al, 2011) allow the added advantage

of iterative parameter tuning of the underlying model

via interactive visualization tools.

For complex simulations such as diesel common in-

jection systems, (Matkovic et al, 2005) proposes to use

visualization tools to augment numerical optimization

methods for analysis of simulation data and for investi-

gating the effect of model parameter changes. (Berger

et al, 2011) performs visualization-based interactive ex-

ploration of the parameter space guided by uncertainty

in prediction of the underlying statistical model.

Compared to these related works, ND2 AV not

only includes standard graphical presentations (e.g.,

scatter plot views, parallel coordinates), traditional

dimensionality reduction, and clustering algorithms,

but also, for the first time, incorporates topological

analysis techniques, e.g., (Correa et al, 2011; Gerber

et al, 2010). As noted, for example, by (Correa et al,

2011), a topology-based segmentation provides a novel

view into the structure of high-dimensional functions

using intuitive notions such as segments formed around

maxima or minima equivalent to high-dimensional

“mountains” and “valleys.” Techniques proposed by

(Gerber et al, 2010) apply regression to summarize the

topological structure of each cell of the approximated

Morse-Smale complex (Edelsbrunner et al, 2003) of

discretely sampled high-dimensional scalar fields. In

particular, the direct interplay between these novel

techniques and existing approaches has proven ex-

tremely fruitful and is a unique feature of ND2 AV.

Finally, our system offers not only data exploration

guidance for nonexperts, but also a highly extensible

module environment for intermediate level users with

some programming background.

3 National Ignition Campaign (NIC)

Following the invention of the laser in 1960, physi-

cists have been postulating ways to produce nuclear

fusion using laser light as the primary energy driver

(Kidder, 1974). After a decades-long pursuit, nuclear

fusion ignition is within reach for the first time at

the National Ignition Facility (NIF) at Lawrence

Livermore National Laboratory (LLNL). NIF is the

world’s largest and most energetic laser, capable of

delivering up to 2 MJ of laser energy to the target.

Since 2009, NIF has been firing 192 laser beams

occupying a football-stadium-sized facility to simul-

taneously illuminate a millimeter-scale fusion target.

The objective of NIF experiments is to navigate a

large space of engineering parameters, and to find the

region of parameter space predicted by simulation that

leads to successful inertial confinement fusion (ICF)

(Lindl, 1998). The experimental ICF effort at the NIF

represents one of the largest scientific endeavors being

undertaken in the world today.
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3.1 Inertial Confinement Fusion

ICF is an attempt to compress nuclear fuel, usually

the hydrogen isotopes deuterium and tritium (DT), to

pressures and temperatures high enough to force the

hydrogen species to fuse. This fusion reaction yields

high-energy neutrons and charged helium nuclei (alpha

particles) that can be harnessed for energy production.

The ICF fusion scheme uses the fuel’s own inertia to

prevent it from disassembling, thus providing the con-

finement necessary for the fuel to burn. ICF attempts

at NIF use laser light to heat the interior of a small gold

cylinder, or hohlraum. The hohlraum absorbs the inci-

dent laser and re-emits X-ray radiation that violently

heats the outside of a spherical capsule located at the

hohlraum center (see Fig. 1(a)). The exterior of the cap-

sule is rapidly vaporized in a process known as ablation.

The gas, or plasma, rapidly blows away from the sur-

face, producing a rocket-like reaction that implodes the

capsule. While imploding, the cryogenic DT ice layer

inside the capsule accelerates to velocities approaching

350 km/s. When the imploding shell stagnates on itself

near the capsule center, pressures in the hottest mate-

rial reach 300 Gbar, leading to fusion burn. The entire

assembly at this point is less than 100 um in diameter,

is smaller than a human hair, and has reached instan-

taneous temperatures in excess of 50 million degrees.

The charged alpha particles that are born in the hot

spot self-heat the cooler, dense nuclear fuel, triggering

a burn wave that propagates through the DT fuel until

the assembly loses confinement and explodes.

(a) (b)

Fig. 1 (a) Schematic of an ignition target, the incoming 192
laser beams, and the surrounding hohlraum. (b) Yield can be
ordered by various performance metrics. Here, ITFX is shown
in red, ITF in blue, and the central hot spot pressure in black.
All three common metrics show the abrupt transition from
low to high yield at the cliff where the dimensionless metrics
are defined to be 1. The methods developed in this paper
reveal a more complicated structure that is blurred away by
these physically motivated metrics.

The pursuit of ICF ignition depends heavily on de-

tailed numerical simulations of implosion experiments

using radiation-hydrodynamics codes. These types of

simulations have proven to be predictive of the results

at laser facilities smaller than NIF. While the scales

of NIF experiments represent a challenge for modern

computational efforts, one strategy adopted by the NIF

target physics program has been to produce large en-

sembles of implosion simulations. The essential goal of

these ensembles is to map out the capsule performance

over the region of parameter space where experiments

are expected to occur. Then, an essentially iterative ap-

proach is employed: perform experiments, use post-shot

simulations to understand the experimental results in

the context of the numerical database, and field new

experiments with parameter settings that are expected

to improve performance. In this way, the NIF ICF pro-

gram attempts to “tune” the experiments until success

is achieved.

This tuning notion requires the clear elucidation

of a set of input or engineering parameters that can

be adjusted to affect performance. It also requires a

well-defined set of measurements or observations of the

experiments that will provide feedback for comparison

with simulation. For a system as complicated as NIF,

any number of parameters can be defined as inputs –

those affecting target dimensions and materials, those

affecting initial densities and pressures, those affecting

laser performance, and so on. We will focus here on pa-

rameters that affect the time-history of the laser bright-

ness as it is delivered to the target. This tailoring of

the laser intensity in time is known as pulse shaping,

and it is used to set up a sequence of shock waves that

precondition, or stiffen, the DT fuel before accelerat-

ing it for implosion (Robey et al, 2012). The pulse is

shaped such that a sequence of four spherical shocks

merges at a carefully chosen radial location in the tar-

get. Mis-timing of these shock collisions greatly reduces

the compressibility of the DT fuel and represents a well-

explored failure mechanism for the implosion.

The performance of the experiment is judged using

a set of exquisitely precise diagnostic instruments con-

sisting of neutron spectrometers, high speed X-ray mi-

croscope cameras, and various other nuclear and X-ray

tools. A fundamental performance metric is the total

energy produced by fusion reactions. Because this en-

ergy is associated with the production of neutrons, the

yield of the reactions can be measured by counting 14

MeV neutrons with spectrometers. Experiments on the

NIF are currently capable of producing just under 1e15

neutrons. To demonstrate self-heating by alpha parti-

cle deposition, this neutron yield must be seen to be

just over 1e16. Upon ignition, a NIF target will pro-
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duce at least 3-4e17 neutrons. It can be said that NIF

experiments are currently searching for the yield cliff in

order to drive it up. The rise in yield as performance

improves is strongly nonlinear, and is often described

as a cliff (Fig. 1(b)). Consequently, the neutron yield

may be amplified greatly from a small improvement in

performance, taking the yield from the foot of the cliff

to the summit.

Yield is, of course, a multivariate function with

many independent variables. The standard picture of

the yield function presumes that there is a single global

maximum surrounded by cliff behavior as the viewer

moves away from the maximum in any direction. This

smooth view of the performance space is supported by

coarse, but reliable, physics principles that guide the

understanding of both experimentalists and numerical

theoreticians. Testing this notion of smooth topography

requires a very large number of simulations to explore

the high-dimensional parameter space. Importantly for

the discussion here, it also requires tools and techniques

to analyze and visualize the behavior of a function

such as yield in the high-dimensional parameter space.

It must also be emphasized that the results must be

communicated clearly among a large group of skilled

scientists with broad and diverse backgrounds.

3.2 Engineering/Macro-Simulations

Fundamentally, the goal of NIF is to probe the param-

eter space to find the region that leads to near-optimal

performance. To perform this search empirically, one

would require more experiments than could ever be per-

formed at the NIF. Since 2009, NIF has shot just un-

der 40 cryogenic layered implosions (Lindl et al, 2011),

an outstanding achievement by the NIF team, which,

however, will not allow for the exploration of sizable

parameter spaces. The NIF program then relies on en-

sembles of numerical simulations. One such ensemble to

be considered here has been developed by varying en-

gineering parameters, such as those that change laser

pulse shaping. This database will be called the macro-

or engineering ensemble to distinguish it from micro-

ensembles, discussed in Section 3.3, where the micro-

physics models are adjusted.

The macro-ensemble parameter space will be de-

fined by the parameters associated with shock timing

the target. The shock timing is typically parameterized

with 10 dimensions representing the speeds and launch

times of four shocks and the strength and timing of the

final accelerating pulse. The numerical simulations also

capture spatial effects, such as the evolution of the im-

plosion due to aspherical drive. The macro-ensemble

also incorporates a three parameter variation of the

shape of the driving radiation. This parameter space,

small by NIF standards, is now 13-dimensional and is

sampled at 2000 points. This sampling is as large as is

practical given even the copious computing resources

of LLNL. To sample the space requires running two

asymmetric, or 2D simulations (with and without al-

pha deposition), and two spherically-symmetric, or 1D

analogues of the 2D simulations. A single 2D simula-

tion runs on 256 processors and requires more than

300 CPU-hours to complete. Thus, each 2000 sample

ensemble requires more than 5 CPU-centuries to com-

plete. This computation can be accomplished in a wall

clock time of about one to two months. However, typi-

cally not all simulations run to completion since, at this

scale, both hardware and software failures are common

and computing resources are limited. In this case, the

engineering ensemble discussed below consists of 1303

complete simulations. The battery of simulations gives

spatiotemporally resolved data for the entire extent of

each simulated implosion. This data is postprocessed

by simulating the diagnostic instrument response to the

implosion. When complete, a macro-ensemble provides

simulations varying the 13 engineering or input parame-

ters and an associated vector of postprocessed, distilled

scalar diagnostic outputs to be discussed further in Sec-

tion 5.

3.3 Micro-Simulations

During an experiment, different regions of an ICF cap-

sule will access vastly different regions of the relevant

space of physical parameters (such as the temperature,

mass and electron densities, radiation field parameters,
and others). It is then necessary for even simple sim-

ulations to describe plasma conditions that vary over

many orders of magnitude; this in turn requires that

the simulations contain good descriptions of a range

of physics, from bulk thermodynamic properties to in-

herently quantum mechanical processes such as heat

transport. During the evolution of the ICF experiment

these “micro-physics” models become strongly interde-

pendent and the output space of hydrodynamic simu-

lations, when related to micro-physics models, can be

expected to be quite complex.

For the most part, micro-physics modeling must be

based on theoretical, first-principles calculations. These

calculations will, naturally, be of varying (and often un-

known) accuracy. The response of the simulation out-

puts to inaccuracies can be very complex, and a good

understanding of this response is essential to interpret-

ing the experimental data we observe. Attempts at elu-

cidating the situation are normally approached by con-

sidering multiple models, often modified in ad hoc ways,
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and comparing the models with specific aspects of the

experimental data that are known to be sensitive. For

example, the material equation of state (EOS), which

relates sets of thermodynamic variables to one another,

is known to depend in a complex way on the macro-

and microscopic state of capsule materials and can be

experimentally probed by observing the shock waves

that are launched by the drive laser. An understand-

ing of the topology of the space of shock parameters

with respect to micro-physics could lead to an under-

standing of the errors in the underlying first principles

EOS calculations, which could be used to motivate the-

oretical work and focused experimental campaigns. The

complexity of ICF systems makes this process very dif-

ficult and there is ongoing interest in bringing advanced

methods to bear.

In this work, we include a set of simulations created

for the investigation of one particular micro-physics

model. A set of physically motivated multipliers has

been defined that changes important aspects of the

atomic processes that govern the absorption and

emission of X-rays in ICF capsules. This process is

important in transporting energy, and it has been

known for a long time that a good description requires

detailed atomic physics calculations. This level of

detail is incompatible with numerical constraints and

so a compromise must be reached. The modifications

to atomic physics we consider are designed to reflect

important aspects of the radiation transport, and the

simulation outputs have been chosen to allow direct

comparison with experimental data. For this compari-

son, we use two metrics: a simple χ2 distance between

simulation and data, and a modified χ2 that uses a

Bayesian prior-predictive approach to include linear

sensitivity to a large number of “engineering” noise

sources. This modification has been developed in order

to blur the line between macro- and micro-variables

since the experimental observables (usually the same

in both cases) clearly depend on both types simultane-

ously. A description of the Bayesian approach, and the

simulations themselves, can be found in (Gaffney et al,

2013b) and (Gaffney et al, 2013a).

3.4 Current Analysis Efforts

Most efforts to analyze NIF simulation ensembles are

guided by physical laws and reasoning. A central goal is

to use physics models based on hydrodynamic and ther-

modynamic principles to generate a metric that quanti-

tatively measures the distance from the well-performing

plateau and summit, or more precisely, the cliff that

surrounds it (Spears et al, 2012). Typically, the per-

formance metric is assembled by making power law

fits of yield to various implosion parameters, either in-

put or driving quantities, or observable output quanti-

ties. Such efforts have given rise to useful metrics such

as the theoretical ignition threshold factor (ITF) and

the experimentally observable ignition threshold factor

(ITFX). As an example, ITFX is defined by ITFX =

YnDSR
2, where Yn is the experimental yield from a

nonburning fuel and DSR is an experimental measure

of the quality of the fuel assembly. It is normalized so

that the likelihood of ignition in simulation is 50 per-

cent when ITFX = 1; this defines the location of the

cliff (Fig. 1(b)).

Metrics such as ITFX appear to be satisfactory, or-

dering parameters for NIF yield performance from the

perspective of measuring distance to a single cliff, but

they are incapable of resolving any structure in param-

eter space other than the single, assumed plateau. Any

more complicated structure is completely washed out.

This paper will show that the presumption of a sin-

gle, isolated maximum is overly simplifying and, in fact,

broader analysis of macro-ensembles suggests the pres-

ence of at least two separated plateaus of nearly equal

yield.

4 ND2AV

This section will describe the target audience, the cor-

responding design choices, and the constraints of the

system as well as the currently existing modules and im-

plementation. Whereas ND2AV initially has been con-

ceived and designed specifically for the use in the NIC,

it implements a general framework applicable to a large

number of similar problems and tasks. The design and

implementation of ND2AV aims to strike the right bal-

ance between the needs of the target audience and the

needs of the developers while respecting some practical

constraints such as portability to compute clusters or

even supercomputers.

4.1 Target Audience

Physicists and engineers working on the NIC are the ini-

tial target audience. Typically, these are highly trained

and exceptionally capable individuals who, in many

cases, have been involved in ICF-related problems for

years or even decades. For most of this time reliable

data has been extremely sparse and only recently simu-

lations that approach realistic scenarios have become

feasible. Therefore, progress has relied almost exclu-

sively on the intuition and in-depth understanding of

the physics involved to postulate unknown effects or in-

teractions and ways to test these hypotheses. Advanced
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data analysis and visualization have played an insignif-

icant role in this process and as a result are considered

experimental, unvetted, and thus suspect. Furthermore,

given the decades of history in the corresponding fields,

it is challenging to validate an unfamiliar approach be-

yond a reasonable doubt. Therefore, any analysis tech-

nique must, for the time being, work within the estab-

lished frame of reference and in accordance with the

physical intuition to have any practical impact. Fur-

thermore, until such techniques have become more es-

tablished, there exist few incentives for the scientists to

invest time or resources in the development of such ap-

proaches, and thus, we consider even the experimental

usage of ND2AV by members of the NIC a significant

success.

Currently, instead of a data-driven approach, scien-

tists will postulate the existence of often highly com-

plex, functional relationships that are then illustrated

and validated with rather simple techniques such as

scatter plots. A prime example is the definitions of per-

formance metrics such as ITF and ITFX as discussed in

Section 3.4 and Figure 1(b). In data analysis terms, the

power law fit represents a complex, nonlinear embed-

ding derived by hand, which transforms the data such

that a simple scatter plot is sufficient to illustrate the

desired dependencies. Conceptually, much of the anal-

ysis is driven by the search for functional relationships

even in cases where such a relationship may not ex-

ist. For example, as discussed in Section 5.2, scientists

will often (seemingly arbitrarily) split up the set of ob-

servations into a set of drivers and a set of outputs.

The drivers are then considered independent variables

and are used to explain/predict the set of dependent

outcomes. This process reflects the belief that once the
implosion has reached a certain state (i.e., high enough

pressure, high enough velocity, etc.), the general out-

come of a shot is predetermined.

4.2 Design Principles

As discussed in Section 2, there already exist a num-

ber of systems aimed at analyzing and visualizing the

type of high-dimensional data of interest here. How-

ever, the needs and preferences of the target audience

have led us to a very specific design, aimed at replicat-

ing the feel of the current approach while slowly intro-

ducing new techniques. The first consequence has been

to focus primarily on scatter plots as a visual aid. We

found that currently scientists have trouble connecting

views such as parallel coordinates or topological struc-

tures to their intuitive understanding of physics. This

situation makes it unlikely that such plots would be

used for serious analysis. Surprisingly, even compara-

tively standard approaches, such as nonlinear embed-

dings, e.g., Isomap, multidimensional scaling, etc., have

similar problems. Even though an embedding into two

dimensions looks like a scatter plot, the fact that the

axes do not represent any one direction but rather a

complex curve in high-dimensional space causes the re-

sults to be too abstract to be accepted easily. In light of

these initial reactions, we have decided to focus less on

new visualizations than on integrating more advanced

analysis techniques into the one accepted visual aid,

i.e., scatter plots. Nevertheless, we continue to believe

that more advanced illustrations could provide signifi-

cant advantages and new insights, as has been demon-

strated for a host of other applications. To foster the

adaptation process, we continue to integrate new visual-

ization approaches to be used alongside more accepted

techniques.

Fig. 2 The initial default window of ND2AV containing a
filter module to define, subselect, and scale the data and a
scatter plot to display it. The panel on the left allows users
to create new modules on demand by dragging them into the
work area on the right.

Consequently, the initial view of ND2AV is the filter

module, shown in Figure 2, which provides convenient

access to a scatter plot window as well as related func-

tionalities such as loading files, normalizing and sub-

selecting data, and defining derived quantities. The fil-

ter module allows a user to select data based on an ar-

bitrary numpy (Oliphant, 2006) expression as well as to

choose subsets of the given variables to use for analysis.

Additionally, we allow users to enter an arbitrary ex-

pression to create a custom function, or to choose from

some pre-loaded important indicator functions such as

ITF (Haan et al, 2011) and ITFX (Spears et al, 2011)

used extensively in the NIC. If desired, the module will

automatically normalize the domain values to create
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a common frame of reference by scaling each axis ac-

cording to either its range or standard deviation. These

features alone replicate the majority of existing func-

tionalities in a more efficient and user-friendly manner

than, for example, Excel, the current tool of choice.

For analysis, we focus on different approaches to

cluster or more generally segment the data into coher-

ent subsets with the goal of detecting localized depen-

dencies and patterns in the resulting segmented scatter

plots. ND2AV provides a number of generic clustering

techniques as well as topological segmentations, all of

which are easily represented as color-mapped scatter

plots. Surprisingly, the most abstract and least com-

mon option – topological segmentations – has received

the most attention. The reason for such attention ap-

pears to be that general clustering, e.g., k-means, mean

shift, etc., have the characteristic of a black box solu-

tion where the results are not easily related to the orig-

inal input. Furthermore, choosing the various parame-

ters, e.g., number of clusters, kernel bandwidth, etc., is

somewhat arbitrary, especially to nonexpert users, yet

drastically impacts the results. Instead, topological seg-

mentations, especially Morse complexes (Edelsbrunner

et al, 2003), have an intuitive and constructive defini-

tion: each segment represents all gradient paths ending

at a maximum, i.e., a (high-dimensional) mountain. Ad-

ditionally, the concept of a stable manifold or monotone

cells is well aligned with the traditional viewpoint of

describing data through functional relationships. Con-

ceptually, a stable Morse cell can be thought of as, for

example, a single Gaussian kernel centered around the

maximum. Although likely not an accurate representa-

tion, this mental image appears to be more accessible

and has led to a number of interesting observations.

Consequently, we have integrated the ability to

define an arbitrary function into the initial filter

view, allowing users to quickly define a domain and a

range to construct a high-dimensional function that

is subsequently analyzed. Nevertheless, topological

decompositions also require setting a scale parameter,

namely the persistence level (Edelsbrunner et al, 2002),

to achieve optimal results. We present this choice

as a curve displaying the number of features versus

persistence, which in this context can be thought of as

a complexity versus scale curve with which users are

familiar. In particular, plateaus in this curve indicate

a stable threshold, and typically even a non-expert can

quickly determine which persistences correspond to

noise and which to potentially interesting features.

The final design choice is how to represent and cre-

ate complex workflows in an intuitive manner. One of

the greatest advantages of ND2 AV is the ability to

quickly form and test new hypotheses and compare the

results from different analysis techniques. For example,

it is quite common to add or remove attributes from the

domain or to explore the space using different attributes

as the range. In such situations, users expect the entire

analysis pipeline to be automatically reapplied to re-

flect any change, which on a system level requires the

notion of workflows. However, the target audience is

not familiar with such concepts and directly manipu-

lating a workflow by, for example, explicitly connecting

inputs and outputs of modules is impractical. At the

same time, constructing a limited set of default work-

flows takes control away from the users and gives the

appearance of a black box solution, making any result

suspicious. To balance these requirements, we have di-

vided the control over the workflows into two aspects.

The first, the user-control portion, is the ability to

create additional modules and place them in a hierar-

chical fashion. As shown in Figure 2, the main window

provides a list of available modules that the user can

drag onto existing modules to instantiate the corre-

sponding window. As discussed in more detail below,

each filter module represents a data context and all

modules within the same context are considered siblings

and will be connected. By instantiating additional filter

modules, the user can create a hierarchy of contexts to,

for example, compare plots side by side. The second as-

pect of the workflow creation is forming the connections

between modules within the same context. Even for

simple workflows, these connections can quickly become

rather complex (see Figure 4). To hide this complexity,

the system currently forms all these connections fully

and automatically. This design reduces the flexibility of

the system to some extent. For example, there cannot

exist two producers of the same data within the same

context as connections will become ambiguous. How-

ever, we have not yet encountered a practical workflow

where these restrictions have posed a problem, yet the

automatic workflow creation greatly reduces the burden

on the users.

Within each individual module, we rely as much

as possible on default parameters, for example, as in

clustering and dimensionality reduction modules. This

choice certainly does not produce optimal results in all

cases, but we have found that among the different al-

gorithms available, there typically exists at least one

for which the default results are quite acceptable. Fur-

thermore, at the current stage most of these options

are used only to corroborate results as the underlying

techniques are not yet accepted as stable analysis tools.

Therefore, in our experience, presenting users with dif-

ferent choices of techniques rather than an array of pa-

rameters to fine-tune any particular approach is more

acceptable. Currently, the only “free” parameter not
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linked to obvious user choices such as the number of

clusters or segments to use is the number of neighbors.

The reason is that the number of neighbors depends

significantly on the inherent dimension of the data, the

feature density, and the technique used, and thus pick-

ing useful defaults is nearly impossible. However, the

system is typically fast enough to interactively adjust

the number of neighbors, allowing users to test differ-

ent choices and determine the sensitivity of the results

with respect to change in the number of neighbors. By

tightly coupling different analysis approaches in an in-

teractive system, ND2AV provides a simple-to-operate

yet powerful analysis environment that has already led

to multiple unexpected discoveries.

4.3 System and Implementation

The two overarching goals from the development

perspective are portability and flexibility. In this

context, portability refers less to a wide variety of

operating systems than to a broad set of computing

environments. For example, in extreme cases the data

for which ND2AV has been developed may exist only on

classified compute clusters or supercomputers, which

cannot be expected to contain advanced graphics

hardware or support the latest toolkits of one kind

or another. As a result, we have chosen Python (van

Rossum, 1995) as the lowest common denominator,

enhanced where necessary by custom C++ components

for efficiency. Python provides easy access to a wide

variety of libraries in machine learning, statistics,

scientific computing, etc., and a low barrier of entry

for new developers. The interface is based on PySide

(PySide, 2010), a common Python implementation

of the Qt system (Qt, 1995) that remains entirely

decoupled from the base system and can be easily

replaced if necessary.

ND2 AV loosely follows a Model-View-Controller

(Buschmann et al, 1996) paradigm in which all func-

tionality is encapsulated in modules that are used by

views to display and manipulate data. Instead of a

traditional controller, our system uses the notion of

a Data Context containing Data Proxies and Shared

Values. A data context automatically links producers

of data with consumers of data by maintaining a

single master copy of the data to which each proxy

and shared value contain a reference. Each time data

changes, all registered proxies and shared values are

notified.

Modules that contain a data context can contain

submodules, which in turn can contain more contexts,

creating a hierarchy of initially independent data con-

texts. Contexts are linked through input and output

Application

Input Proxy Output Proxy Master Copy Data Link Kernel

Module

Context
Module Module

Context

ModuleModule
Module

Module

Context
Module Module

Context

ModuleModule
Module

Fig. 3 Overview of the system design: The main application
consists of (potentially multiple) modules each with their own
data context. Submodules are placed hierarchically in their
parent context. Each module declares input and output prox-
ies that are dynamically linked to a single master copy of the
corresponding data in the given context. Data can be linked
across hierarchies through a trivial input-output connection.

proxies of a given type. Whenever a module is created,

it is assigned the proper context by either creating its

own context or using the context of its parent. A module

then dynamically declares the types of inputs it needs,

the types of output it produces, and which values it

would like to share with other modules, e.g., highlights

colormaps, etc. The corresponding output proxies and

shared values are immediately placed within the mod-

ule’s own context if it exists or into the parent’s con-

text otherwise, and they immediately become part of

the corresponding data flow. Input proxies, however,

are placed either into a parent context or if none exists

are left isolated. In this manner, the input and out-

put proxies of modules with internal contexts link the

hierarchical contexts, see Fig. 3. The only difference

between shared values and data proxies is that proxies

carry version information, allowing modules to synchro-

nize multiple inputs, and shared values are not linked

across contexts by default. Currently, the only mod-

ule that creates a context is the filter module. Its main

purpose is to create and compare different functions or

different filters applied to the same data. Within each

filter module, all other modules are automatically and

tightly coupled via the data context. Fig. 4 shows a typi-

cal configuration when comparing traditional clustering

with topological techniques and the dataflow they im-

ply. Note that the only user interaction required is the

creation of modules through a drag and drop type inter-

face and the placement of modules within the existing

data contexts to determine the hierarchy of contexts.

All other connections necessary to create the dataflow

are handled automatically by attaching all necessary

input, output, and shared data proxy within a data

context to the appropriate master proxies of the con-

text.
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Fig. 5 Screen captures of all modules currently implemented in ND2AV: (a) filtering and function creation; (b) table view;
(c) parallel coordinate plots; (d) tube view showing center lines of the high-dimensional Morse complex embedded in 2D;
(e) scatter plots; (f) hierarchical Morse complex and/or Morse-Smale complex view; (g) neighborhood graphs; (h) dimension
reduction; (i) clustering.

Filter Module

Application

Data Table
Filtered Data

Function

Filtered Data

Function

Segmentation

Graph

Neighborhood Morse Complex

ScatterplotClustering

Clustering

(a)

Filter

Neighborhood

Morse Complex

Scatterplot
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Fig. 4 An example dataflow comparing traditional and topo-
logical clustering. (a) The configuration of modules to real-
ize this use case containing the central scatter plot along-
side a clustering, neighborhood, and Morse complex module
all linked via the data context. (b) The equivalent data flow
drawn in a traditional manner.

One result of this design is that writing new mod-

ules for ND2 AV is simple yet it immediately places

the module into a powerful, tightly coupled analysis

framework. For example, Algorithm 1 shows the en-

tire relevant code to make the scikit-learn (Pedregosa

et al, 2011) clustering algorithms available in ND2AV.

The clustering module takes as input a function, which

means n-dimensional points of a domain plus scalar

function values, and outputs a clustering. The developer

declares the corresponding input and output ports and

links them through a specified function. Each time the

input changes, the system will call the given function

with the new input value and replace the output value

with the return value of the callback function. In this

case, the function simply calls the relevant method from

scikit-learn and returns the result. The corresponding

view creates the necessary buttons and interface ele-

ments to choose the clustering method and number of

clusters desired and the module is ready to use. Even

loosely spaced, with error checks, and comments, both

files together total 104 lines of Python code.

class ClusteringModule(Module):
def init (self,parent=None):

self.makeInputPort(”data”,HDFunction)
self.makeOutputPort(”output”,HDSegmentation)
self.link(self.data,self.output,self.computeOutput)

def computeOutput(self,data):
if method == ”DBSCAN”

cluster = DBSCAN().fit predict(data)
elif method == ”KMeans”:

cluster = KMeans(numClusters).fit predict(data)
elif method == ”MeanShift”:

cluster = MeanShift().fit predict(data)
elif method == ”Spectral”:

cluster =
SpectralClustering(numClusters).fit predict(data)

return cluster

Algorithm 1: Code to make the scikit-learn cluster-

ing algorithms available in ND2AV.

4.4 Existing Modules

Here we briefly describe the existing modules currently

implemented in ND2AV referring to Fig. 5 for the la-

beling. As briefly described in Section 4.2, the filtering

and function creation module (a) allows users to load

and filter data based on arbitrary expressions, to choose

among existing indicator functions, to create custom

function by specifying input and output variables, and

to normalize the resulting functions according to either
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their range or standard deviation. The scatter plots

model (e), which is automatically synchronized with the

filter module, reflects correlations between pairs of in-

put variables with points colored by either the output

values, or clustering and topological segmentation ids

within each low-dimensional subspace. Both the table

view (b) and parallel coordinate plots (Inselberg, 2009)

(c) are dynamically linked with data points selected in

the scatter plots, allowing pinpoint investigations of the

data.

Eight types of neighborhood graphs (g) (e.g., ap-

proximated k-nearest neighbor graph, Delaunay trian-

gulation, Gabriel graph, β-skeleton, as detailed in (Cor-

rea and Lindstrom, 2011)) can be chosen to connect

points in a d-dimensional space. These graphs impose

a combinatorial structure on the points and serve as

basis for the topological analysis on the data, e.g., as

showcased in the Hierarchical Morse(-Smale) complex

view (f) and tube view (d) that encodes a topological

summary. In (d) and (f), we adapt the techniques de-

scribed in (Gerber et al, 2010) to compute the Morse

complex of the chosen function. This algorithm pro-

vides a segmentation of the domain according to max-

ima (or minima) of the function or more intuitively a

segmentation into high-dimensional mountains (or val-

leys). The corresponding view in (f) includes a modified

persistence diagram called the persistence graph, first

introduced in (Gerber et al, 2010), that allows users

to choose topological segmentations of the function at

different scales. Each extremum has an associate per-

sistence that indicates at which scale this feature would

be simplified and thus represents the significance of a

feature. In particular, low persistence features are gen-

erally due to noise. This graph places the normalized

persistence of the extrema (currently a user selects ei-

ther minima or maxima) on the x-axis and the num-

ber of extrema that exist at that value on the y-axis.

Furthermore, the shape of the graph indicates whether

there exist stable ranges of scale to separate noise from

features. The tube view (d) is similar to the visualiza-

tion interfaces developed in (Gerber et al, 2010) and

then enhanced in (Maljovec et al, 2013). The interface

summarizes each Morse cell into a 1D curve using in-

verse linear regression in high-dimensional space, which

is then projected onto a viewable 3D space. This view

provides an atlas useful in understanding the connectiv-

ity between extrema, in the Morse-Smale case, areas of

low or high sampling density, and also the relative size

and shape of different topological segments, for exam-

ple narrow peaks versus wide plateaus. Such an inter-

face is easily extendable to combine and visualize any

topological segmentations with appropriate regression

techniques.

Finally, the clustering (i) and dimension reduction

modules (h) explore existing techniques within scikit-

learn, and previously introduced classic methods such

as multidimensional scaling and spectral clustering.

5 Results

This section will present some of the initial results

obtained using ND2AV, some of which may challenge

the basic assumptions of current models and intuitions.

These results are especially valuable to our collabora-

tors as they open new avenues for research and may

ultimately lead to the formulation of new models and

experiments.

5.1 Interactive Exploration

The most significant result achieved through using

ND2AV is a thorough and notably more comprehensive

analysis of some of the data accumulated in the

NIC. The ability to interactively and smoothly switch

between analysis techniques, different figures of merit,

different scales, and different datasets has enabled a

rigorous exploration not feasible with existing tools.

Therefore, even though most results could have been

created through a combination of published (though

not necessarily publicly available) techniques, only

their combination into a common framework made

them practically relevant.

Furthermore, while conceptually simple, the focus

on segmented scatter plots has been instrumental in

engaging scientists. In this context, making the seem-

ingly abstract, topological segmentation easily available

has proven very successful. The concept of a segmenta-

tion into regions around maxima or minima is intuitive,

easy to explain and illustrate, and despite some of the

unexpected results, well aligned with the physical intu-

ition of scientists. In particular, comparing the cluster-

ing of the domain points with the topological decompo-

sition of a function defined on this domain provides a

new metric to judge how much structural information

is due to the shape of the domains and how much is

due to the functional relationship. This kind of insight

provides important information on which parameters or

variables are most significant in influencing the output.

On a systems level, only the highly modular

design of ND2 AV has allowed the visualization and

analysis experts on our team to quickly include new

tools suggested by previous results. For example, the

discovery that some topological decompositions are

closely related to the embedding (see Section 5.2)

initially prompted the need to compare topological
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Fig. 6 (a)-(e) 2D Isomap (Tenenbaum et al, 2000) embedding of the five driver quantities of the 1D engineering ensemble
colored by axis. With few exceptions, the colormap suggests that the data is likely an embedded 2D manifold. (f) Persistence
plot of the maxima of yield using a 10-nearest neighbor graph (black), indicating a large number of features yet no clear noise
threshold. Instead using the relaxed relative neighborhood graph using 30 candidate edges (Correa and Lindstrom, 2011), (red)
shows two strong and well-separated maxima.

decompositions against related clusterings, which as

discussed above has been straightforward. Further-

more, as ND2AV is becoming more widely used, we

expect to continue to broaden its scope, for example,

with different visualization techniques such as the

Topological Spines (Correa et al, 2011) and additional

analysis approaches.

Throughout the exploration we found a large num-

ber of unexpected and intriguing results, which have

spawned many discussions and are currently being thor-

oughly investigated. Nevertheless, for brevity, we can

present only some of the more interesting insights, all

of which are the product of extensive exploration of the

data. As such, the true value of ND2AV is the ability

to quickly perform a large number of different analysis

steps, to experiment with parameters, and to correlate

results. To highlight the process as well as the results,

each of the subsections below walks through a specific

example and some of the steps necessary to arrive at the

final plot as well as some of the validation. Neverthe-

less, by necessity, only a small portion of the interactive

process can be described in detail.

5.2 Engineering Simulations

The first two examples are ensembles of engineering or

macro-physics simulations using a 1D or 2D model of

the implosion, respectively (see Section 3.2). Note that,

in this context, dimensionality refers to the physical

space in which the simulations are performed, i.e., a

1D model represents a single ray connecting the cen-

ter of the implosion with the outside. Similarly, a 2D

model assumes a radially symmetric implosion com-

puted in a 2D plane. These notations (e.g., 1D and

2D models) should not be confused with the number

of input parameters or observables that are analyzed,

which even for the simplest model can range from tens

to hundreds. Typically, our collaborators create ensem-

bles of simulation runs, each using slightly different in-

put parameters typically varied according to a Latin-

Hypercube (Tang, 1993) (LHC) design. From each run

a large number of output quantities, such as peak ve-

locity, yield, etc., are computed, and subsequently used

to describe the resulting implosion. Furthermore, as

discussed above, scientists will often organize the ob-

served outcomes and inputs as independent and depen-

dent variables, with the expectation that a (near) func-

tional relationship explains the dependent variables as

a function of the independent variables (also referred to

as the drivers). In fact, most traditional analysis in the

NIC is done by analyzing the dependencies of all ob-

served outputs with respect to the drivers rather than

analyzing the actual engineering inputs of the simu-

lations. One important consequence is that since the

drivers are in fact outputs of the simulations, they typ-

ically form a low-dimensional manifold embedded in

some high-dimensional space rather than a space-filling

sample created by an LHC design. This information

must be taken into account when creating neighbor-

hood graphs as, for example, the number of expected

neighbors changes drastically according to the intrinsic

dimension of the sampled space.

1D Engineering Ensemble. The first ensemble

contains 1000 simulations from a 1D model, where

each of the five drivers (down-scatter-fraction, ion-

temperature, bang time, burn width, and capsule

radius) was recorded alongside the overall yield of

the implosion. Effectively, this dataset represents a

high-dimensional distribution function of yield with

respect to the chosen drivers. Therefore, the goal is

to understand yield as a function of the drivers that

form the domain. Following common practice in the

NIC, the drivers are standardized according to their

standard deviation to create a joint scale.

Since the drivers are products of the simulation

(rather than part of the input LHC design), the first

step is to guess the dimensionality of the domain. Fig. 6

shows a 2D Isomap embedding of the domain colored

according to the five drivers. Except for a small number

of outliers, each coordinate is linear in the embedding,
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which strongly suggests that the domain is in fact a 2D

submanifold embedded in five-dimensional space. In

other words, the position of each point in the sample

is fully described by any two drivers, and thus the

underlying space is 2D (though not necessarily a flat

plane). Note that these plots are not used to actually

interpret the results, which as mentioned before is

very difficult due to the non-linear transformations of

the axis. Instead, they are only designed to provide a

visual intuition that assuming an intrinsic dimension

of two is reasonable. This in turn justifies a rather

sparse (for a 5D space) k-nearest neighbor graph using

10 neighbors to perform a topological decomposition

according to the maxima of yield following (Gerber

et al, 2010). The resulting persistence plot (number

of maxima versus persistence) is shown in Fig. 6(f) in

black and indicates that there exist multiple significant

maxima of yield, though no clear cut-off is visible. The

lack of a “plateau” in this graph is troubling since it

means there is no straightforward way to distinguish

maxima due to noise or artifacts from true features.

However, using one of the more complete and more

stable graphs discussed in (Correa et al, 2011), such

as a relaxed relative neighbor graph, removes some of

the noise and indicates that there exist two primary

maxima of yield as indicated by the red persistence

plot of Fig. 6(f).

This result is significant in itself as it runs counter

to the commonly held intuition that there exists a sin-

gle plateau of high yield in the parameter space. In-

stead, it appears that (at least in this simulation en-

semble) there exist two distinct regions of physics that

can reach local maxima of yield. Furthermore, using the

corresponding segmentation to color, traditional scatter

plots reveal that the two resulting subsets show differ-

ent dependencies among some of the variables. For ex-

ample, Fig. 7(a) shows that whenever the red segment

appears to exhibit virtually no correlation between the

down-scatter-fraction and the yield, the blue segment

suggests a strong positive correlation. Additional explo-

ration shows that this result is consistent for different

neighborhood graphs and number of neighbors.

Surprisingly, a very similar decomposition appears

in a clustering of the domain points that does not con-

sider the yield. Fig. 7(b) shows the result of a k-means

clustering on the driver variables for two clusters. Fur-

thermore, a mean shift clustering (Fig. 7(c)) splits the

data into four clusters, each suggesting a different re-

lationship between the down-scatter-fraction and yield.

This figure indicates that most of the information about

yield is already contained in the shape of the domain

rather than in the actual values of yield. In other words,

the decomposition into the two regions of physics lead-

ing to high yields can already be deduced from the

domain, indicating that it is connected to the drivers

rather than the resulting yield. This information has

important implications for the pervasive practice of an-

alyzing ICF through the drive versus output relation-

ship, which will be discussed in more detail below.

2D Engineering Ensemble. This ensemble consists

of two sets of 1303 simulations using a computationally

much more expensive 2D model. For each simulation, 13

engineering parameters are varied according to an LHC

design and 14 outputs with six specified as drivers are

recorded. The two sets represent a deuterium-tritium

(DT) target and a dudded tritium-hydrogen-deuterium

(THD) target incapable of actually igniting. THD has

the same density as a DT and is used to study the hy-

drodynamics in a diagnostic rich environment. Further-

more, 896 of the runs use a nominal “drive” (referring

to the power and shape of the laser pulse used) whereas

the rest use a reduced drive that can be seen as an addi-

tional binary input variable. This dataset is extremely

rich and describing even a representative sampling of

the potentially interesting aspects is beyond the scope

of this paper. Instead, the discussion below focuses on

one particularly interesting aspect that once again high-

lights discrepancies between the current thinking and

the given data and how interactively linking different

analysis tools led to these conclusions. The supplemen-

tal video shows the same analysis pipeline created dy-

namically and interactively.

Similar to the 1D engineering ensemble, the natural

starting point of an analysis is to study how various out-

puts are related to the driver variables. In this case, six

slightly different drivers are used: down-scatter-ratio,

peak velocity, entropy, rhorba, pressure in the center,

and hot spot radius. Just as before, a dimension reduc-

tion suggests that the six drivers form a 2D submani-

fold embedded in six dimensions leading us to choose

a comparatively sparse graph with about 10 neighbors

per sample. One interesting output is burn width, a

measure of the width of the distribution of peak fusion

reactivity. Its persistence graph of maxima (Fig. 8(a))

shows a strong plateau of three features with unusually

high persistences indicating a very stable separation of

scales.

The resulting segmentation according to maxima

splits, for example, the scatter plot of burn width ver-

sus entropy (Fig.8(b)) contains three parts, each with

its own slopes and behaviors. Particularly interesting

is the fact that one would expect a positive correlation

between the two variables as the larger entropy should

lengthen the burn width. Instead, the largest (red) seg-

ment shows no such correlation, indicating that there

exists another effect that increases burn width indepen-
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(a) (b) (c)

Fig. 7 (a) Topological decomposition corresponding to two maxima of the down-scatter-fraction (DSR)-to-yield scatter plot.
The first segment (top right) shows little or no relationship between the two quantities, but the second segment (bottom right)
suggests a strong positive correlation; (b) A k-means clustering with two clusters producing a decomposition similar to (a);
(c) Mean shift clustering with default parameters producing four clusters, each suggesting a different correlation between DSR
and yield.
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Fig. 8 (a) Persistence plot of the maxima of burn width as a function of the six drivers of the THD portion of the 2D
engineering ensemble. (b) Entropy versus burn width plot of the same data colored according to maxima showing three
different segments each with a different slope. (c), (d) Plots of the simulation using the nominal and reduced drive condition,
respectively. Both subsets contain points in all three segments identified in (b).

dent of the entropy. This observation hints at another

energy drain on the system that is of obvious interest.

One initial hypothesis for the cause for this split has

been the differences between the nominal and the re-

duced drive. However, generating subsets of the scatter

plots accordingly (Fig.8(a), (b)) disproves this notion.

Both drives take part in two “branches,” one with the

expected burn width to entropy relation and one with-

out.
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Fig. 9 Spectral embedding into two dimensions according
to the drivers of the 2D engineering ensemble colored by the
three dominant maxima of burn width (a) and according to
a spectral clustering with three clusters (b). Both segmenta-
tions are similar, suggesting that burn width encodes little
additional information not determined by the drivers.

Given the experience with the 1D ensemble, the

next natural step is to consider the effects of the seg-

mentation on the properly embedded data. Fig. 9(a)

shows a spectral embedding (Ng et al, 2001) of the do-

main (i.e., using only the six drivers but not the burn

width as input) color-coded according to maxima of

burn width. The resulting segments are remarkably well

separated in the embedding, again suggesting that the

same segmentation could be achieved considering only

the drivers. To explore this notion, Fig. 9(b) shows a

spectral clustering into three clusters also based purely

on the domain, which arguably produces an even better

separation of the data. As before the non-linear embed-

ding is only used to provide a more intuitive frame of

reference to compare the clustering with the topologi-

cal segmentation, not to interpret the results. The fact

that both plots appear very similar suggests that burn

width, or at least its topological structure, is more or

less exactly predicted by the shape of the domain, with

the actual function values adding little extra informa-

tion. In other words, the the main information of inter-

est is encoded in the relation of the simulation inputs

to the drivers. However, analyzing either the drivers or

burn width as a function of the 13 engineering param-

eters shows few structures, and none strong enough to
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warrant consideration. This is likely due to the lack of

sampling. As discussed above, the domain of the drivers

form a 2D manifold for which 1303 points provide a

reasonable sampling density. The same number of sam-

ples evenly distributed in the 13D input space, however,

represents only about 1.7 samples per dimension, which

appears to be too few for the complexity of the modeled

behavior.

However, not all output quantities are well predicted

by the shape. Unlike the 1D ensemble, for example, the

overall yield as a function of the drivers also shows three

significant maxima (Fig.10(e)) that are not obviously

related to the embedding (Fig. 10(a)). Nevertheless,

as shown in Fig. 10, the corresponding segmentation

according to maxima produces interesting features in

several outputs. All these features suggest that, against

the common expectations, there exist multiple different

regions in parameter space that locally maximize the

yield. Each of these regions shows different correlations

that may hint at slightly different underlying processes.

5.3 Micro-Physics Simulations

The final example consists of 7338 simulations runs of a

1D model concentrating on the micro-physics related to

the X-ray absorption properties of the target (see Sec-

tion 3.3). Five parameters related to X-ray absorption,

emission, and the drive seen by the capsule have been

varied according to a highly adaptive genetic algorithm

aimed at producing simulations agreeing as close as pos-

sible with the experimental data. The output consists

of 28 quantities of interest as well as two measures of

distance to experimental data.

Apart from the adaptive nature of the sampling,

all input parameters are equally varied, and thus, un-

surprisingly, a much denser neighborhood is needed to

construct even a connected graph. One of the first func-

tions of interest is the distance to experiments and here

we choose the modified χ2 distance concentrating on

the segmentation according to minima. The initial per-

sistence plot shows a number of features with very low

persistences (Fig. 11(b)). However, persistences are re-

ported in percent of the overall range, which can be

sensitive to outliers. In fact, the distribution of the two

distance metrics shown in Fig. 11(a) shows a few out-

liers with extremely large distances that arise from the

random initialization of the genetic algorithm and are

not of interest. Consequently, we filter out simulations

with χ2 > 8000, which has little effect on the shape of

the persistence plot but, as expected, causes the per-

sistences to increase (Fig. 11(b)). This observation sug-

gests that these features are in fact significant relative

to the bulk of the simulations.

Browsing through different combinations of inputs

and outputs using scatter plots segmented according to

the distance minima leads to the plot of the intensity

of a nonthermal component added to the drive spec-

trum (drive-step-frequency) versus entropy shown in

Fig. 11(c). It appears that different minima embody dif-

ferent linear slopes, suggesting subtly different physics

might be active in the different portions of the param-

eter space. One possible explanation is that changes

in any of the varied parameters result in poor timing

of the shocks launched into the capsule, with resulting

complex variations in the observed quantities.

6 Discussion

This case study demonstrates how important analyz-

ing high-dimensional data can be to some of the most

advanced areas of science. However, somewhat surpris-

ingly, this impact did not come through the use of the

most advanced visualization techniques or novel anal-

ysis approaches as one might expect. Instead, ND2AV

demonstrates that integrating the current workflow and

enhancing well-established concepts rather than intro-

ducing new ones may result in better results and faster

acceptance. As evident in Fig. 5, a few other modules

are available and have been presented in ND2AV, yet

the unglamorous scatter plot has proved vital to any

success. Arriving at this conclusion involved numerous

discussions with the research scientists and engineers

involved with the NIC. In these meetings, scientists re-

peatedly stressed their need to validate/invalidate their

own hypotheses about the data without the confusion

and uncertainty introduced by, for example, non-linear

embeddings. More generally, we believe that at least in

this application, a visual analysis approach of tightly in-

tegrating different techniques through most appropriate

visual concepts is the best strategy.

Overall, ND2AV has introduced significant new ca-

pabilities to NIC, one of the largest experimental efforts

in the world. Over the course of a few months, this

tool already has resulted in a number of unexpected re-

sults and new research directions. In particular, provid-

ing intuitive illustrations on how some commonly held

assumptions may be incomplete or incorrect may ulti-

mately lead to a better understanding of the differences

between experiments and simulations, and high energy

physics as a whole. Furthermore, ND2AV presents an

important stepping stone towards introducing more ad-

vanced analysis and visualization concepts to a new

community with the potential for a significant theoreti-

cal and practical impact. In the context of NIC, the next

steps are to integrate more advanced analysis capabili-
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Fig. 10 (a) Spectral embedding into two dimensions according to the drivers of the 2D engineering ensemble colored by
the three dominant maxima of yield. Unlike the burn width shown in Fig. 9(a), the topological structure of yield is not well
predicted by the embedding. (b)-(d) Down-scatter-fraction, 1e10-1e12 neutron count, and 1e14-1e17 neutron count versus yield
colored according to the maxima of yield. The persistence plot of yield maxima showing three well-separated maxima.
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Fig. 11 (a) Scatter plot of χ2 versus modified χ2 distances of the micro-ensemble, indicating the presence of a small number of
outliers with very large distances. The inset shows all points with χ2 < 8000. (b) Persistence plot of the minima of the modified
χ2 distance of the complete data (black) and only the samples with χ2 < 8000 (red). The basic structure is virtually the same
but the (relative) persistences have increased as the global range has decreased. (c) Entropy versus drive-step-frequency colored
according to the four well-separated minima of modified χ2.

ties with the interactive pipeline such as, for example,

comparisons with experimental data.

At the same time, our framework is generally appli-

cable to a large number of research areas and its modu-

lar design makes tailoring ND2AV towards specific use

cases easy. We are actively working with several other

application areas such as climate analysis and nuclear

reactor safety analysis to adapt and expand the tool.

Going forward, we plan to release a version of ND2AV to

the public domain in the hope of providing an easy-to-

use platform to integrate and validate new techniques

and tools.
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