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Abstract

Network data are ubiquitous in the real world to capture pairwise or high-order relations among
objects. We introduce a class of measure-theoretic network objects called partitioned measure networks that
generalize a number of objects used to model network data in the literature, such as graphs, hypergraphs,
and augmented graphs (i.e., graphs whose nodes are assigned categorical classes). We then propose a
metric called a partitioned network distance between partitioned measure networks that extends the
Gromov-Wasserstein distance between graphs and the co-optimal transport distance between hypergraphs.
We characterize the geometry of the space of partitioned measure networks, thereby providing a unified
theoretical treatment of generalized network structures that encompass both pairwise and higher-order
relations. In particular, we show that our metric defines an Alexandrov space of non-negative curvature,
and leverage this structure to define gradients for certain functionals commonly arising in geometric data
analysis tasks. We extend our framework to the setting where nodes have additional label information, and
derive efficient computational schemes to utilize the partitioned network distance in practice. Equipped
with these theoretical and computational tools, we demonstrate the utility of our framework in a suite
of applications, including hypergraph alignment, clustering and dictionary learning from ensemble data,
multi-omics alignment, as well as multiscale network alignment.
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4.3.1 Fréchet functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Geodesic dictionary learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Applications and algorithms 30
5.1 Numerical algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Network matching and comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Relation to spectral network alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Comparison to spectral network alignment for random graphs and hypergraphs . . . . 34
5.2.3 Metabolic network alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.4 Multi-omics sample and feature alignment . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Partitioned networks for multiscale network matching . . . . . . . . . . . . . . . . . . . . . . 39
5.3.1 Multiscale point cloud matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.2 Multi-scale biological network matching . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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1 Introduction

Modelling relations among objects or concepts is a central task across the natural sciences, engineering,
as well as arts and humanities. Graphs are a conventional approach to model pairwise relations between
objects. Many real-world systems, however, involve higher-order interactions among three or more objects.
In biochemical reaction networks, reactions typically involve multiple chemical species simultaneously [33]. In
coauthorship networks, papers are written jointly by any number of authors [83]. And in a theatre play, each
scene can be viewed as a (higher-order) interaction between a set of characters [23]. These systems cannot be
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modelled as graphs without information loss. Instead, we need to introduce more general structures such as
hypergraphs, simplicial complexes, and cell complexes [6].

A natural question arising from the study of graphs is how to compare them: specifically, how to
characterize the distance or degree of similarity between two graphs. This is not straightforward, since two
graphs may vary in the number of nodes and comparisons must be invariant under permutation [66] and
other symmetries. The complexity involving graph data has driven the development of an extensive tool set
for graph comparison and matching [75], including spectral methods [29, 30, 46, 66] and graph kernels [61, 9].
Among these methods, Gromov-Wasserstein couplings of metric measure spaces (i.e., metric spaces equipped
with measures) have proven fruitful from theoretical and computational perspectives [44]. A coupling between
measures is a relaxed notion of correspondence between objects [44]; and it creates a joint probability space
with the desired measures as its marginals. By modelling graphs as metric measure spaces and considering
couplings between them, a notion of Gromov-Wasserstein distance between graphs emerges in terms of a least
distortion principle. This distance is in fact a pseudometric, and the space of graphs (considered up to a
natural notion of equivalence) can thus be formalized as a metric space endowed with the Gromov-Wasserstein
metric [19]. The geometry of the space of metric measure spaces, endowed with this metric, was studied in
detail by Sturm [65] and was shown to be an Alexandrov space with curvature bounded below. This is a
powerful characterization that allows well-defined notions of geodesics, tangent spaces, and gradient flows.

Computationally, the Gromov-Wasserstein framework formulates the distance between two graphs as an
optimal value of a non-convex quadratic program over a set of feasible couplings. Efficient computational
schemes exist to find local minima of this problem, which have given rise to an algorithmic tool box for
dealing with graphs that has gained popularity in the statistics and machine learning communities [52].

While the Gromov-Wasserstein approach to graph comparison has been a foundational tool for un-
derstanding the space of graphs from a geometric viewpoint, in its basic form, it is insufficient to model
higher-order systems such as hypergraphs. A hypergraph consists of a set of nodes and a set of hyperedges
(i.e., subsets of nodes); if each hyperedge contains exactly two nodes, then a hypergraph reduces to a graph.
A hypergraph can be used to encode multi-way relations among nodes. Recently, Chowdhury et al. [22]
introduced Gromov-Wasserstein type distances between hypergraphs, based on the co-optimal transport
framework of Redko et al. [55]. Framing hypergraphs as metric measure spaces, Chowdhury et al. showed that
the space of hypergraphs can be characterized as a metric space; however, an in-depth geometric description
of this metric space remains to be fully developed.

Figure 1: A schematic representation of the types of generalized networks which can be embedded into the
space of partitioned measure networks. From left to right: (i) Examples of a measure network (or a weighted
graph) whose nodes are endowed with a probability measure; a measure hypernetwork (or a weighted bipartite
graph) with a node probability measure; and an augmented measure network (or a measure network) whose
node set has been partitioned into two classes. (ii) Illustration of a partitioned measure network with k “ 3
partitions, that is, a measure network whose nodes have been partitioned into 3 classes. (iii) Illustration of
a labelled partitioned measure network, or a partitioned measure network whose nodes are endowed with
features in some auxiliary metric spaces.

In this paper, we introduce a general class of network objects called partitioned measure networks, which
generalize a number of measure-theoretic objects recently introduced in the literature: measure networks [19],
measure hypernetworks [22], and augmented measure networks [26]; see Figure 1, and Remark 2.3 for
further discussions. A k-partitioned measure network is a graph structure whose nodes are separated into k
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classes, and this partitioning should be taken into account when comparing these structures. For example, a
hypergraph can be encoded as a bipartite graph between two partitions (that correspond to sets of nodes
and hyperedges respectively), so that any hypergraph can be modelled as a 2-partitioned measure network;
further examples are provided in Example 2.9. We also consider k-partitioned networks whose nodes come
with attributes in some auxiliary metric space, referred to as labelled k-partitioned measure networks.
Contributions. We highlight our contributions below. First, we equip the space of partitioned measure
networks with a family of transport-based distances formulated as the minimum of a quadratic distortion
functional over k-partitioned couplings (i.e., measure couplings that respect the class structures of the
partitioned networks). This choice of distance is shown to be a bona fide metric (up to a natural equivalence
relation), and we explicitly construct isometric embeddings of measure networks, hypernetworks, and
augmented measure networks into this space; see Definition 2.8 and Theorem 1.

Second, we characterize geodesics in the space of partitioned measure networks and show that it is an
Alexandrov space with curvature bounded below; see Theorem 3. As an extension to our analysis, we consider
the addition of labels to partitioned measure networks, which provides a generalization of the so-called
Fused Gromov-Wasserstein problem [71]. When labels reside in a Hilbert space, we show that our geometric
characterization of geodesics and curvature also applies; see Theorem 5.

Third, our theoretical contributions provide a unified treatment of a family of generalized networks, which
encompass multiple network objects recently introduced in the literature [19, 55, 22, 26]. This allows us to
provide a common geometric description of these spaces. To the best of our knowledge, in the settings of
labelled measure networks, measure hypernetworks, and augmented measure networks, these characterizations
are new. We conclude our theoretical contributions in Section 4, with a brief discussion of the Riemannian
geometric concepts of tangent spaces, exponential and logarithmic maps, and gradients in the space of
k-partitioned measure networks, which are crucial for practical applications in learning algorithms. We
remark here that a recent paper [5] also provides a general framework for studying several variants of the
Gromov-Wasserstein distance, but that the results therein are disjoint from the ones presented here: the
framework of the present paper captures different variants of Gromov-Wasserstein distance than that of [5],
and the curvature bounds and Riemannian structures established here are not treated in [5].

Fourth, we demonstrate the utility of our framework on computational case studies, which bring together
the theoretical ideas. We provide a connection between the Gromov-Wasserstein network matching problem
and a family of spectral network alignment algorithms [29, 46]. To our knowledge, this connection has not
been explicitly pointed out in prior work. We show that partitioned measure networks provide a more natural
and flexible extension to the hypergraph alignment problem, and we demonstrate in numerical experiments
that transport-based approaches are more accurate and efficient than spectral methods.

We illustrate the practicality of our methods with applications to metabolic network alignment, simultane-
ous sample and feature alignment in multi-omics data, and multi-scale network matching. We formulate each
of these problems in terms of partitioned network matching. In addition, we investigate some more complex
tasks on the space of partitioned networks that exploit their geometric properties. For example, we provide
computational characterizations of geodesics and barycenters in the space of measure hypernetworks. We
introduce geodesic dictionary learning as a bi-level problem on the space of (partitioned) measure networks,
from which we motivate linearized dictionary learning [74] as a fast approximate algorithm. We conclude by
demonstrating the utility of geodesic dictionary learning in synthetic hypergraph block models as well as
networks derived from atomic and topological representations of small molecules.
Overview. The plan for the paper is as follows. In Section 2, we give precise definitions of various spaces of
generalized networks and define our new variant of Gromov-Wasserstein distance—the partitioned network
distance—on them. We establish metric properties of the partitioned network distance. We generalize these
ideas in Section 3 by introducing node features to the partitioned networks. We define a new metric on these
objects and establish its metric properties, including curvature bounds. The deferred proofs from previous
sections follow as corollaries to these more general results. We study the Riemannian structures following
from our curvature bounds in Section 4, with a focus on computational examples. In Section 5, we give an
extended collection of computational examples and applications of our framework. This is supplemented
by an open source code repository, available at https://github.com/zsteve/partitioned_networks. We
conclude the main paper with a discussion of future directions in Section 6, followed by technical aspects of
our numerical methods in the Appendix A.

4

https://github.com/zsteve/partitioned_networks


2 Metric geometry of spaces of generalized networks

2.1 Spaces of generalized networks

We first review some notions of generalized networks, and Gromov-Wasserstein type distances between them,
which have appeared previously in the literature.

2.1.1 Generalized networks

Let us first recall some definitions of generalized network structures in the literature. These use the
following notational conventions: given measure spaces pX,µq and pY, νq, we use Lppµq to denote the space
of p-integrable functions on X (for p P r1,8s) and we use µ b ν to denote the product measure on X ˆ Y .

Definition 2.1 (Various notions of generalized networks). Let p P r1,8s.

1. A measure p-network [19] is a triple N “ pX,µ, ωq, where X is a Polish space, µ is a Borel probability
measure on X, and ω : X ˆ X Ñ r0,8q is an element of Lppµ b µq. Let N p denote the collection of all
measure p-networks.

2. A measure p-hypernetwork [55, 22] is a five-tuple H “ pX,µ, Y, ν, ωq consisting of Polish spaces X
and Y endowed with Borel probability measures µ and ν, respectively, and ω : X ˆ Y Ñ r0,8q is an
element of Lppµ b νq. Let Hp denote the collection of all measure p-hypernetworks.

3. An augmented measure p-network [26] is a six-tuple A “ pX,µ, Y, ν, ωX , ωXY q, consisting of Polish
spaces X and Y endowed with Borel probability measures µ and ν, respectively, and ωX : XˆX Ñ r0,8q

and ωXY : X ˆ Y Ñ r0,8q are elements of Lppµ b µq and Lppµ b νq, respectively. Let Ap denote the
collection of all augmented measure p-networks.

We will frequently suppress explicit mention of the parameter p, as the appropriate value will typically be
either unimportant or clear from context; e.g., when referring to certain Lp-type metrics. The functions ω,
ωX , ωXY , etc., will loosely be referred to as network kernels.

Example 2.2. We now provide prototypical examples of the structures defined above.

1. A metric measure space is a measure network pX,µ, ωq such that ω satisfies the axioms of a metric,
and the topology of X is induced by the metric. This was the original setting where the Gromov-
Wasserstein distances were formulated; see [43, 44] and the related work [64]. More general examples of
measure networks frequently come from the setting of graph theory, where X is a finite set of nodes,
ω encodes node affinities, and µ is some choice of weights on the nodes (e.g., uniform). For example,
weighted adjacency functions are used as network kernels in this framework to represent protein-protein
interaction networks in [78], and heat kernels are used in [21] for the purpose of uncovering community
structures in graph datasets.

2. A hypergraph is a set V of nodes and a set E of subsets of V , each of which is referred to as a
hyperedge. The containment or incidence relation can be encoded as a function ω : V ˆE Ñ t0, 1u, so
that picking probability measures µ and ν (say, uniform) yields a measure hypernetwork pV, µ,E, ν, ωq.
This representation was used in [22], where it was applied, for example, to simplify hypergraphs
representing complicated social interactions. The notion of a measure hypernetwork therefore generalizes
the notion of a hypergraph. One also obtains a measure hypernetwork from a data matrix, where X
is an indexing set for samples, Y is an indexing set for features , ωpx, yq is the value of the matrix for
sample x and feature y and µ and ν are some choices of weights. Applications to analysis of ensembles
of data matrices was a main motivation for the introduction of this formalism in [55].

3. One can obtain an augmented measure network by taking pX,µ, Y, ν, ωq to be a measure hypernet-
work representation of a data matrix, setting ωXY “ ω and taking ωX to be some relational function
on the rows, such as distance between samples in the data space. This approach was taken to model
multi-omics data in [26], with a view toward integrating several single-cell multi-omics datasets.
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Remark 2.3 (Representations as graph structures). Figure 1 provides schematic representations of the
generalized networks defined above. To interpret this, one should conceptualize a measure network as a fully
connected, weighted graph with a node set X and edge weights encoded by ω. From this perspective, it is
natural to consider a measure hypernetwork as a bipartite weighted graph, where X and Y define the two
classes of nodes. Then ω defines edge weights for the complete bipartite graph, while there are no edges
joining pairs of nodes in X or pairs of hyperedges in Y . Finally, an augmented measure network can be
viewed similarly, with the difference being that edges between nodes in X are permitted with weights encoded
by ωX (and bipartite edge weights being encoded by ωXY ). These interpretations lead to the k-partitioned
measure network formalism introduced in Section 2.2. See Definition 2.8 and Remark 2.10 for a more formal
justification of these representations.

Remark 2.4 (Finite and continuous spaces). The concept of measure hypernetwork was introduced in [55],
somewhat less formally, and primarily as a model for data matrices (so X and Y were assumed to be finite).
This definition was formalized and extended to the setting of infinite spaces in [22] (in a slightly less general
form than what is presented here, as network kernels were assumed therein to be bounded and the underlying
Polish spaces were assumed to be compact for many results). The computational examples of practical
interest are, of course, always defined over finite spaces; the main motivation for extending the definition to
infinite spaces is to allow us to consider the collection of all measure hypernetworks as a complete metric
space with respect to the distance defined below. Similarly, the notion of an augmented measure network was
introduced for finite spaces in [26], and the more formal definition provided above is novel.

2.1.2 Generalized network distances

For each flavour of generalized network described in Definition 2.1, there has been an associated notion of
distance introduced in the literature. They all have a similar structure, defined in terms of optimizing over
measure couplings, as in the Kantorovich formulation of classical optimal transport (see [73, 51] as general
references on optimal transport). Below, we use projX : X ˆ X 1 Ñ X and projX1 : X ˆ X 1 Ñ X 1 to denote
coordinate projections on some product sets, and for a Borel measurable map p : X Ñ Y of topological
spaces, we use p#µ to denote the pushforward to Y of a Borel measure µ on X.

Definition 2.5 (Measure coupling). For probability spaces pX,µq and pX 1, µ1q, we say that a measure π on
X ˆ X 1 is a coupling of µ and µ1 if its left and right marginals are equal to µ and µ1, respectively; that is,
pprojXq#π “ µ and pprojX1 q#π “ µ1. Let Πpµ, µ1q denote the set of all couplings of µ and µ1.

Let us now establish some convenient notational conventions that will be used throughout the rest of
the paper. We always use N and N 1 to stand for measure networks, with the underlying data always being
implicitly denoted N “ pX,µ, ωq and N 1 “ pX 1, µ1, ω1q. We similarly use H,H 1 for measure hypernetworks
and A,A1 for augmented hypernetworks. That is, when referring to H, the underlying data is implicitly given
by H “ pX,µ, Y, ν, ωq, unless explicitly stated otherwise. For functions τ : A ˆ B Ñ R and τ 1 : A1 ˆ B1 Ñ R,
the difference τ ´ τ 1 is understood to be the function defined on A ˆ A1 ˆ B ˆ B1 as follows:

τ ´ τ 1 : A ˆ A1 ˆ B ˆ B1 Ñ R
pa, a1, b, b1q ÞÑ τpa, bq ´ τ 1pa1, b1q.

Given a measure space pX,µq, we use } ¨ }Lppµq to denote the standard norm on Lppµq. With these conventions
in mind, we recall some metrics which have been introduced on the generalized network spaces of Definition 2.1.

Definition 2.6 (Generalized network distances). Let p P r1,8s.

1. The network p-distance or Gromov-Wasserstein p-distance [19] between measure networks
N,N 1 P N p is

dNppN,N 1q :“ inf
πPΠpµ,µ1q

1

2
}ω ´ ω1}Lppπbπq.

2. The hypernetwork p-distance [55, 22] between measure hypernetworks H,H 1 P Hp is

dHppH,H 1q :“ inf
πPΠpµ,µ1

q

ξPΠpν,ν1
q

1

2
}ω ´ ω1}Lppπbξq.
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3. The augmented network p-distance [26] between augmented measure networks A,A1 P Ap is

dAppA,A1q :“ inf
πPΠpµ,µ1

q

ξPΠpν,ν1
q

1

2

´

}ωX ´ ω1
X1 }

p
Lppπbπq

` }ωXY ´ ω1
X1Y 1 }

p
Lppπbξq

¯1{p

.

In the following section, we unify these generalized network concepts and distances (as well as others)
under a common framework. We will use this common framework to derive various metric properties of these
distances simultaneously.

2.2 Partitioned measure networks and generalized networks

One should observe the similarities between the various notions of generalized network in Definition 2.1,
and the optimal transport-inspired distances between them described in Definition 2.6. In this section, we
describe a new structure that simultaneously generalizes these ideas.

2.2.1 Partitioned measure networks

Let us now introduce a new generalized network structure.

Definition 2.7 (Partitioned measure network). Let k be a positive integer and p P r1,8s. A k-partitioned
measure p-network is a structure of the form P “

`

pXi, µiq
k
i“1, ω

˘

, where

• each pXi, µiq is a Polish probability space such that Xi X Xj “ H for i ‰ j, and

• using the notation X :“ \iXi and µ :“
ř

i µi, ω : X ˆ X Ñ r0,8q is an element of Lppµ b µq.

To simplify notation, we sometimes write pXi, µiq instead of pXi, µiq
k
i“1, pXiq instead of pXiq

k
i“1 and pµiq

instead of pµiq
k
i“1. We use Pp

k to denote the collection of all k-partitioned measure p-networks.

It is often the case that the particular values of k and p are not important, in which case we abuse
terminology and refer to the objects defined above as partitioned measure networks. In line with those
established above, we follow the notational convention that P and P 1 are implicitly assumed to stand for
partitioned measure networks P “ ppXi, µiq, ωq and P 1 “ ppX 1

i, µ
1
iq, ω

1q. Observe that a 1-partitioned measure
network is just a measure network; that is, N p “ Pp

1 . Next, we observe below that we could embed the
various notions of generalized networks (from Definition 2.1) into the space of partitioned measure networks
Pp
2 .

Definition 2.8 (Generalized network embeddings). We have the following families of embeddings.

1. For each k, let εk,k`1 : Pp
k Ñ Pp

k`1 be the map taking P P Pp
k to

εk,k`1pP q :“
`

pXi, µiq
k`1
i“1 , εk,k`1pωq

˘

,

where Xk`1 consists of a single abstract point, µk`1 is the associated Dirac measure, and the network
kernel is defined by

εk,k`1pωq : p\
k`1
i“1Xiqˆp\

k`1
i“1Xiq Ñ R, εk,k`1pωqpu, vq “

"

ωpu, vq pu, vq P p\k
i“1Xiq ˆ p\k

i“1Xiq;
0 otherwise.

In particular, ε1,2 gives an embedding N p ãÑ Pp
2 . For k ă ℓ, we define εk,ℓ : Pp

k Ñ Pp
ℓ by

εk,ℓ :“ εℓ´1,ℓ ˝ ¨ ¨ ¨ ˝ εk,k`1.

2. Let εH : Hp Ñ Pp
2 be the map taking H P Hp to

εHpHq :“ pppX,µq, pY, νqq, εHpωqq ,

where

εHpωqpu, vq :“

"

ωpu, vq u P X and v P Y ;
0 otherwise.
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3. Let εA : Ap Ñ Pp
2 be the map taking A P Ap to

εApAq :“ pppX,µq, pY, νqq, εApωX , ωXY qq ,

where

εApωX , ωXY qpu, vq :“

$

&

%

ωXpu, vq u, v P X;
ωXY pu, vq u P X and v P Y ;

0 otherwise.

Example 2.9 (Partitioned networks). The generalized network embeddings defined above show that measure
networks, hypernetworks and augmented hypernetworks can be considered as 2-partitioned networks, so that
this structure encompasses those described in Example 2.2. Another source of examples of k-partitioned
networks is the notion of a dataset with a categorical class structure. That is, consider a (say, finite) dataset
of points X such that each x P X belongs to one of k different classes—for example, X could consist of a set
of images, and the images could be assigned classes based on subject matter (e.g., cats, dogs, etc.). This class
structure can be encoded as probability measures by taking µi to be a uniform measure supported on those
points belonging to class i. The supports then define the required partition of X “ \iXi and any choice of
network kernel ω on X gives a representation of the multiclass dataset as a k-partitioned measure network.

Remark 2.10 (Intuition for the embeddings). Remark 2.3 gives interpretations of generalized networks in
terms of graph structures, illustrated schematically in Figure 1. The embeddings defined above formalize
these intuitive descriptions mathematically. For example, if H P Hp is a representation of a hypergraph, then
εHpHq gives a representation of H as a bipartite graph.

2.2.2 Partitioned network distance

We now define a distance between partitioned measure networks, using the concept of a partitioned coupling.

Definition 2.11 (Partitioned coupling). Given k-tuples of probability spaces pXi, µiq
k
i“1 and pX 1

i, µ
1
iq

k
i“1, let

Πk

`

pµiq, pµ1
iq
˘

:“ Πpµ1, µ
1
1q ˆ ¨ ¨ ¨ ˆ Πpµk, µ

1
kq.

An element pπiq
k
i“1 of Πk ppµiq, pµ1

iqq is a k-partitioned coupling. To simplify notation, we sometimes
denote k-partitioned couplings as pπiq instead of pπiq

k
i“1.

Definition 2.12 (Partitioned network distance). For p P r0,8q, the partitioned network p-distance
between partitioned measure networks P, P 1 P Pp

k is

dPp
k

pP, P 1q :“ inf
pπiqPΠkppµiq,pµ1

iqq

1

2

˜

k
ÿ

i,j“1

}ω ´ ω1}
p
Lppπibπjq

¸1{p

. (1)

For p “ 8, we define

dP8
k

pP, P 1q :“ inf
pπiqPΠkppµiq,pµ1

iqq

1

2
max
i,j

}ω ´ ω1}L8pπibπjq. (2)

Remark 2.13. In the above definition and throughout the rest of the paper, we slightly abuse terminology
and consider each πi as a probability measure on X ˆ X 1 “ p\jXjq ˆ p\jX

1
jq (which is supported on the

subset Xi ˆ X 1
i).

Remark 2.14 (Connection to labelled Gromov-Wasserstein distance [57]). A notion of Gromov-Wasserstein
distance is introduced which is essentially equivalent to our partitioned network distance [57]. However, the
treatment in that paper is very much from a computational perspective, and a formal, a general definition of
the distance is not provided. The usefulness of such a metric is demonstrated by applications to cross-modality
matching for biological data. We remark that [57] uses the terminology labelled Gromov-Wasserstein
distance; we use the term labelled differently below, in Section 3.
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When k “ 1, dPp
1
is simply the Gromov-Wasserstein distance dNp . We will show below that, for arbitrary

k, dPp
k
induces a metric on Pp

k modulo a natural notion of equivalence, which generalizes the known result
in the Gromov-Wasserstein case. Before doing so, we show that the embeddings of generalized networks of
Definition 2.8 preserve the notions of distance that we have defined so far.

Theorem 1. The maps from Definition 2.8 preserve generalized network distances:

1. for k ă ℓ, dPp
ℓ

pεk,ℓpP q, εk,ℓpP
1qq “ dPp

k
pP, P 1q; in particular, dPp

2
pε1,2pNq, ε1,2pN 1qq “ dNppN,N 1q;

2. dPp
2

pεHpHq, εHpH 1qq “ dHppH,H 1q;

3. and dPp
2

pεApAq, εApA1qq “ dAppA,A1q.

Proof. We provide details for the p ă 8 case, with the proof for p “ 8 following by similar arguments. For the
first claim, it suffices to consider the case where ℓ “ k`1. Let P, P 1 P Pp

k . Any pπiq “ pπiq
k
i“1 P Πkppµiq, pµ1

iqq

extends uniquely to a pk ` 1q-partitioned coupling of pµ1, . . . , µk, µk`1q and pµ1
1, . . . , µ

1
k, µ

1
k`1q, namely,

pπ1, . . . , πk, πk`1q, where πk`1 the Dirac mass on the singleton set Xk`1 ˆ X 1
k`1. We have that

k`1
ÿ

i,j“1

}εk,k`1pωq ´ εk,k`1pω1q}
p
Lppπibπjq

“

k`1
ÿ

i“1

}εk,k`1pωq ´ εk,k`1pω1q}
p
Lppπibπk`1q

`

k`1
ÿ

j“1

}εk,k`1pωq ´ εk,k`1pω1q}
p
Lppπk`1bπjq

`

k
ÿ

i,j“1

}εk,k`1pωq ´ εk,k`1pω1q}
p
Lppπibπjq

“

k
ÿ

i,j“1

}ω ´ ω1}
p
Lppπibπjq

,

where the last line follows because εk,k`1pωq “ εk,k`1pω1q “ 0 on the supports of πi b πk`1 and πk`1 b πj .
And moreover, εk,k`1pωq “ ω and εk,k`1pω1q “ ω1 on the support of each πi b πj with i, j ă k. Since the
k-partitioned coupling pπiq was arbitrary, the first claim follows.

Let us now prove the third claim; the case for hypernetworks is proved using similar arguments, so we omit
the details here. Let A,A1 P Ap and let π P Πpµ, µ1q and ξ P Πpν, ν1q. Then pπ1, π2q “ pπ, ξq is a 2-partitioned
coupling of pµ, νq and pµ1, ν1q, and we have

2
ÿ

i,j“1

}εApωq ´ εApω1q}
p
Lppπibπjq

“ }ωX ´ ω1
X1 }

p
Lppπbπq

` }ωXY ´ ω1
X1Y 1 }

p
Lppπbξq

,

by reasoning similar to the above. Since π and ξ were arbitrary, this completes the proof.

2.2.3 Metric properties of the partitioned network distance

To describe the exact sense in which dPp
k
is a distance, we need to introduce some equivalence relations on

partitioned measure networks.

Definition 2.15 (Strong and weak isomorphism). We say that k-partitioned measure networks P and P 1 are
strongly isomorphic if, for each i “ 1, . . . , k, there is a Borel measurable bijection ϕi : Xi Ñ X 1

i (with Borel
measurable inverse) such that pϕiq#µi “ µ1

i, and ωpx, yq “ ω1pϕipxq, ϕjpyqq for every pair px, yq P Xi ˆ Xj.
The tuple pϕiq “ pϕiq

k
i“1 is called a strong isomorphism.

A tuple pϕiq of maps ϕi : Xi Ñ X 1
i is called a weak isomorphism from P to P 1 if pϕiq#µi “ µ1

i, and
ωpx, yq “ ω1pϕipxq, ϕjpyqq for µi b µj-almost every pair px, yq P Xi ˆ Xj. We do not require each ϕi to be a
bijection in this definition.

We say that P and P 1 are weakly isomorphic if there exists a third partitioned measure network
P “ ppXi, µiq, ωq and weak isomorphisms pϕiq from P to P and pϕ1

iq from P to P 1.
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It is straightforward to show that weak isomorphism defines an equivalence relation on P; we use P „ P 1

to denote that P is weakly isomorphic to P 1. For P P Pp
k , let rP s denote its equivalence class under this

relation and let rPp
k s denote the collection of all equivalence classes.

Using the embeddings from Definition 2.8, there is an induced notion of weak isomorphism on the spaces
of generalized networks. Let rN ps, rHps and rAps denote the collections of weak isomorphism equivalence
classes of measure networks, measure hypernetworks and augmented measure networks, respectively.

Weak isomorphisms of measure networks and of measure hypernetworks are introduced in [19] and
[22], respectively. It is straightforward to show that the induced notions from Definition 2.15 agree with
those already established in the literature. The aforementioned papers show that dNp and dHp descend to
well-defined metrics on rN ps and rHps, respectively. The following theorem generalizes these results, in light
of Theorem 1.

Theorem 2. The k-partitioned network p-distance dPp
k
induces a well-defined metric on rPp

k s.

Putting Theorems 1 and 2 together, we obtain the following corollary.

Corollary 2.16. The generalized network distances dNp , dHp and dAp induce well-defined metrics on rN ps,
rHps and rAps, respectively. The embeddings from Definition 2.8 induce isometric embeddings of each of these
spaces into rPp

2 s.

We will abuse notation and continue to denote the induced metric on rPp
k s as dPp

k
, and take a similar

convention for the other induced metrics.

Remark 2.17. The case of N p in the corollary was proved in [19] and the case of Hp was proved in [22]
(those papers assumed boundedness of the ω-functions, but this restriction is easily lifted in those proofs).
In [26], a relaxed version of triangle inequality was proved for the augmented network distance in the finite
setting. Corollary 2.16 strengthens [26, Proposition 1] to show that dAp satisfies the true (non-relaxed)
triangle inequality.

Theorem 2 follows as an easy corollary of a more general result in the following section, so we defer its
proof to Section 3.1.2.

2.2.4 Geodesics and curvature

We can say more about the metric properties of the partitioned network distance. To state our next result,
we first recall some standard concepts from metric geometry; see [10, 13] as general references.

Definition 2.18 (Geodesics and curvature). Let pX, dq be a metric space.

1. A geodesic between points x, y P X is a path γ : r0, 1s Ñ X with γp0q “ x, γp1q “ y and such that, for
all 0 ď s ď t ď 1, we have

dpγpsq, γptqq “ pt ´ sqdpx, yq.

If there is a geodesic joining any two points in X, we say that pX, dq is a geodesic space.

2. Suppose that pX, dq is a geodesic space. We say that pX, dq has curvature bounded below by zero if
for every geodesic γ : r0, 1s Ñ X and every point x P X, we have

dpγptq, xq2 ě p1 ´ tqdpγp0q, xq2 ` tdpγp1q, xq2 ´ tp1 ´ tqdpγp0q, γp1qq2

for all t P r0, 1s.

3. We say that pX, dq is an Alexandrov space of non-negative curvature if it is a complete geodesic
space with curvature bounded below by zero.

The next main result follows from a more general result below. We defer its proof to Section 3.2.3.

Theorem 3. For any k ě 1, prP2
k s, dP2

k
q is an Alexandrov space of non-negative curvature.

Combining Theorem 3 with Corollary 2.16 immediately yields the following result.
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Corollary 2.19. Each of the spaces prN 2s, dN 2q, prH2s, dH2q and prA2s, dA2q is an Alexandrov space of
non-negative curvature.

Remark 2.20 (Prior curvature results). The fact that prN 2s, dN 2q is an Alexandrov space of non-negative
curvature was essentially proved by Sturm in [65, Theorem 5.8] (there the space of symmetric measure
networks was considered, i.e., where the function ω : X ˆ X Ñ R is assumed to be symmetric; the proof
still works if this assumption is dropped, as was observed in [20]). This result is new for the other spaces of
generalized networks in Corollary 2.19.

3 Extension to labelled networks

We consider, as an extension to the discussion so far, the setting of k-partitioned measure networks where
each element of Xi (1 ď i ď k) is associated with a label element that lives in a metric space.

3.1 Labelled partitioned measure networks

Let us begin by defining a labelled notion of a k-partitioned measure network, and the distances between
these objects.

Definition 3.1 (Labelled k-partitioned measure networks). Let pΛi, dΛi
q (1 ď i ď k) be fixed metric spaces,

which we consider as spaces of labels. A labelled k-partitioned measure p-network is a tuple
`

P, pιiq
k
i“1

˘

,
where

• P “
`

pXi, µiq
k
i“1, ω

˘

P Pp
k ;

• each of the ιi : Xi Ñ Λi is a measurable function, which we refer to as a labelling function;

• each function Xi ˆ Xi Ñ R defined by px, yq ÞÑ dΛi
pιipxq, ιipyqq belongs to Lppµi b µiq.

We frequently simplify notation and write L “ pP, pιiqq for a labelled k-partitioned network. We denote
by LPp

k the space of labelled k-partitioned measure p-networks, where it is understood that the label spaces
pΛi, dΛi

q are fixed.

Example 3.2 (Node-attributed networks). The main examples of labelled partitioned networks come from
node-attributed network structures. For example, consider a measure network N “ pX,µ, ωq P N p

representing a graph via some graph kernel ω. In applications, the node set X may be attributed with
auxiliary data—for example, if the graph encodes user interactions on a social network, then each node may
be attributed with additional user-level statistics. This situation can be modelled as a function ι : X Ñ Λ,
where Λ is the attribute space (e.g., Λ “ Rn). The structure pN, ιq defines an element of LPp

1.

The partitioned network distance (2.12) can be naturally generalized to LPp
k.

Definition 3.3 (Labelled partitioned network distance). Let 1 ď p ă 8 and let L “ pP, pιiqq , L1 “ pP 1, pι1
iqq P

LPp
k be two labelled partitioned measure networks. Then we define the labelled k-partitioned network

distance to be

dLPp
k
pL,L1q “ inf

pπiqPΠkppµiq,pµ1
iqq

1

2

˜

k
ÿ

i,j“1

}ω ´ ω1}
p
Lppπibπjq

`

k
ÿ

i“1

}dΛi
˝ pιi, ι

1
iq}

p
Lppπiq

¸1{p

. (3)

This extends to the p “ 8 case as

dLP8
k

pL,L1q “ inf
pπiqPΠkppµiq,pµ1

iqq

1

2
max

ˆ

max
i,j

}ω ´ ω1}L8pπibπjq,max
i

}dΛi
˝ pιi, ι

1
iq}L8pπiq

˙

. (4)

Remark 3.4. We could include a balance parameter to weight the contributions of the network kernel
term (i.e., the first summation) versus the labelling function term (the second summation) in (3). Such
a parameter is included in the definition of Fused Gromov-Wasserstein (FGW) distance [71], which has a
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similar structure. The connection between dLPp
k
and FGW distance is explained precisely in Section 3.1.2.

We avoid the inclusion of the balance parameter in our formulation, as it is unimportant from a theoretical
standpoint and can been absorbed into the definitions of network kernels and label functions in practical
applications.

A simple (but useful) observation is that the distances can be written as nested ℓp-norms1. For the rest of
the paper, let } ¨ }p denote the ℓp-norm on Rn for p P r1,8s. We abuse notation and use the same symbol
} ¨ }p for the norm on spaces of various dimensions, with the specific meaning always being clear from context.
Then the labelled k-partitioned network distance can be expressed as

dLPp
k
pL,L1q “ inf

pπiqPΠkppµiq,pµ1
iqq

1

2

›

›

›

›

ˆ

›

›

›

`

}ω ´ ω1}Lppπibπjq

˘

i,j

›

›

›

p
,
›

›

`

}dΛi
˝ pιi, ι

1
iq}Lppπiq

˘

i

›

›

p

˙
›

›

›

›

p

, (5)

for all p P r1,8s. We have made one more abuse of notation by considering the collection
`

}ω ´ ω1}Lppπibπjq

˘

i,j
,

which is most naturally indexed as a k ˆ k matrix, as an element of Rk2

in order to apply the ℓp-norm to it.

3.1.1 Metric properties of the labelled distance

We now show that dLPp
k
defines a metric, up to a natural notion of equivalence. Strong and weak isomorphisms

of partitioned networks (Definition 2.15) extend to the case of labelled partitioned measure networks in a
straightforward way.

Definition 3.5 (Weak isomorphism of labelled partitioned measure networks). We say that labelled k-
partitioned measure networks L “ pP, pιiqq and L1 “ pP 1, pι1

iqq are strongly isomorphic if the underlying
partitioned measure networks P and P 1 are strongly isomorphic (see Definition 2.15) via bijections ϕi : Xi Ñ

X 1
i such that ιipxq “ ι1

ipϕpxqq for µi-almost every x P Xi.
We say that L and L1 are weakly isomorphic if there exists L “ pP , pιiqq P LPk, with P “ ppXi, µiq, ωq,

such that

• there exist weak isomorphisms pϕiq and pϕ1
iq from P to P and P 1, respectively; that is, ϕi : Xi Ñ Xi

and ϕ1
i : Xi Ñ X 1

i satisfy the conditions given in Definition 2.15;

• and the maps ϕi and ϕ1
i additionally satisfy

ιipxq “ ιipϕpxqq “ ι1
ipϕ

1pxqq,

for µi-almost every x P Xi.

One can easily verify that weak isomorphism again defines an equivalence relation on LPp
k, and we write

rP, pιiqs for equivalence classes and rLPp
ks for the quotient space.

The next theorem is analogous to Theorem 2, which establishes the metric properties of dPp
k
. In fact, the

deferred proof of Theorem 2 will follow easily from this result (see Section 3.1.2).

Theorem 4. The labelled k-partitioned network p-distance dLPp
k
induces a well-defined metric on rLPp

ks.

The proof will use some important technical lemmas.

Lemma 3.6. The infima in (3) and (4) are always realized by partitioned couplings.

Proof. Let pP, pιiqq, pP 1, pι1
iqq P LPp

k. We have Πkppµiq, pµ1
iqq “ Πpµ1, µ

1
1q ˆ ¨ ¨ ¨ ˆ Πpµk, µ

1
kq. By [65, Lemma

1.2], each Πpµi, µ
1
iq is compact (as a subspace of the space of probability measures on Xi ˆ X 1

i, with the weak
topology), so it follows that Πkppµiq, pµ1

iqq is compact as well. By the proof of [22, Lemma 24], for each pi, jq,
the function

Πpµi, µ
1
iq ˆ Πpµj , µ

1
jq Ñ R : pπi, πjq ÞÑ }ω ´ ω1}Lppπibπjq

1In this paper, Lp is the norm defined in terms of a measure, whereas ℓp is the standard norm on Rn, which does not depend
on any measure.
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is continuous in the p ă 8 case and lower semicontinuous in the p “ 8 case. Similarly, the function
Πpµi, µ

1
iq Ñ R : πi ÞÑ }dΛi ˝ pιi, ι

1
iq}Lppπiq is continuous (respectively, lower semicontinuous) if p ă 8

(respectively, p “ 8). It is then straightforward to see that the objectives of (3) and (4) inherit these
properties as functions on Πkppµiq, pµ1

iqq. In either case, it follows from compactness that the infima are
achieved.

The proofs of Theorem 4 and results later in the paper will use the following standard result from optimal
transport theory. In the statement, and throughout the paper, we use proji : Y

0 ˆ Y 1 ˆ ¨ ¨ ¨ ˆ Y n Ñ Y i to
denote the coordinate projection map from a product of sets to its ith factor.

Lemma 3.7 (Gluing Lemma; see, e.g., Lemma 1.4 of [65]). Let pYi, νiq be Polish probability spaces (for
i “ 0, . . . , n). For a collection of measure couplings ξi P Πpνi´1, νiq, i “ 1, . . . , n, there is a unique probability
measure ξ̃ on Y0 ˆ Y1 ˆ ¨ ¨ ¨ ˆ Yn with the property that

`

proji´1 ˆ proji
˘

#
ξ̃ “ ξi,

for all i “ 1, . . . , n.

The measure ξ̃ from the lemma is called the gluing of the measures ξi. We denote it as ξ̃ “ ξ1bξ2b¨ ¨ ¨bξn.

Proof of Theorem 4. The function dLPp
k
is clearly symmetric. We now establish the triangle inequality.

Let L “ pP, pιiqq, L1 “ pP 1, pι1
iqq, L2 “ pP 2, pι2

i qq P LPp
k. By Lemma 3.6 there exist partitioned couplings

pπiq P Πkppµiq, pµ1
iqq and pπ1

iq P Πkppµ1
iq, pµ2

i qq that realize the infima in the distances, respectively, between

P, P 1 and P 1, P 2. Let rξi “ πi b π1
i b π2

i denote the probability measure on Xi ˆ X 1
i ˆ X2

i , for i “ 1, . . . , k,

obtained from the Gluing Lemma (Lemma 3.7). Letting ξi denote the pushforward to rξi to Xi ˆ X2
i , we have

that pξiq P Πkppµiq, pµ2
i qq. Using the expression (5), we get the desired triangle inequality from the triangle

inequality for the Lp- and ℓp-norms and for dΛi
:

2 ¨ dLPp
k
pL,L2q

ď

›

›

›

›

ˆ

›

›

›

`

}ω ´ ω2}Lppξibξjq

˘

i,j

›

›

›

p
,
›

›

`

}dΛi
˝ pιi, ι

2
i q}Lppξiq

˘

i

›

›

p

˙
›

›

›

›

p

“

›

›

›

›

›

˜

›

›

›

›

´

}ω ´ ω2}Lppξ̃ibξ̃jq

¯

i,j

›

›

›

›

p

,
›

›

›

´

}dΛi ˝ pιi, ι
2
i q}Lppξ̃iq

¯

i

›

›

›

p

¸
›

›

›

›

›

p

ď

›

›

›

›

›

˜

›

›

›

›

´

}ω ´ ω1 ` ω1 ´ ω2}Lppξ̃ibξ̃jq

¯

i,j

›

›

›

›

p

,
›

›

›

´

}dΛi
˝ pιi, ι

1
iq ` dΛi

˝ pι1
i, ι

2
i q}Lppξ̃iq

¯

i

›

›

›

p

¸
›

›

›

›

›

p

ď

›

›

›

›

›

˜

›

›

›

›

´

}ω ´ ω1}Lppξ̃ibξ̃jq
` }ω1 ´ ω2}Lppξ̃ibξ̃jq

¯

i,j

›

›

›

›

p

,
›

›

›

´

}dΛi
˝ pιi, ι

1
iq}Lppξ̃iq

` }dΛi
˝ pι1

i, ι
2
i q}Lppξ̃iq

¯

i

›

›

›

p

¸
›

›

›

›

›

p

ď

›

›

›

›

›

˜

›

›

›

›

´

}ω ´ ω1}Lppξ̃ibξ̃jq

¯

i,j

›

›

›

›

p

`

›

›

›

›

´

}ω1 ´ ω2}Lppξ̃ibξ̃jq

¯

i,j

›

›

›

›

p

,

›

›

›

´

}dΛi
˝ pιi, ι

1
iq}Lppξ̃iq

¯

i

›

›

›

p

›

›

›
`

´

}dΛi
˝ pι1

i, ι
2
i q}Lppξ̃iq

¯

i

›

›

›

p

˙
›

›

›

›

p

ď

›

›

›

›

›

˜

›

›

›

›

´

}ω ´ ω1}Lppξ̃ibξ̃jq

¯

i,j

›

›

›

›

p

,
›

›

›

´

}dΛi
˝ pιi, ι

1
iq}Lppξ̃iq

¯

i

›

›

›

p

¸
›

›

›

›

›

p

`

›

›

›

›

›

˜

›

›

›

›

´

}ω1 ´ ω2}Lppξ̃ibξ̃jq

¯

i,j

›

›

›

›

p

,
›

›

›

´

}dΛi
˝ pι1

i, ι
2
i q}Lppξ̃iq

¯

i

›

›

›

p

¸
›

›

›

›

›

p

“

›

›

›

›

ˆ

›

›

›

`

}ω ´ ω1}Lppπ̃ibπ̃jq

˘

i,j

›

›

›

p
,
›

›

`

}dΛi
˝ pιi, ι

1
iq}Lppπ̃iq

˘

i

›

›

p

˙
›

›

›

›

p

13



`

›

›

›

›

›

˜

›

›

›

›

´

}ω1 ´ ω2}Lppπ̃1
ibπ̃1

jq

¯

i,j

›

›

›

›

p

,
›

›

›

´

}dΛi
˝ pι1

i, ι
2
i q}Lppπ̃1

iq

¯

i

›

›

›

p

¸
›

›

›

›

›

p

“ 2 ¨ dLPp
k
pL,L1q ` 2 ¨ dLPp

k
pL1, L2q.

We note that lines where measures are changed in the Lp-norms follow by marginalization (for example, the
first equality which exchanges ξi for ξ̃i and ξj for ξ̃j). This proves that the triangle inequality holds.

Finally, let us show that dLPp
k
pL,L1q “ 0 if and only if L and L1 are weakly isomorphic. Suppose that

L and L1 are weakly isomorphic. Let L P LPk denote the auxiliary space from the definition of weak
isomorphism. It is easy to show that dLPp

k
pL,Lq “ dLPp

k
pL,L1q “ 0, so dLPp

k
pL,L1q “ 0 follows by symmetry

and the triangle inequality. Conversely, suppose that dLPp
k
pL,L1q “ 0. By Lemma 3.6, there is a partitioned

coupling pπiq such that }ω´ω1}Lppπibπjq “ }dΛi
˝pιi, ι

1
iq}Lppπiq “ 0 for all i, j “ 1, . . . , k. Define Xi “ XiˆX 1

i,

µi “ πi and ωppx, x1q, py, y1qq “ ωpx, yq. The maps ϕi : Xi Ñ Xi and ϕ1
i : Xi Ñ X 1

i from the definition of
weak isomorphism are coordinate projection maps. One can then show that this gives a weak isomorphism of
P and P 1. Finally, define a new labelling function ιi : Xi Ñ Λi by ιipx, x

1q “ ιipxq. Since dΛi
is a metric,

it must be that ιipxq “ ι1
ipx

1q for πi-almost every px, x1q P Xi ˆ X 1
i, so this labelling function satisfies the

condition in the definition of weak isomorphism.

3.1.2 Consequences and comparisons to other results

We now give a proof of Theorem 2, which says that the (unlabelled) partitioned network distance is a metric,
and which then implies that various other generalized network distances in the literature are metrics as well
(Corollary 2.16).

Proof of Theorem 2. Consider the map which takes a k-partitioned measure network P to the labelled
k-partitioned measure network pP, pιiqq, where pΛi, dΛiq is the one-point metric space for all i (hence ιi is the
constant map for all i). Clearly, we have

dPp
k

pP, P 1q “ dLPp
k

`

pP, pιiqq, pP 1, pι1
iqq

˘

,

since the labelling term in the definition of dLPp
k
vanishes. Thus the map P ÞÑ pP, pιiqq induces a bijection

from rPp
k s to rLPp

ks which takes dPp
k
to dLPp

k
, and it follows that dPp

k
is a metric.

Next, we give a more precise comparison between the distance dLPp
k
and the Fused Gromov-Wasserstein

(FGW) distance of Vayer et al. [71]. The FGW distance is defined in the context of labelled measure networks;
that is, in the k “ 1 setting, where we write elements as pN, ιq, with N “ pX,µ, ωq P N and ι : X Ñ Λ, and
in which case the distance dLPp

1
reduces to

dLPp
1
ppN, ιq, pN 1, ι1qq “ inf

πPΠpµ,µ1q

1

2

´

}ω ´ ω1}
p
Lppπbπq

` }dΛ ˝ pι, ι1q}
p
Lppπq

¯1{p

, (6)

for p ă 8. In contrast, the FGW distance depends on several more parameters, but the version of it which is
closest to (6) would read as

dFGW,pppN, ιq, pN 1, ι1qq

“ inf
πPΠpµ,µ1q

1

2

ˆ
ż

XˆX1ˆXˆX1

`

|ωpx, yq ´ ω1px1, y1q| ` dΛpιpxq, ι1px1qq
˘p

dπpx, x1qdπpy, y1q

˙1{p

“ inf
πPΠpµ,µ1q

1

2
}|ω ´ ω1| ` dΛ ˝ pι, ι1q}Lppπbπq.

Although the distances dLPp
1
and dFGW,p treat the same type of object, the above shows that their formulations

are subtly but legitimately distinct.

Remark 3.8 (Triangle Inequality for Fused Gromov-Wasserstein). The situation described above is slightly
murky, as several articles following [71] have formulated the FGW distance more in line with (6); see
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e.g., [68, 11, 31]. However, as far as we are aware, the primary references for FGW distance have not
established a triangle inequality for any of its formulations. In particular, [71, 68] both give relaxed variants of
the triangle inequality for different versions of FGW, where the larger side of the inequality involves an extra
scale factor. Theorem 4 therefore gives a novel proof of the triangle inequality for FGW, when expressed in
the form (6). We note that the triangle inequality for FGW was also recently established via an independent
argument in [5, Corollary 4.3].

3.2 Alexandrov geometry of labelled partitioned networks

Next, we characterize geodesics and curvature in the space of labelled partitioned measure networks. For the
rest of the section, we will assume the following conventions:

• We assume that the label spaces pΛi, dΛi
q are geodesic spaces. This is sometimes specialized further

to assume that the label spaces are Hilbert spaces, but this specialization will always be pointed out
explicitly in the statements of our results.

• We will restrict our attention to the case p “ 2, and simply write LPk in place of LP2
k.

The following is a generalization of Theorem 3; recall that the proof of that theorem was deferred—we will
prove it in Section 3.2.3 as a corollary.

Theorem 5. Let each Λi (1 ď i ď k) be a Hilbert space with inner product x¨, ¨yΛi
. Then, for any k ě 1,

prLPks, dLPk
q is an Alexandrov space of non-negative curvature.

We will prove this by establishing the necessary properties as propositions. The proof techniques used in
this section are largely adapted from the seminal work of Sturm [65].

3.2.1 Geodesic structure

We first prove two results on the geodesic structure of rLPks.

Proposition 3.9. For any k ě 1, prLPks, dLPk
q is a geodesic space. For labelled k-partitioned measure

networks L “ pP, pιiqq, L1 “ pP 1, pι1
iqq P LPk, a geodesic from rP, pιiqs to rP 1, pι1

iqs is given by rLts “ rP t, pιtiqs,
t P r0, 1s, defined as follows. The underlying k-partitioned measure network P t is

P t “
`

pXi ˆ X 1
i, πiq, ω

t
˘

,

where pπiq is a k-partitioned coupling which realizes dLPk
pL,L1q, and ωt : p\iXiq ˆ p\iX

1
iq Ñ R is defined by

ωtppx, x1q, py, y1qq “ p1 ´ tqωpx, yq ` tω1px1, y1q. (7)

The labelling function pιtiq is given by

ιti : Xi ˆ X 1
i ÝÑ Λi, ιtipx, x

1q “ γx,x1

i ptq, x, x1 P Xi ˆ X 1
i,

where γx,x1

i : r0, 1s Ñ Λi is a geodesic between ιipxq and ι1
ipx

1q for each 1 ď i ď k.

Proof. It is straightforward to show that L0 is weakly isomorphic to L and L1 is weakly isomorphic to L1.
To show that rLts defines a geodesic, it suffices to show that

dLPk
pLs, Ltq ď pt ´ sqdLPk

pL,L1q, (8)

for all s, t P r0, 1s with s ă t (see, e.g., [18, Lemma 1.3]). Let pπiq P Πkppµiq, pµ1
iqq be optimal (Lemma 3.6)

and set
1πi

:“ pidXiˆX1
i

ˆ idXiˆX1
i
q#πi P Πpπi, πiq

for each i “ 1, . . . , k. Then

4 ¨ dLPk
pLs, Ltq2 ď

k
ÿ

i,j“1

}ωs ´ ωt}2L2p1πi
b1πj

q `

k
ÿ

i“1

}dΛi ˝ pιsi , ι
t
iq}2L2p1πi

q. (9)
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Applying the various definitions, it is straightforward to show that, for each pair pi, jq,

}ωs ´ ωt}2L2p1πi
b1πj

q “ pt ´ sq2}ω ´ ω1}2L2pπibπjq.

To bound the last term in (9), observe that the term }dΛi ˝ pιsi , ι
t
iq}2L2p1πi

q
is equal to

ĳ

pXiˆX1
iq2

dΛpιsi px, x1q, ιtipy, y
1qq2 d1πppx, x1q, py, y1qq “

ż

XiˆX1
i

dΛi
pιsi px, x1q, ιtipx, x

1qq2 dπipx, x
1q.

We have that, for all 0 ď s ď t ď 1,

dΛi
pιsi px, x1q, ιtipx, x

1qq “ dΛi
pγx,x1

i psq, γx,x1

i ptqq “ pt ´ sqdΛi
pιipxq, ιipx

1qq,

where the second equality follows by geodesity of γx,x1

. This implies

}dΛi
˝ pιsi , ι

t
iq}2L2p1πi

q “ pt ´ sq2
ż

XiˆX1
i

dΛpιipxq, ιipx
1q
˘2

dπipx, x
1q.

Putting all of this together yields the desired inequality (8).

Proposition 3.10. Let us now assume that each of the Λi, 1 ď i ď k are inner product spaces with inner
products x¨, ¨yΛi

, associated norms } ¨ }Λi
and metrics dΛi

induced by their norms. Then any geodesic in
rLPks can be written in the form given in Proposition 3.9: for any geodesic rP t, pιtiqs, t P r0, 1s between rLs

and rL1s, there exists an optimal coupling pπiq P Πkppµiq, pµ1
iqq such that rP t, pιtiqs is weakly isomorphic to

ppXi ˆ X 1
i, πiq, ω

t, γt
i q where ωt is given by (7) and where

γx,x1

i ptq :“ p1 ´ tqιipxq ` tι1
ipx

1q.

We will use some additional notation and terminology in subsequent proofs.

Definition 3.11. Let Λ be an inner product space with inner product x¨, ¨yΛ and induced norm } ¨ }Λ. For a
probability space pZ, πq, consider the space of functions ι : Z Ñ Λ such that

ż

Z

}ιpzq}2Λdπpzq ă 8.

We denote the space of such functions, considered up to almost-everywhere equality, as L2pπ,Λq. This is an
inner product space with inner product defined by

xι, ι1yL2pπ,Λq :“

ż

Z

xιpzq, ι1pzqyΛdπpzq.

We let } ¨ }L2pπ,Λq denote the associated norm.

Proof of Proposition 3.10. Let pP, pιiqq, pP 1, pι1
iqq P LPk and let rP t, pιtiqs be an arbitrary geodesic from

rP 0, pι0i qs “ rP, pιiqs to rP 1, pιi1qs “ rP 1, pι1
iqs with P t “ ppXt

i , µ
t
iq, ω

tq P Pk. We will show that pP t, pιtiqq is
(pointwise, in time) weakly isomorphic to a geodesic in the form described in Proposition 3.9.

For each t P r0, 1s, let Xt “ \iX
t
i . Fix an integer n and consider a dyadic decomposition of the time

domain, t0 “ 0, t1 “ 1
2n , . . . , ti “ i

2n , . . . , t2n “ 1. For each j “ 1, . . . , 2n, choose an optimal k-partitioned

coupling pπj
i qki“1 P Πk

`

pµ
tj´1

i q, pµ
tj
i q

˘

(via Lemma 3.6). Consider the gluings (Lemma 3.7)

rπi “ π1
i b ¨ ¨ ¨ b π2n

i P P
`

X0 ˆ X2´n

ˆ X2¨2´n

ˆ ¨ ¨ ¨ ˆ X1
˘

, i P t1, . . . , ku.

Let projt : X
0 ˆ X2´n

ˆ ¨ ¨ ¨ ˆ X1 Ñ Xt denote coordinate projection for each t P t0, 2´n, . . . , 1 ´ 2´n, 1u

and define
πi “ pproj0 ˆ proj1q#rπi P Πkpµ0, µ1q
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for each i “ 1, . . . , k. Then, by suboptimality,

4 ¨ dLPk
ppP 0, pι0i q, pP 1, pι1i qq2 ď

k
ÿ

i,j“1

}ω0 ´ ω1}2L2pπibπjq `

k
ÿ

i“1

}dΛi
˝ pι0i , ι

1
i q}2L2pπiq. (10)

First, consider the term }ω0 ´ ω1}2L2pπibπjq
on the right hand side of (10). For any choice of t P

t0, 2´n, . . . , 1 ´ 2´n, 1u, let

ξti :“ pproj0 ˆ proj1 ˆ projtq#rπi P PpX0 ˆ X1 ˆ Xtq.

We have

}ω0 ´ ω1}2L2pπibπjq

“

›

›

›

›

t

ˆ

1

t

`

ω0 ´ ωt
˘

˙

` p1 ´ tq

ˆ

1

1 ´ t

`

ωt ´ ω1
˘

˙
›

›

›

›

2

L2pξtibξtjq

(11)

“
1

t

›

›ω0 ´ ωt
›

›

2

L2pξtibξtjq
`

1

1 ´ t

›

›ωt ´ ω1
›

›

2

L2pξtibξtjq
´

1

tp1 ´ tq

›

›p1 ´ tqpω0 ´ ωtq ´ tpωt ´ ω1q
›

›

2

L2pξtibξtjq
, (12)

where (11) uses marginalization to replace πi b πj with ξti b ξtj , and where (12) is derived by applying the
following identity, which holds in an arbitrary inner product space with associated norm } ¨ }:

}ta ` p1 ´ tqb}2 “ t}a}2 ` p1 ´ tq}b}2 ´ tp1 ´ tq}a ´ b}2. (13)

Bearing in mind that t “ k2´n for some k, the first term in (12) satisfies

1

t

›

›ω0 ´ ωt
›

›

2

L2pξtibξtjq
“ 2n ¨

1

k

›

›

›
ω0 ´ ωk2´n

›

›

›

2

L2pξtibξtjq

“ 2n ¨
1

k

›

›

›

›

›

k
ÿ

ℓ“1

pωpℓ´1q2´n

´ ωℓ2´n

q

›

›

›

›

›

2

L2pξtibξtjq

ď 2n ¨
1

k

˜

k
ÿ

ℓ“1

›

›

›
ωpℓ´1q2´n

´ ωℓ2´n
›

›

›

L2pξtibξtjq

¸2

(14)

ď 2n
k
ÿ

ℓ“1

›

›

›
ωpℓ´1q2´n

´ ωℓ2´n
›

›

›

2

L2pξtibξtjq
, (15)

where (14) follows by the triangle inequality for the L2-norm and (15) is Jensen’s inequality. Similarly, the
second term in (12) satisfies

1

1 ´ t

›

›ωt ´ ω1
›

›

2

L2pξtibξtjq
ď 2n

2n
ÿ

ℓ“k`1

›

›

›
ωpℓ´1q2´n

´ ωℓ2´n
›

›

›

2

L2pξtibξtjq
,

so that, after marginalizing, we have

1

t

›

›ω0 ´ ωt
›

›

2

L2pξtibξtjq
`

1

1 ´ t

›

›ωt ´ ω1
›

›

2

L2pξtibξtjq
ď 2n

2n
ÿ

ℓ“1

›

›

›
ωpℓ´1q2´n

´ ωℓ2´n
›

›

›

2

L2
`

π
pℓ´1q2´n

i bπℓ2´n
j

˘ . (16)

Next, consider the term }dΛi ˝ pι0i , ι
1
i q}2L2pπiq

. The following uses the notation of Definition 3.11. We have,
similar to the above,

}dΛi ˝ pι0i , ι
1
i q}2L2pπiq

“

›

›

›

›

t

ˆ

1

t
pι0i ´ ιtiq

˙

` p1 ´ tq

ˆ

1

1 ´ t
pιti ´ ι1i q

˙
›

›

›

›

2

L2pξti ,Λiq
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“
1

t
}ι0i ´ ιti}

2
L2pξti ,Λq `

1

1 ´ t
}ιti ´ ι1i }2L2pξti ,Λq ´

1

tp1 ´ tq
}p1 ´ tqpι0i ´ ιtiq ´ tpιti ´ ι1i q}2L2pξti ,Λq,

where we have used the definition of dΛi
, as well as marginalization and the general identity (13). Repeating

the arguments above, we obtain

1

t

›

›ι0i ´ ιti
›

›

2

L2pξti ,Λiq
`

1

1 ´ t

›

›ιti ´ ι1i
›

›

2

L2pξti ,Λiq
ď 2n

2n
ÿ

ℓ“1

›

›

›
dΛi

˝
`

ι
pℓ´1q2´n

i , ιℓ2
´n

i

˘

›

›

›

2

L2
`

π
pℓ´1q2´n

i

˘ . (17)

Summing the right hand sides of (16) and (17) over all i, j “ 1, . . . , k gives

k
ÿ

i,j“1

2n
2n
ÿ

ℓ“1

›

›

›
ωpℓ´1q2´n

´ ωℓ2´n
›

›

›

2

L2
`

π
pℓ´1q2´n

i bπℓ2´n
j

˘ `

k
ÿ

i“1

2n
ÿ

ℓ“1

›

›

›
dΛi

˝
`

ι
pℓ´1q2´n

i , ιℓ2
´n

i

˘

›

›

›

2

L2
`

π
pℓ´1q2´n

i

˘

“ 2n
2n
ÿ

ℓ“1

˜

k
ÿ

i,j“1

›

›

›
ωpℓ´1q2´n

´ ωℓ2´n
›

›

›

2

L2
`

π
pℓ´1q2´n

i bπℓ2´n
j

˘ `

k
ÿ

i“1

›

›

›
dΛi

˝
`

ι
pℓ´1q2´n

i , ιℓ2
´n

i

˘

›

›

›

2

L2
`

π
pℓ´1q2´n

i

˘

¸

“ 2n
2n
ÿ

ℓ“1

4 ¨ dLPk

`

pP pℓ´1q2´n

, pι
pℓ´1q2´n

i qq, pP ℓ2´n

, pι
pℓq2´n

i qq
˘2

(18)

“ 4 ¨ dLPk

`

pP 0, pι0i qq, pP 1, pι1i qq
˘2
, (19)

where (18) follows by the optimality of the πj
i ’s and (19) follows because rP ts is assumed to be a geodesic.

Combining this with (10), we have

dLPk

`

pP 0, pι0i qq, pP 1, pι1i qq
˘2

ď dLPk

`

pP 0, pι0i qq, pP 1, pι1i qq
˘2

´
1

4ptp1 ´ tqq

˜

k
ÿ

i,j“1

›

›p1 ´ tqpω0 ´ ωtq ´ tpωt ´ ω1q
›

›

2

L2pξtibξtjq

`

k
ÿ

i“1

}dΛi
˝
`

p1 ´ tqpι0i ´ ιtiq, tpι
t
i ´ ι1i q

˘

}2L2pξtiq

¸

,

so that the term in parentheses on the right hand side must vanish. This shows that the partitioned coupling
pπiq which we have constructed is, in fact, optimal. We also have that, for all t in the dyadic decomposition,

0 “

k
ÿ

i,j“1

›

›p1 ´ tqpω0 ´ ωtq ´ tpωt ´ ω1q
›

›

2

L2pξtibξtjq
“

k
ÿ

i,j“1

›

›

`

p1 ´ tqω0 ` tω1
˘

´ ωt
›

›

2

L2pξtibξtjq
.

Similarly,

0 “

k
ÿ

i“1

}dΛi
˝
`

p1 ´ tqpι0i ´ ιtiq, tpι
t
i ´ ι1i q

˘

}2L2pξtiq

“

k
ÿ

i“1

}
`

p1 ´ tqι0i ` tι1i
˘

´ ιti}
2
L2pξti ,Λiq “

k
ÿ

i“1

}dΛi
˝
``

p1 ´ tqι0i ` tι1i
˘

, ιti
˘

}2L2pξtiq.

Observe that, by the properties described in the Gluing Lemma (Lemma 3.7), we have ξti P Πpπi, µ
t
iq, so that

the above calculation shows dLPk

`

pP t, pιtiqq, pP
t
, pιtiqq

˘

“ 0, where pP
t
, pιtiqq is a geodesic as in the specific

construction from Proposition 3.9.

So far, we have shown that dLPk

`

pP t, pιtiqq, pP
t
, pιtiqq

˘

“ 0 for any t in the form of a dyadic number, i.e.,
t “ j2´n for some j and n. By the density of the dyadic numbers in r0, 1s and by continuity of the maps

t ÞÑ rP
t
, pιtiqs and t ÞÑ rP t, pιtiqs, it follows that dLPk

`

pP t, pιtiqq, pP
t
, pιtiqq

˘

“ 0 holds for any t P r0, 1s. This
completes the proof.
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3.2.2 Completeness and curvature

We now complete the proof of Theorem 5 by establishing the remaining required properties. Throughout this
section, we suppose that the label spaces Λi are Hilbert spaces with the same notation as Proposition 3.9
used for inner products and norms.

We first show that the space of labelled networks is complete. The proof will use the following result.

Lemma 3.12 (See, e.g., [37]). If Λ is a Hilbert space, then so is L2pπ,Λq.

Proposition 3.13. Let each Λi, 1 ď i ď k be a Hilbert space. Then the space
`

rLPks, dLPk

˘

is complete.

Proof. The proof follows the strategy of the proofs of [65, Theorem 5.8] or [22, Theorem 1], so we treat
it somewhat tersely. Let rPn, pιni qs, n ě 1, be a Cauchy sequence of labelled partitioned networks in
rLPks, with Pn “ ppXn

i , µ
n
i q, ωnq. Assume, without loss of generality (via a subsequence argument), that

dLPk

`

pPn, pιni qq ,
`

Pn`1, pιn`1
i q

˘˘

ď 2´n. Invoking Lemma 3.6, we may choose partitioned couplings pπn
i q

for each n which achieve dLPk

`

pPn, pιni qq ,
`

Pn`1, pιn`1
i q

˘˘

. Gluing the first N of these measures yields a
probability measure π1

i b π2
i b ¨ ¨ ¨ b πN

i on X1
i ˆ X2

i ˆ ¨ ¨ ¨ ˆ XN
i for each i “ 1, . . . , k. Let πi denote the

projective limit measure on Π8
ℓ“1X

ℓ
i .

For each N , define maps

ΩN :

˜

k
ğ

i“1

Π8
ℓ“1X

ℓ
i

¸

ˆ

˜

k
ğ

i“1

Π8
ℓ“1X

ℓ
i

¸

Ñ R

`

pxℓqℓ, pyℓqℓ
˘

ÞÑ ωN pxN , yN q

and

INi : Π8
ℓ“1X

ℓ
i Ñ Λi

pxℓqℓ ÞÑ ιNi pxN q

Since dLPk

`

pPn, pιni qq ,
`

Pn`1, pιn`1
i q

˘˘

ď 2´n, it must be that

1

4
}ωn ´ ωn`1}2L2pπibπjq ď 2´2n and

1

4
}ιi,n ´ ιi,n`1}2L2pπi,Λiq ď 2´2n,

where we use the notation of Definition 3.11 in the second term. It follows that the sequence pΩN q is Cauchy
in the Hilbert space L2pπi b πjq and that pINi q is Cauchy in the Hilbert space L2pπi,Λiq (this is Hilbert
because we assumed that Λi is Hilbert; see Lemma 3.12). Let Ω :“ limNÑ8 ΩN and Ii :“ limNÑ8 INi .

Putting these constructions together, we have constructed a labelled k-partitioned network
```

Π8
ℓ“1X

ℓ
i , πi

˘

,Ω
˘

, pIiq
˘

.

One can then show that its weak isomorphism class is the limit of the original Cauchy sequence.

Finally, we establish a curvature bound for the space of labelled partitioned networks.

Proposition 3.14. Assume that all label spaces Λi are Hilbert spaces. Then the space prLPks, dLPk
q has

curvature bounded below by zero.

Proof. We need to establish the triangle comparison inequality from Definition 2.18. Let rLs, rL1s P rLPks be
two labelled partitioned networks and let rLts, 0 ď t ď 1 be a geodesic connecting them. Let rL2s P rLPks be
given. We seek to show that

4dLPk
pLt, L2q2 ` 4tp1 ´ tqdLPk

pL,L1q2 ě 4p1 ´ tqdLPk
pL,L2q2 ` 4tdLPk

pL1, L2q2. (20)

Using the characterization of geodesics in rLPks from Proposition 3.10, we may assume without loss of
generality that Lt “ pP t, pιtiqq has the form described in Proposition 3.9. Let pξiq be an optimal k-partitioned
coupling of Lt to L2; then ξi is supported on Xi ˆ X 1

i ˆ X2
i . Expanding the left hand side of (20), we have

k
ÿ

i,j“1

´

}ω2 ´ ωt}2L2pξibξjq ` tp1 ´ tq}ω ´ ω1}2L2pπibπjq

¯

`

k
ÿ

i“1

´

}ι2 ´ ιt}2L2pξi,Λiq ` tp1 ´ tq}ι ´ ι1}2L2pπi,Λiq

¯

.
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Marginalizing ξi and using the structures of ωt and ιt, this can be rewritten as

k
ÿ

i,j“1

´

}ω2 ´ ωt}2L2pξibξjq ` tp1 ´ tq}ω ´ ω1}2L2pξibξjq

¯

`

k
ÿ

i“1

´

}ι2 ´ ιt}2L2pξi,Λiq ` tp1 ´ tq}ι ´ ι1}2L2pξi,Λiq

¯

“

k
ÿ

i,j“1

´

p1 ´ tq}ω2 ´ ω}2L2pξibξjq ` t}ω2 ´ ω1}2L2pξibξjq

¯

`

k
ÿ

i“1

´

p1 ´ tq}ι2 ´ ι}2L2pξi,Λiq ` t}ι2 ´ ι1}2L2pξi,Λiq

¯

ě 4p1 ´ tqdLPk
pP, P 2q2 ` 4tdLPk

pP 1, P 2q2,

where the second line follows from a computation which holds in an arbitrary inner product space, explained
below, and the inequality in the last line follows from sub-optimality. To expand on the inner product space
calculation, we use the identity (13) to deduce that (for an arbitrary inner product x¨, ¨y with norm } ¨ }),

}c ´ pp1 ´ tqa ` tbq}2 ` tp1 ´ tq}a ´ b}2 “ }c}2 ` }p1 ´ tqa ` tb}2 ´ 2xc, p1 ´ tqa ` tby ` tp1 ´ tq}a ´ b}2

“ }c}2 ` t}b}2 ` p1 ´ tq}a}2 ´ 2xc, p1 ´ tqa ` tby

“ p1 ´ tq
`

}c}2 ` }a}2 ´ 2xc, ay
˘

` t
`

}c}2 ` }b}2 ´ 2xc, by
˘

“ p1 ´ tq}c ´ a}2 ` t}c ´ b}2.

3.2.3 The case of unlabelled networks

We now proceed with the deferred proof of Theorem 3, which says that the space of (unlabelled) k-partitioned
networks is an Alexandrov space of non-negative curvature.

Proof of Theorem 3. Following the proof of Theorem 2 (Section 3.1.2), we can consider dP2
k
as an instance of

dLP2
k
, where the target metric spaces Λi are all taken to be the one-point space, which can be considered as a

trivial Hilbert space. The proof then follows immediately from Theorem 5.

3.3 Interpretation of partitioned distance as a labelled distance

We end this section by proving that the k-partitioned network distance dPp
k
can itself be realized as a sort of

labelled distance, where labels are allowed to take the value 8. To keep exposition clean, we recapitulate and
rework some of our notation before precisely stating our result.

3.3.1 Notation for networks labelled in extended metric spaces

In this section, we write LN p
ext for the space of networks with labels in a (fixed) extended metric

space Λ. This is essentially the same as LPp
1, except that the label space is allowed to be an extended

metric space, or a metric space whose distances are allowed to take the value 8. Elements of LN p
ext will be

denoted pN, ιq, where N “ pX,µ, ωq P N p and ι : X Ñ Λ is the label function. The labelled network distance
is then defined by a formula identical to (6):

dLNp
ext

ppN, ιq, pN 1, ι1qq “ inf
πPΠpµ,µ1q

1

2

´

}ω ´ ω1}
p
Lppπbπq

` }dΛ ˝ pι, ι1q}
p
Lppπq

¯1{p

.

The notion of weak isomorphism extends to LN p
ext; we denote the quotient space as rLN p

exts. The proofs
above also extend to show that dLNp

ext
induces a well-defined extended metric on rLN p

exts.

We now consider the particular extended metric space Λpkq :“ t1, . . . , ku, with extended metric satisfying
dΛpkq pi, jq “ 8 for all i ‰ j. To a k-partitioned measure network P , we associate an element of LN p

ext, with
labels in Λpkq, via the map

Pp
k Q P “ ppXi, µiq, ωq ÞÑ ppX, p1{kqµ, ωq, ιq P LN p

ext, ιpxq “ i ô x P Xi. (21)

Here, as in Definition 2.7, µ “
ř

i µi is considered as a measure on X “ \iXi, so that 1
kµ is a probability

measure.
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3.3.2 Partitioned distance as a labelled network distance

We now prove the main result of Section 3.3.

Theorem 6. The map (21) is an isometric embedding with respect to dPp
k
and dLNp

ext
.

Observe that

}dΛpkq ˝ pι, ι1q}Lppπq “

"

8 if there exists px, x1q P supppπq with ιpxq ‰ ι1px1q;
0 otherwise.

(22)

The proof of the theorem is based on this observation and the following lemma.

Lemma 3.15. Let π P Πp\iµi,\iµ
1
iq such that }dΛpkq ˝ pι, ι1q}Lppπq “ 0. Then there exists a unique

k-partitioned coupling pπiq P Πk

`

pµiq, pµ1
iq
˘

such that

π “ inc# p\iπiq ,

where inc : \ipXi ˆ X 1
iq Ñ p\iXiq ˆ p\iX

1
iq is the inclusion map. Moreover, any coupling of this form yields

}dΛpkq ˝ pι, ι1q}Lppπq “ 0.

Proof. Suppose that π is a coupling with }dΛpkq ˝pι, ι1q}Lppπq ă 8. Then px, x1q P supppπq implies ιpxq “ ι1px1q,
i.e., x P Xi and x1 P X 1

i for some common index i. Therefore the support of π is contained in \ipXi ˆ X 1
iq.

We also see that the mass of each block Xi ˆ X 1
i must be equal to 1

k , since, for all i,

πpXi ˆ X 1
iq “ πpp\jXjq ˆ X 1

iq “ \jµ
1
jpX 1

iq “
1

k

ÿ

j

µ1
jpX 1

iq “
1

k
µ1
ipX

1
iq “

1

k
.

For each i, define πi by πipAq “ k ¨ πpAq for each Borel set A Ă Xi ˆ X 1
i. We claim that πi P Πpµi, µ

1
iq.

Indeed, for any Borel set B Ă Xi,

πipB ˆ X 1
iq “ k ¨ πpB ˆ X 1

iq “ k ¨ πpB ˆ p\iX
1
iqq “ k ¨ \jµjpB X Xjq “ µipBq,

and the other marginal condition follows similarly.
We will now show that

πpCq “ inc# p\iπiq pCq

holds for any Borel subset C of p\iXiq ˆ p\iX
1
iq. In light of the discussion above, we may assume without

loss of generality that C Ă \ipXi ˆ X 1
iq. Then we have

inc#p\iπiqpCq “ \iπipι
´1pCqq “

1

k

ÿ

i

πipinc
´1

pCq X pXi ˆ X 1
iqq

“
1

k

ÿ

i

πipC X pXi ˆ X 1
iqq “

ÿ

i

πpC X pXi ˆ X 1
iqq “ πpCq.

This shows the existence part of the statement.
To prove uniqueness, suppose that pπiq satisfies π “ inc#p\iπiq. For a Borel set A Ă Xi ˆ X 1

i

πipAq “
ÿ

j

πjpAq “ k ¨ \jπjpAq “ k ¨ inc#p\jπjqpAq “ k ¨ πpAq,

so the formula for πi is unique.
Finally, the last statement follows because any coupling of this form is supported on \ipXi ˆ X 1

iq.

Proof of Theorem 6. Let P “ ppXi, µiq, ωq and P 1 “ ppX 1
i, µ

1
iq, ω

1q be elements of Pp
k with images under the

map (21) denoted pN, ιq and pN 1, ι1q, respectively. A k-partitioned coupling pπiq of pµiq and pµ1
iq yields a

coupling π “ inc#pp1{kq
ř

i πiq P Πpp1{kq
ř

i µi, p1{kq
ř

i µ
1
iq, as in Lemma 3.15. Then

1

2
}ω ´ ω1}Lppπbπq ` }dΛpkq ˝ pι, ι1q}Lppπq “

1

2

˜

k
ÿ

i,j“1

}ω ´ ω1}
p
Lppπibπjq

¸1{p

,
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so that dLNp
ext

ppN, ιq, pN 1, ι1qq ď dPp
k

pP, P 1q. Similarly, for any π P Πpp1{kq
ř

i µi, p1{kq
ř

i µ
1
iq with }dΛpkq ˝

pι, ι1q}Lppπq “ 0, we can find a k-partitioned coupling pπiq P Πkppµiq, pµ1
iqq via Lemma 3.15 and use it to show

that dLNp
ext

ppN, ιq, pN 1, ι1qq ě dPp
k

pP, P 1q.

The following corollary shows that the various generalized network distances which have appeared in the
recent literature can all essentially be considered as special cases of the labelled extended network distance.
The result follows as a direct consequence of Corollary 2.16 and Theorem 6.

Corollary 3.16. The embeddings from Definition 2.8 induce isometric embeddings of the space of measure
networks prN s, dNpq, the space of measure hypernetworks prHs, dHpq and the space of augmented measure
networks prAs, dApq, respectively, into the space of labelled networks prLN p

exts, dLNp
ext

q.

3.3.3 Labelled partitioned distance as a labelled network distance

The work above can be directly adapted to show that the space of labelled k-partitioned networks also embeds
into the space of labelled networks. Consider the space LPp

k of labelled k-partitioned p-networks with labels
in some arbitrary metric spaces pΛi, dΛiq. Now consider the extended metric space Λ “ p\iΛiq ˆ Λpkq with
extended metric dΛ defined by

dΛppa, iq, pb, jqq “

"

dΛipa, bq if i “ j and a, b P Λi;
8 otherwise.

Given an element L “ pP, pιiqq of LPp
k, with P “ ppXi, µiq, ωq, we associate an element of LN p

ext with
labels in Λ via the map

LPp
k Q L ÞÑ ppX, p1{kqµ, ωq, ιq, ιpxq “ pιipxq, iq ô x P Xi. (23)

The techniques used above likewise yield a proof of the following.

Theorem 7. The map (23) is an isometric embedding with respect to dLPp
k
and dLNp

ext
.

4 Riemannian structure of partitioned networks

We now focus again on the space LPk “ LP2
k, endowed with the metric dLPk

“ dLP2
k
. We consider the

scenario where the label spaces pΛi, dΛiq are Hilbert spaces endowed with their associated distances. We have
showed in Theorem 5 that prLPks, dLPk

q is a non-negatively curved Alexandrov space. This property endows
rLPks with synthetic versions of various structures seen in Riemannian geometry, such as tangent spaces and
exponential maps [53]. Rather than following the general constructions of these structures, we follow the
approach of Sturm in [65, Chapter 6] and develop equivalent versions which are more specific to the metric at
hand. In this section, we describe these structures and present some example applications to geometric data
analysis.

4.1 Tangent spaces

We develop notions of tangent spaces and exponential maps for rPks and rLPks. These concepts are introduced
in detail for rLPks, and the case of rPks then follows by considering partitioned networks as special cases of
labelled partitioned networks, as in the proof of Theorem 2 (see Section 3.1.2).

4.1.1 The labelled case

For clarity, we remind the reader of some notational conventions, while introducing some new ones. Let
L “ pP, pιiqq “

`

pXi, µiq, ω, pιiq
˘

P LPk, where we continue to assume that the label spaces Λi are Hilbert
spaces. As above, we write X “ \iXi and endow it with the measure µ “

ř

i µi. Given another element
P 1 P LPk and a k-partitioned coupling π P Πkppµiq, pµ1

iqq, we write π “
ř

i πi, and consider this as a measure
on X ˆ X 1 (where X 1 “ \iX

1
iq. Finally, we define

ΛX :“
k
à

i“1

L2pµi,Λiq.
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We denote an element of ΛX as g, where we can canonically write g “ pg1, . . . , gkq with gi P L2pµi,Λiq. In
this way, we consider the label function data as an element ι “ pι1, . . . , ιkq P ΛX .

Definition 4.1 (Synthetic tangent space). We define the synthetic tangent space of rLPks at a point rLs

to be

TrLsrLPks :“

¨

˝

ď

ppXi,µiq,ω,pιiqqPrLs

pL2pµ b µq ‘ ΛXq

˛

‚{ „ .

In the above, the union is taken over all labelled k-partitioned measure networks ppXi, µiq, ω, pιiqq in the weak
isomorphism equivalence class rLs. The equivalence relation is defined as follows. For two representatives

ppXi, µiq, ω, pιiqq, ppX 1
i, µ

1
iq, ω

1, pι1
iqq P rLs

and functions
pf, gq P L2pµ b µq ‘ ΛX , pf 1, g1q P L2pµ1 b µ1q ‘ ΛX1 ,

we write pf, gq „ pf 1, g1q if and only if there exists a k-partitioned coupling pπiq P Πkpµ, µ1q such that

fpx, yq “ f 1px1, y1q for π b π ´ a.e. px, x1, y, y1q P X ˆ X 1 ˆ X ˆ X 1

and, writing g “ pg1, . . . , gkq and g1 “ pg1
1, . . . , g

1
kq,

gipxiq “ g1
ipx

1
iq for πi ´ a.e. pxi, x

1
iq P X ˆ X 1.

The equivalence class of pf, gq is denoted rf, gs.

The space rLPks has a natural notion of an exponential map, defined as follows.

Definition 4.2 (Exponential map). For a labelled k-partitioned measure network rLs P rLPks, let rf, gs P

TrLsrLPks be a tangent vector with pf, gq P L2pµ b µq ‘ ΛX . We define the exponential map by

exprLs : TrLsrLPks ÞÑ rLPks, exprLsprf, gsq :“ rppXi, µiq, ω ` fq, ι ` gs.

We can now provide a geodesic characterization of the exponential map on prLPks, dLPk
q, analogous to

the one given for measure networks in [20], at least for labelled partitioned measure networks which are
“inherently finite”. That is, we say that an element rLs P rLPks is finite if the equivalence class rLs contains
a representative L1 P rLs such that all sets X 1

i are finite. In the following, take the following terminology
convention: if we refer to rLs P rLPks as finite, we implicitly assume without loss of generality that L is finite.
Observe that, even if L is finite, the equivalence class rLs contains elements which are not finite, hence the
need for care in the terminology here.

Proposition 4.3. Let rLs P rLPks be a finite labelled k-partitioned measure network. There exists ϵrLs ą 0
and ηrLs ą 0 such that for any tangent vector represented by pf, gq P L2pµbµq ‘ΛX satisfying |fpx, yq| ă ϵrLs

and |gpxq| ă ηrLs for all px, yq P X ˆ X, the path defined by

rγts “ rppXi, µiq, ω ` tfq, ι ` tgs, t P r0, 1s

is a geodesic from rLs to exprLsprf, gsq.

Proof. Up to weak isomorphism, we may assume that rγts takes the form

rγts “ rppXi ˆ Xi,∆µi,µiq, ωtq , ιts ,

where

ωt : px, x1, y, y1q ÞÑ p1 ´ tqωpx, yq ` tpωpx1, y1q ` fpx1, y1qq

ιt : px, x1q ÞÑ p1 ´ tqιpxq ` tpιpx1q ` gpx1qq
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and ∆µi,µi denotes the diagonal coupling of pµi, µiq; that is, ∆µi,µi “ pidXi ˆ idXiq#µi. By Proposition 3.9,
verifying that rγts is a geodesic amounts to deducing the condition on pf, gq for p∆µi,µiq

k
i“1 to be the optimal

couplings between L and γp1q. Let pπiq P ΠPk
pµ, µq be any competitor coupling. The corresponding matching

cost is then

1

2

ÿ

X4

πpx, x1qπpy, y1q|ωpx, yq ´ ωpx1, y1q ´ fpx1, y1q|2 `
1

2

ÿ

X2

πpx, x1q}ιpxq ´ ιpx1q ´ gpx1q}2

“
1

2

ÿ

X4

πpx, x1qπpy, y1qfpx1, y1q2 `
ÿ

X4

πpx, x1qπpy, y1q

„

1

2
|ωpx, yq ´ ωpx1, y1q|2 ´ fpx1, y1qpωpx, yq ´ ωpx1, y1qq

ȷ

`
1

2

ÿ

X2

πpx, x1q}gpx1q}2 `
ÿ

X2

πpx, x1q

„

1

2
}ιpxq ´ ιpx1q}2 ´ xgpx1q, ιpxq ´ ιpx1qy

ȷ

.

In the above, the inner product and norms are the induced structures on ‘iΛi. The first and third terms
amount to the matching cost between L and γp1q under the diagonal couplings p∆µi,µiqi and so it is sufficient
to deduce conditions on pf, gq so that the second and fourth terms are non-negative.

Consider first the sum

ÿ

X4

πpx, x1qπpy, y1q

„

1

2
|ωpx, yq ´ ωpx1, y1q|2 ´ fpx1, y1qpωpx, yq ´ ωpx1, y1qq

ȷ

.

Clearly, if |ωpx, yq ´ ωpx1, y1q|2 “ 0 π b π-a.e. then this term vanishes. Otherwise there exists at least one
px, x1, y, y1q P X4 such that |ωpx, yq ´ ωpx1, y1q| ą 0, since we consider finite networks. Among such values,
pick

ϵrLs “
1

2
min

␣

|ωpx, yq ´ ωpx1, y1q| : |ωpx, yq ´ ωpx1, y1q| ą 0u
(

Then, for f satisfying |fpx1, y1q| ď ϵrLs for all px1, y1q P X ˆ X, we have that

|fpx1, y1qpωpx, yq ´ ωpx1, y1qq| “ |fpx1, y1q||ωpx, yq ´ ωpx1, y1q|

ď ϵrLs|ωpx, yq ´ ωpx1, y1q|

ď
1

2
|ωpx, yq ´ ωpx1, y1q|2,

and so the sum is non-negative. Next consider the labels

ÿ

X2

πpx, x1q

„

1

2
}ιpxq ´ ιpx1q}2 ´ xgpx1q, ιpxq ´ ιpx1qy

ȷ

.

Applying the same reasoning as previously, we note that if }ιpxq ´ ιpx1q}2 “ 0 π-a.e. then the sum vanishes.
Otherwise, there exists at least one px, x1q P X2 for which }ιpxq ´ ιpx1q}2 ą 0, and pick

ηrLs “
1

2
min

␣

}ιpxq ´ ιpx1q} : }ιpxq ´ ιpx1q} ą 0
(

.

Then for g such that }gpx1q} ď ηrLs for x P X, we have that

xgpx1q, ιpxq ´ ιpx1qy ď }gpx1q}}ιpxq ´ ιpx1q} ďď ηrLs}ιpxq ´ ιpx1q} ď
1

2
}ιpxq ´ ιpx1q}2,

and this sum is also non-negative.

Definition 4.4 (Logarithm map). Let rLs, rL1s P rLPks and let pπiq P Πkppµiq, pµ1
iqq be an optimal k-

partitioned coupling of L to L1. Consider the representative L̂ “ ppX̂i, µ̂iq, ω̂, pι̂iqq P rLs with

X̂i “ Xi ˆ X 1
i, µ̂i “ πi, ω̂px, x1, y, y1q “ ωpx, yq, ι̂ipx, x

1q “ ιipxq.

Similarly, define the representative L̂1 “ ppX̂i, µ̂iq, ω̂
1, pι̂1

iqq P rL1s, where

ω̂1px, x1, y, y1q “ ω1px1, y1q, ι̂1
ipx, x

1q “ ι1
ipx

1q.
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We define
logπrLsprL1sq “ rω1 ´ ω, ι1 ´ ιs P TrLsrLPks. (24)

It follows by definition of exprLs that

exprLsplog
π
rLsprL1sqq “ rL1s.

Proposition 4.5. Let rLs P rLPks be a finite labelled k-partitioned measure network and let ϵrLs and ηrLs

be as in Proposition 4.3. The exponential map exprLs is injective on the set of tangent vectors admitting

representations pf, gq P L2pµ b µq ‘ ΛX satisfying |fpx, yq| ă ϵrLs{2 and |gpxq| ă ηrLs{2.

Proof. Recall that exprLsprf, gsq “ exprLsprf 1, g1sq if and only if dLPk
pexprLsprf, gsq, exprLsprf 1, g1sqq “ 0. Let

π be an optimal coupling between exprLsprf, gsq and exprLsprf 1, g1sq. Then the corresponding distortion is

1

2

ÿ

X4

πpx, x1qπpy, y1q|ωpx, yq ` fpx, yq ´ ωpx1, y1q ´ f 1px1, y1q|2 `
1

2

ÿ

X2

πpx, x1q}ιpxq ` gpxq ´ ιpx1q ´ g1px1q}2

“
ÿ

X4

πpx, x1qπpy, y1q

„

1

2
|fpx, yq ´ f 1px1, y1q|2 `

1

2
|ωpx, yq ´ ωpx1, y1q|2

` pωpx, yq ´ ωpx1, y1qqpfpx, yq ´ f 1px1, y1qq

ȷ

`
ÿ

X2

πpx, x1q

„

1

2
}gpxq ´ g1px1q}2 `

1

2
}ιpxq ´ ιpx1q}2 ` xιpxq ´ ιpx1q, gpxq ´ g1px1qy

ȷ

Assuming we have that |fpx, yq|, |f 1px, yq| ă ϵrLs{2 and |gpxq|, |g1pxq| ă ηrLs{2, then for all px, x1, y, y1q P X4:

|fpx, yq ´ f 1px1, y1q| ă ϵrLs, }gpxq ´ g1px1q} ă ηrLs.

Then

pωpx, yq ´ ωpx1, y1qqpfpx, yq ´ f 1px1, y1qq ď |ωpx, yq ´ ωpx1, y1q||fpx, yq ´ f 1px1, y1q|

ď ϵrLs|ωpx, yq ´ ωpx1, y1q|

ď
1

2
|ωpx, yq ´ ωpx1, y1q|2,

and by the same reasoning we have that

xιpxq ´ ιpx1q, gpxq ´ gpx1qy ď
1

2
}ιpxq ´ ιpx1q}2.

It follows that the second two terms in each of the sums are non-negative: 1
2 |ωpx, yq ´ ωpx1, y1q|2 ` pωpx, yq ´

ωpx1, y1qqpfpx, yq ´ f 1px1, y1qq ě 0 and 1
2}ιpxq ´ ιpx1q}2 ` xιpxq ´ ιpx1q, gpxq ´ g1px1qy ě 0.

As a result, dLPk
pexprLsprpf, gqsq, exprLsprpf 1, g1qsqq “ 0 implies that |fpx, yq ´ f 1px1, y1q| “ 0 π b π-a.e.

and }gpxq ´ g1px1q}2 “ 0 π-a.e. Therefore we conclude that rf, gs “ rf 1, g1s.

4.1.2 The unlabelled case

Recall from Section 3.1.2 that rPks can be considered as a subspace of rLPks, where the attribute spaces Λi

are 0-dimensional Hilbert spaces. Under this identification, the concepts and results from Section 4.1.1 can
be specialized to rPks. It is more convenient to express the specialized concepts directly in the notation of
rPks, rather than in the notation coming from the embedding rPks ãÑ rLPks. For the sake of convenience, we
summarize these expressions in the language of partitioned networks below.

Definition 4.6 (Tangent space for partitioned networks). We define the synthetic tangent space of rPks

at a point rP s to be

TrP srPks :“

¨

˝

ď

ppXi,µiq,ωqPrP s

L2pµ b µq

˛

‚{ „ .
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In the above, the union is taken over all k-partitioned measure networks ppXi, µiq, ωq in the weak isomorphism
equivalence class rP s. The equivalence relation is defined as follows. For two representatives

ppXi, µiq, ωq ,
`

pX 1
i, µ

1
iq, ω

1
˘

P rP s

and functions
f P L2pµ b µq, f 1 P L2pµ1 b µ1q,

we write f „ f 1 if and only if there exists a k-partitioned coupling pπiq P Πkpµ, µ1q such that

fpx, yq “ f 1px1, y1q for π b π ´ a.e. px, x1, y, y1q P X ˆ X 1 ˆ X ˆ X 1.

The equivalence class of f is denoted rf s.

Definition 4.7 (Exponential map for partitioned networks). For a k-partitioned measure network rP s P rPks,
let rf s P TrP srPks be a tangent vector with f P L2pµ b µq. We define the exponential map by

exprP s : TrP srPks ÞÑ rPks, exprP sprf sq :“ rpXi, µiq, ω ` f s.

Definition 4.8 (Logarithm map for partitioned networks). Let rP s, rP 1s P rPks and let pπiq P Πkppµiq, pµ1
iqq

be an optimal k-partitioned coupling of P to P 1. Consider the representative P̂ “ ppX̂i, µ̂iq, ω̂q P rP s with

X̂i “ Xi ˆ X 1
i, µ̂i “ πi, ω̂px, x1, y, y1q “ ωpx, yq.

Similarly, define the representative L̂1 “ ppX̂i, µ̂iq, ω̂
1q P rL1s, where

ω̂1px, x1, y, y1q “ ω1px1, y1q.

We define
logπrP sprP 1sq “ rω1 ´ ωs P TrP srPks. (25)

It follows by definition of exprP s that

exprP splog
π
rP sprP 1sqq “ rP 1s.

4.2 Gradients

Tasks in geometric statistics such as Fréchet means are often formulated in terms of minimization of functionals
over a manifold [50]. To make sense of gradient flows, we need a notion of gradients. For simplicity, we
will discuss the case of k-partitioned measure networks Pk (i.e., without labels). However, we remark that
analogous results can be obtained for labelled graphs where labels are valued in Hilbert spaces.

Definition 4.9 (Gradients of functionals). Let F : rPks Ñ R be a functional on the space of k-partitioned
measure networks. For a network rP s P rPks and a tangent vector rf s P TrP srPks, we define the directional
derivative of F , if it exists, to be

DrfsF prP sq :“ lim
tÓ0

F pexprP sprtf sqq ´ F prP sq

t
.

A functional F is said to be strongly differentiable (following [65, Definition 6.23]) at a point rP s P rPks

if all of its directional derivatives exist, and if there exists a tangent vector rgs P TrP srPks such that for any
rf s P TrP srPks and for every pπiq P Πkpµ, µ1q such that }ω ´ ω1}L2ppXˆX1q2,πbπq “ 0, it holds that

DrfsF prP sq “ xf, gyL2pπbπq.

Here, ppXi, µiq, ωq and ppX 1
i, µ

1
iq, ω

1q are two representatives of rP s, and f P L2pX2, µbµq and g P L2pX 12, µ1 b

µ1q are representatives of rf s and rgs respectively. We then write r∇F pP qs :“ rgs and refer to r∇F pP qs as
the gradient of F at rP s.
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The following proposition characterizes some basic properties of the gradient. It uses the concept of the
norm of a tangent vector. For rf s P TrP srPks, with P “ ppXi, µiq, ωq and f P L2pµ b µq, define

}rf s}TrP srPks :“ }f}L2pµbµq.

The fact that this is well-defined follows easily from the nature of the equivalence relation used to construct
the tangent space.

Proposition 4.10. If F : rPks Ñ R is strongly differentiable at rP s P rPks, then the gradient r∇F pP qs P

TrP srPks is unique and

}r∇F pP qs}TrP srPks “ sup tDrfsF prP sq : rf s P TrP srPks, }rf s}TrP srPks “ 1u.

Proof. This follows directly from [65, Lemma 6.24] for the case of partitioned measure networks by requiring
couplings to respect partitions where necessary.

4.3 Calculating gradients

Motivated by some practical applications, in this section, we compute expressions for gradients of two
functionals defined over rPks. Namely, we consider the Fréchet functional and its generalization to the
problem of geodesic dictionary learning. We will put these expressions to use in Section 5.4, where we conduct
some numerical computations with partitioned measure networks. Since in this section we focus on practical
utility for numerical applications, some computations are done formally. A rigorous theoretical treatment
of gradient flows has been addressed in the context of measure networks by Sturm [65]. In particular, a
rigorous analysis of the dictionary learning problem may be a useful area for future study. More generally,
the barycenter computation problem remains an active area of research even in the case of measures in Rd

(e.g. [70, 2]).
Our gradient computations will make repeated use of the following result.

Proposition 4.11. Let rP s, rP 1s P rPks and let pπiq be an optimal k-partitioned coupling. There exist

representatives P P rP s and P
1

P rP 1s whose underlying sets and measures are the same and the diagonal
couplings give an optimal k-partitioned coupling. If rP s and rP 1s are finite, then the representatives can also
be taken to be finite.

In particular, if pπiq is an optimal k-partitioned coupling of P and P 1, then such representatives are given
by

P “
`

pXi ˆ X 1
i, πiq, ppx, x1q, py, y1qq ÞÑ ωpx, yq

˘

and P
1

“
`

pXi ˆ X 1
i, πiq, ppx, x1q, py, y1qq ÞÑ ω1px1, y1q

˘

.

The proof is a straightforward verification that the proposed P and P
1
satisfy the conditions; see [22,

Lemma 12] for details in the case of hypernetworks. When k-partitioned measure networks satisfy the
conditions in the first paragraph, we say that the networks are aligned; the conclusion of the proposition is
that, when considered up to weak isomorphism, we can assume without loss of generality that any pair of
partitioned measure networks is aligned. Moreover, given a finite collection of partitioned measure networks
trPis, 1 ď i ď Nu, repeated application of the proposition shows that we can assume without loss of generality
that each Pi, i ě 2, is aligned to P1.

4.3.1 Fréchet functional

Define the Fréchet functional for a finite collection of partitioned measure networks rP1s, . . . , rPN s P rPks

to be the maps F : rPks Ñ R given by

F prRsq “
1

N

N
ÿ

i“1

dPk
prRs, rPisq

2. (26)

Based on the discussion following Proposition 4.11, we can assume without loss of generality that R
and the Pi are aligned, so that they are of the form ppXi, µiq, ωRq and ppXi, µiq, ωPi

q, respectively, and
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an optimal k-partitioned coupling of R to each Pi is given by diagonal couplings p∆µi,µiq. We claim
that, under the assumption that all networks R,P1, . . . , PN are finite, the gradient of F is represented by
∇F pRq P L2pX2, µb2q, with

∇F pRq “ ωR ´
1

N

N
ÿ

i“1

ωPi
. (27)

The Fréchet functional was studied in [20] in the setting of measure networks. Although the case of
partitioned measure networks can be treated by the same approach, we include a derivation of (27) for
completeness. We first consider the setting where N “ 1, in which case the Fréchet functional simplifies to

F prRsq “ dPk
prP s, rRsq2.

We fix two representatives R “ ppXi, µiq, ωRq and P “ ppXi, µiq, ωP q such that an optimal k-partitioned
coupling between R and P is given by diagonal couplings p∆iq “ p∆µi,µiq. Following our usual convention,
we let ∆ “

ř

i ∆i, considered as a measure on \iXi. Let f P L2pX2, µ ˆ µq be a representative of a tangent
vector in TrRsrPks. Then by definition of the directional derivative,

DrfsF prRsq “ lim
tÓ0

F pexprRsptrf sqq ´ F prRsq

t
.

By the proof of Proposition 4.3 (specialized to the case of partitioned networks), we may assume without loss
of generality that p∆iq is an optimal k-partitioned coupling between expRptfq and P , for t sufficiently small.
Then, for small enough t,

1

t
pF pexpRptfqq ´ F pRqq

“
1

t

`

dPk
pexpRptfq, P q2 ´ dPk

pR,P q2
˘

“

k
ÿ

i“1

1

t

ˆ

1

2
}ωR ` tf ´ ωP }2

L2p∆b2
i q

´
1

2
}ωR ´ ωP }2

L2p∆b2
i q

˙

“

k
ÿ

i“1

t

2
}f}2

L2pµb2
i q

` xf, ωR ´ ωP yL2p∆b2
i q

`
1

2t

´

}ωR ´ ωP }2
L2p∆b2

i q
´ }ωR ´ ωP }2

L2p∆b2
i q

¯

.

Taking t Ñ 0 yields

DrfsF prRsq “

k
ÿ

i“1

xf, ωR ´ ωP yL2p∆b2
i q

“ xf, ωR ´ ωP yL2p∆b2q,

hence a representative of r∇F pRqs is

∇F pRq “ ωR ´ ωP P L2pµ b µq.

The formula (27) follows by linearity.

4.3.2 Geodesic dictionary learning

Let rP1s, . . . , rPN s P rPks be a collection of finite k-partitioned measure networks. We consider a generalization
of the Fréchet mean, which seeks to find a dictionary of m atoms (i.e. representatives or archetypes)
rD1s, . . . , rDms P rPks (each of which we assume to be finite) and a collection of N vectors in the pm ´ 1q-
dimensional probability simplex α1, . . . , αN P ∆m (that is, each αj P Rm has nonnegative entries which
sum to one), that provide a useful set of reference points for summarizing the original dataset. In what
follows, we give a brief heuristic derivation of gradient expressions which can be used for approximating
such a dictionary (see Section 5.5 for applications involving such a derivation). A rigorous treatment of this
difficult bi-level optimization problem is out of the scope for our present paper. We point out that, compared
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to the better-understood analogous problem of learning Wasserstein barycenters or dictionaries in Euclidean
space [58, 70, 2], in our setting, issues such as uniqueness of barycenters have not been rigorously addressed.

We first informally define a barycenter operator to be any assignment taking a proposed dictionary
tDjumj“1 together with an vector α P ∆m, whose entries are denoted αp1q, . . . , αpmq, to

B
`

tDjumj“1, α
˘

P argmin
RPPk

m
ÿ

j“1

αpjqdPk
pDj , Rq2. (28)

That is, there is not necessarily a unique minimizer, so a barycenter operator must involve a choice. In
practice, barycenters are approximated by some algorithm, so the necessity of making a choice models a
realistic situation (although the approximators are likely to only return a local minimizer).

Next, the loss functional for the geodesic dictionary learning problem is the bi-level optimization
problem:

F
`

tDjumj“1, tαiu
N
j“1

˘

“
1

N

N
ÿ

j“1

dPk
pBptDju, αjq, Pjq

2
. (29)

For practical purposes, we replace this with an easier problem by taking the following heuristic approximation
of the barycenter operator. Given a dictionary tDju, a basepoint P and a weight vector α, we define the
local barycenter operator to return BP ptDju, αq “ ppXi, µiq, ωBq, where it is assumed that all atoms have
been aligned to P “ ppXi, µiq, ωq, so that Dj “ ppXi, µiq, ωDj

q, and ωB is defined by

ωB “

m
ÿ

j“1

αpjqωDj ,

We then consider

F
`

tDjumj“1, tαiu
N
j“1

˘

“
1

N

N
ÿ

j“1

dPk

`

BPj ptDju, αjq, Pj

˘2
.

To approximate this via gradient descent, we hold all arguments constant besides one and run a gradient
step on the induced functional, and iterate this process through arguments. We claim that, for tαiu

N
i“1 held

constant, the gradient of F in each of the Di (that is, holding other atoms constant) is given by

∇DiF pDiq “
1

N

m
ÿ

j“1

ωDj

˜

N
ÿ

ℓ“1

αℓpiqαℓpjq

¸

´
1

N

N
ÿ

ℓ“1

αℓpiqωPℓ
. (30)

where we have assume that all spaces are aligned to a common k-partitioned measures space, as in Proposition
4.11. Similarly, the Fréchet gradient in each of the αℓ is given by

∇αℓ
F pαℓq “

1

N
rxωDi

, ωB ´ ωPℓ
ys

m
i“1 . (31)

Heuristic derivations of these expressions are provided below.
By linearity (as in the case of Fréchet means), let us take N “ 1. Then the functional simplifies to

F
`

tDjumj“1, α
˘

“ dPk
pBP pD,αq, P q2.

We wish to consider the functional induced by holding all but one of the atoms fixed; without loss of generality,
suppose that only D1 varies and D2, . . . , Dm and α are fixed. Then we consider the functional

F̃ pD1q “ F ptDiu
m
i“1, αq.

Let f P L2pX2, µb2q be a tangent vector at D1 and let ωBptq denote the network kernel of expD1
ptfq—

explicitly, ωBptq “ ωB ` α1tf . By a similar computation to the one used in the derivation of the gradient to
the Fréchet functional, we have, for sufficiently small t (so that the ideas of Proposition 4.3 apply),

1

t
pF̃ pexpD1

ptfqq ´ F̃ pD1qq
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“
1

t

`

dPk
pBP ptexpD1

ptfq, D2, . . . , Dmu, αq, P q2 ´ dPk
pBP ptDju, αq, P q2

˘

“

k
ÿ

i“1

1

t

ˆ

1

2
}ωBptq ´ ωP }2

L2p∆b2
i q

´
1

2
}ωB ´ ωP }2

L2p∆b2
i q

˙

“

k
ÿ

i“1

1

t

ˆ

1

2
}ωB ` α1tf ´ ωP }2

L2p∆b2
i q

´
1

2
}ωB ´ ωP }2

L2p∆b2
i q

˙

“

k
ÿ

i“1

α2
1t

2
}f}2

L2pµb2
i q

` α1xf, ωB ´ ωP yL2p∆b2
i q

`
1

2t

´

}ωB ´ ωP }2
L2p∆b2

i q
´ }ωB ´ ωP }2

L2p∆b2
i q

¯

.

The claimed formula (30) then follows by a straightforward calculation.
When deriving the formula (31), we observe that this amounts to computing the derivative of a function

defined on Rm. The derivation then follows by elementary methods.

5 Applications and algorithms

In this section, we discuss a large number of applications using our formulation of the partitioned measure
networks. In Section 5.1, we first give an overview of numerical algorithms involved in these applications. In
Section 5.2, we discuss network matching and comparison using partitioned measure networks. We comment
on the connection between measure network matching using Gromov-Wasserstein type distances and spectral
network alignment such as EigenAlign (Section 5.2.1). We support our analysis using experiments involving
synthetically generated graphs and hypergraphs (Section 5.2.2), real-world metabolic networks (Section 5.2.3),
and multi-omics data (Section 5.2.4). In Section 5.3, we further expand the applications to study multiscale
network matching using partitioned measure networks, by studying networks that arise from 3D mesh objects
(Section 5.3.1) and protein-protein intersections (Section 5.3.2). In Section 5.4, we demonstrate via simple
examples in computing geodesic interpolations between three hypergraphs and their barycenter. Finally in
Section 5.5, we further extend the study of barycenter to the problem of dictionary learning using partitioned
measure networks, that is, given an ensemble of partitioned measure networks, learn a basis such that each
ensemble member could be described as a convex combination of the basis elements. We study nonlinear
and linear dictionary learning in Section 5.5.1 and Section 5.5.2 respectively, with examples that arise from
hypergraph stochastic block model (Section 5.5.3) and mutagenicity data (Section 5.5.4). For implementation
details, see Appendix A.

5.1 Numerical algorithms

Practical applications of our framework in machine learning and statistics hinges upon numerical solution of
quadratic programs that arise from the matching problem introduced in Definition 2.12 and its extensions.
While significant progress has been made developing and analyzing numerical approaches for the case
of Gromov-Wasserstein matchings (for measure networks) [52, 19, 67], co-optimal transport (for measure
hypernetworks) [55, 69], and augmented Gromov-Wasserstein (for augmented measure networks) [26], our
framework allows us to consider in generality (labelled) k-partitioned measure networks, from which each
of these algorithms emerges as a special case. We provide a brief overview in what follows, and we defer
technical details of specific algorithms to Appendix A due to space considerations.

As we are interested in numerical calculations related to generalized networks, we will assume all networks
to be finite in this section and where appropriate use matrix notation to represent functions defined on
finite spaces. That is, for a k-partitioned measure network P “ ppXi, µiq, ωq (see (2.7)) we take each Xi to
be a finite set and denote its cardinality by |Xi|. Thus µi belonging to the probability simplex ∆|Xi| (see
Section 4.3.2) is a discrete probability distribution which we often write as a column vector, and ω a matrix
of dimensions | \i Xi| ˆ | \i Xi|. Furthermore, we write

ω “

»

—

–

ω11 ¨ ¨ ¨ ω1k

...
. . .

...
ωk1 ¨ ¨ ¨ ωkk

fi

ffi

fl

“ rωijs1ďi,jďk ,
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where ωij corresponds to the restriction of ω onto Xi ˆ Xj , i.e. a submatrix of dimensions |Xi| ˆ |Xj |. In
what follows, we use angle brackets to denote the Frobenius inner product between vectors or matrices, i.e.
xA,By “ trpAJBq.

We take p “ 2 in the definition of the (labelled) partitioned network distance (see (3.3) and Definitions
2.12), as this allows for a efficient scheme for evaluating computationally the value of }ω ´ ω1}2L2pπbξq

. For

ease of notation, we will re-write the (squared) objective from (3):

min
πiPΠpµi,µ1

iq,1ďiďk

1

2

k
ÿ

i,j“1

}ω ´ ω1}2L2pπibπjq `

k
ÿ

i“1

}dΛi ˝ pιi, ι
1
iq}2L2pπiq. (32)

Up to scaling pω, ω1q and dΛi by constant factors, this is equivalent to the problem as written in (3) with
p “ 2. In particular, we note that the factor of 1{2 is associated to terms quadratic in the πi, which will
simplify expressions later. Adopting the notation of [52], we define Lpω, ω1q to be the 4-way distortion
tensor

Lpω, ω1qijkl “
1

2
|ωik ´ ω1

jl|
2. (33)

Introduce also for the labelled setting

Cipx, x
1q “

1

2
dΛi

pιipxq, ι1
ipx

1qq2, 1 ď i ď k (34)

as cost matrices for matching labels in each label metric space Λi. Although our theoretical setup in Definition
3.1 assumes the existence of labelling functions ιi and label metric spaces Λi, in practice our computations
depend only on the matrices Ci and so the labellings are not made explicit. For instance, Ci may be
constructed from kernels and thus understood to correspond to squared pairwise distances in a reproducing
kernel Hilbert space.

Using the quantities we have now introduced, the problem (32) can be written as

min
πiPΠpµi,µ1

iq,1ďiďk

1

2

k
ÿ

i,j“1

xLpωij , ω
1
ijq, πi b πjy `

k
ÿ

i“1

xCi, πiy. (35)

By setting appropriate terms to zero (following the lines of Definition 2.8), we can recover the optimal
transport matching problems on generalized measure networks such as measure hypernetworks and measure
networks (both labelled and unlabelled), as well as the standard optimal transport. Additionally, we can
consider regularized variants of this problem which may yield favourable results in practice [24, 52, 7], both
in terms of numerical solution schemes as well as properties of the solution:

min
πiPΠpµi,µ1

iq,1ďiďk

1

2

k
ÿ

i,j“1

xLpωij , ω
1
ijq, πi b πjy `

k
ÿ

i“1

xCi, πiy `

k
ÿ

i“1

εiΩipπiq. (36)

A common choice of Ω is the relative entropy Ωpπq “ KLpπ|µ b µ1q, which is consistent with the existing
formulations of regularized co-optimal transport [55] and Gromov-Wasserstein transport [52].

Solving (35) (or (36)) amounts to finding minimizers of a (regularized) constrained, non-convex quadratic
program in the couplings pπiq

k
i“1. Näıve solutions of these problems using general purpose solvers is not

scalable [32]. We develop several iterative algorithms to this end: since the problem (35) is non-convex,
different choices of algorithm may converge to different minima. In summary, algorithmic approaches to
solving (35) or (36) can be divided into (a) approaches relying on iterative solution of the standard linear
optimal transport or Gromov-Wasserstein transport as algorithmic primitives, and (b) approaches based on
gradient descent. We refer the interested reader to Appendix A for details. As our examples illustrate, the
algorithm of choice depends heavily on the application at hand.

5.2 Network matching and comparison

In this section, we illustrate the utility of our theoretical and algorithmic framework via network matching
and comparison. We first discuss a connection between Gromov-Wasserstein measure network alignment and
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a spectral network alignment method, as well as their respective generalizations to hypergraphs. Together
with numerical results, we show that the optimal transport framework has a better behaviour, in terms of
both accuracy and scalability.

We next consider an application to metabolic network alignment. We model this problem as one of labelled
hypergraph matching (i.e. k “ 2 for our partitioned setup), and solve an unbalanced transport problem
due to the lack of a one-to-one matching between network elements. We find that, while incorporating
label information alongside the hypergraph structure is essential to obtaining meaningful alignments, the
hypergraph relational structure provides information that is crucial for refining the alignment. That is,
incorporating the hypergraph structure improves significantly upon using labels alone.

Last, we turn to a problem of simultaneous sampling and feature alignment in multi-omics data, wherein
networks are derived from general data matrices (see Example 2.2). This is a problem for which co-optimal
transport and augmented Gromov-Wasserstein have been previously developed [55, 69, 26], viewing data
matrices as hypergraphs where nodes are samples and hyperedges are features. These algorithms fall under
our partitioned framework with k “ 2. We show that partitioned networks are a flexible and more general
tool for modelling multi-omics data, and results in improved alignment accuracy.

5.2.1 Relation to spectral network alignment

We first comment on the connection of Gromov-Wasserstein measure network matching to a (perhaps widely
known) family of spectral alignment approaches. As introduced in Definition 2.6, for p “ 2 and measure
networks pX,µ, ωq, pX 1, µ1, ω1q, the Gromov-Wasserstein (measure network) alignment problem is to solve

min
πPΠpµ,µ1q

1

2
xLpω, ω1q, π b πy, Lpω, ω1qijkl “

1

2
|ωik ´ ω1

jl|
2, (37)

which corresponds to partitioned measure network matching of Definition 2.12 with k “ 1. This approach
was studied in depth by [78] for network alignment. Spectral alignment methods are a family of approaches
that have gained attention for graph alignments [29, 30, 46, 47] and also for hypergraphs [60]. Briefly, for
two input graphs G “ pV,Eq, G1 “ pV 1, E1q, spectral network alignment seeks a node matching between
V and V 1 that optimally preserves graph structure in a way similar to the Gromov-Wasserstein problem.
This leads to a quadratic assignment problem (QAP), which upon being relaxed amounts to solving for the
Perron-Frobenius eigenvector of a square matrix with dimensions |V ˆ V 1| ˆ |V ˆ V 1| with all positive entries.
We now make this problem description concrete. We abuse notation and also write Gij , G

1
ij to denote the

(binary) adjacency matrices of the graphs G,G1 respectively.
Feizi et al. [29] defined a matching score, for pi, jq, pk, lq P pV ˆ V 1q2:

Aijkl “

$

’

&

’

%

s1 pi, kq P E ^ pj, lq P E1;

s2 pi, kq R E ^ pj, lq R E1;

s3 otherwise.

(38)

Here, s1, s2, s3 ą 0. The first case corresponds to matching edges to edges (referred to as “matches” in [29])
with score s1, the second case corresponds to matching non-edges with non-edges (“neutrals”) with score s2,
and the final case corresponds to matching non-edges to edges, or vice versa (“mismatches”) with score s3.

It is immediately clear that Aijkl plays the same role (but with opposite sign, since in [29] the aim is
to maximize the matching score), as the tensor LpGik, G

1
jlq in the Gromov-Wasserstein network alignment

setting. While Aijkl is a matching score (larger is better), Lijkl is a distortion (smaller is better). The
authors further derived an identity for A (Equation 3.3 of [29]):

A “ ps1 ` s2 ´ 2s3qpG b G1q ` ps3 ´ s2qpG b 1 ` 1 b G1q ` s2p1 b 1q,

which is also a convenient formula for the Gromov-Wasserstein setup, for computing xA, x b xy.
The graph alignment problem is then formulated as a QAP in terms of an unknown alignment matrix

y P R|V |ˆ|V 1
| (which by an abuse of notation, we will also write as a vector of length |V ˆ V 1|):

max
y

yJAy

s.t. y1 ď 1, yJ1 ď 1, y P t0, 1u.
(39)
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Since direct solution of this problem is intractable, Feizi et al. proposed an algorithm called EigenAlign
which first solves a relaxation of (39) where the integer and row/column-sum constraints are replaced with
non-negativity and unit-ball constraints:

max
y

yJAy

s.t. y ě 0, }y}2 ď 1.
(40)

The solution to this problem is shown to be v, the Perron-Frobenius eigenvector of the positive alignment
score matrix A. In the second step of the algorithm, the solution v to the relaxed problem (40) is projected
back onto the constraint set by solving a linear assignment problem:

max
y

vJy

s. t. y ě 0 : y1 ď 1, yJ1 ď 1, y P t0, 1u.
(41)

This can be understood as solving for y that maximizes its similarity to the relaxed solution v that also
satisfies the bijectivity constraints. The objective function for the Gromov-Wasserstein alignment problem
has the exact same form as (39), since xLpG,G1q, π b πy “ vecpπqJ matpLpG,G1qq vecpπq.

The correspondence between the Gromov-Wasserstein (37) and spectral alignment problems (39, 40, 41)
has some subtlety. Under the simplex constraint π P Πpµ, µ1q the problem (37) is invariant to constant shifts
in the distortion tensor L, since for any c P R,

xLpω, ω1q ` c, π b πy “ xLpω, ω1q, π b πy ` c.

For binary incidence matrices ωij , ω
1
ij P t0, 1u, we can introduce a shifted version of the distortion tensor,

where η ą 0 is a small constant:

Lpω, ω1qijkl “ Lpω, ωqijkl ´
1

2
´ η.

Then L is strictly negative. We can therefore re-write the problem (37) equivalently as

min
πPΠpµ,µ1q

xL, π b πy “ vecpπqJ matpLq vecpπq ðñ max
πPΠpµ,µ1q

vecpπqJ matp´Lq vecpπq.

Therefore, we may choose A “ matp´Lq in (39, 40, 41) since it is a positive matrix. This corresponds to
s1 “ s2 “ 1{2 ` η and s3 “ η. On the other hand, crucially the objective (40) is not invariant under additive
shifts to the matrix A, since

yJpA ` c11Jqy “ yJAy ` c|1Jy|2

and |1Jy| is not constant on the 2-norm ball. Therefore, while additive shifts of the distortion tensor leave
the Gromov-Wasserstein problem (37) unchanged, different choices of the shift lead to different relaxed
spectral problems (40). We remark that, since the Perron-Frobenius theorem restricts EigenAlign to positive
alignment matrices, one cannot straightforwardly take A “ ´matpLq.

The main remaining difference between Gromov-Wasserstein and EigenAlign lies in the constraints:
inequality constraints on the row and column sums of π are replaced instead with equality constraints. When
|V | “ |V 1| and node weights are chosen to be uniform, this amounts to the set of bi-stochastic matrices. In a
sense, the relaxed problem solved by Gromov-Wasserstein departs less from (39) than EigenAlign. Noting
that Πpµ, µ1q Ď ProbpX ˆ X 1q and that tx P Rk : |x| “ 1, x ě 0u Ď tx P Rk : }x} ď 1, x ě 0u, the spectral
problem solved by EigenAlign is in fact itself a relaxation of the corresponding Gromov-Wasserstein problem.
Together with the observation that Gromov-Wasserstein finds a solution in a single step while EigenAlign
requires two consecutive steps, this suggests that Gromov-Wasserstein network alignment may behave more
favorably since the matching constraints are retained throughout the algorithm and can better inform the
alignment.

This spectral alignment framework can be extended to the problem of hypergraph alignment [60, 38, 45],
although hypergraphs introduce the additional complication that in general, hyperedges of a hypergraph
may have edges of differing degree. For the simpler case of K-uniform hypergraphs (hypergraphs in which
each hyperedge spans exactly K nodes), the matching score matrix Aijkl can be extended to a matching
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score tensor Api1,j1q,...,piK ,jKq which has dimensions |V ˆ V 1|K . Writing y as a |V ˆ V 1| matching vector, a
generalized matching objective is

max
y

@

A,bK
i“1y

D

s. t. y1 ď 1, yJ1 ď 1, y P t0, 1u.
(42)

In [60], this problem is tackled in an analogous way to the EigenAlign algorithm (39, 40, 41), that is, a
relaxation of (42) onto the unit norm ball is derived which amounts to a generalized tensor eigenproblem
which can be approximately solved using higher-order power iterations [36]. This is then projected back
onto the constraint set by solving a linear assignment problem. Non-uniform hypergraphs are converted to
uniform hypergraphs by introducing a dummy node repeatedly to hyperedges as needed until all hyperedges
have the same degree. In contrast, co-optimal transport-based matchings of hypergraphs still boils down
to a quadratic problem (as opposed to higher-order) in the coupling π, regardless of hypergraph degree.
Furthermore, optimal transport handles non-uniform hypergraphs naturally.

method

method

(b) k-uniform hypernetwork alignment

(a) Erdős–Rényi network alignment

Figure 2: (a) Illustration of Erdös-Rényi random graph alignment problem with noise (edges due to noise
shown in red); alignment errors (measured in terms of the distortion functional (37)) achieved by EigenAlign
and Gromov-Wasserstein under permutation and noise. (b) Illustration of random 3-uniform hypergraph
alignment problem with noise (hyperedges due to noise shown in red); alignment errors (measured in terms
of the objective (42)) achieved by higher-order EigenAlign and COOT under permutations and noise.

5.2.2 Comparison to spectral network alignment for random graphs and hypergraphs

For this first set of experiments, we use synthetic datasets of graphs and hypergraphs. In Figure 2(a) we
investigate the relative performance of spectral alignment and Gromov-Wasserstein alignment, considering
Erdös-Rényi (ER) graphs of size N “ 100 with parameter p P t0.01, 0.05, 0.1, 0.25u. For a randomly sampled

ER graph G, we form a copy rG in which nodes have been relabelled via a random permutation. Optionally,
we also add noise in the form of random addition or deletion of edges independently with probability
q P t0, 0.01, 0.05u. We align G to rG using both the implementation of EigenAlign from [29] and Gromov-
Wasserstein using a proximal gradient algorithm (see Algorithm 3), similar to the approach taken by [79].
Since the proximal gradient algorithm yields a coupling that is dense but potentially vanishingly small for
most entries (i.e. strictly on the interior of the constraint set), we apply a “rounding” of the result onto
an extreme point of the coupling polytope to yield a sparse permutation matrix. For each alignment, we
measure the alignment error by calculating the corresponding distortion functional (37) to measure the

alignment quality. In the absence of noise, rG and G are isomorphic since they are represented by adjacency
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matrices that are identical up to permutation, and a distortion of zero corresponds to a perfect matching.
Non-zero noise breaks this isomorphism (so that the ground truth node matching may no longer be the “right”
one after adding noise), so the lower the distortion the better the alignment. In this sense, the distortion
is an objective measure of alignment quality rather than the coupling itself. In all cases we consider, we
find that Gromov-Wasserstein finds an alignment that yields a lower distortion than EigenAlign, shown in
Figure 2(a). At a conceptual level, this can be understood since the Gromov-Wasserstein problem arises as
a relaxation of the quadratic assignment problem (39) that accounts for the quadratic objective and the
assignment constraints jointly, whereas the EigenAlign approach adopts a two step approach, first relaxing the
assignment constraint to a norm ball constraint (40) and then projecting back onto the assignment polytope
(41). Because of this, the assignment constraints in the second step cannot inform the quadratic program in
the first step.

In Figure 2(b) we turn to hypergraph alignments. For hypergraphs, the scope of the higher-order spectral
alignment approach is limited to dealing with uniform hypergraphs, and furthermore the time and space
complexity scale exponentially in the order of the hypergraph. We therefore consider random 3-uniform
graphs for N “ 25 nodes and M “ t10, 25, 50, 100u hyperedges. Each hyperedge is obtained by sampling

3 nodes uniformly without replacement from the node set. Given a hypergraph H, we form a copy rH by
randomly relabelling nodes and hyperedges, and then replacing a fraction q P t0, 0.1, 0.25u of hyperedges with
independently sampled hyperedges. The spectral alignment approach only aligns nodes (since for uniform
hypergraphs a node alignments also induces hyperedge alignments), so we quantify the quality of alignments
in terms of the objective of (42) rather than the co-optimal transport distortion which depends on both node
and hyperedge couplings. As in the graph alignment case, we find that co-optimal transport alignments
(using again the proximal method of Algorithm 3) perform as well or better compared to spectral alignments
in all cases.

Spectral hypergraph alignments are restricted to uniform hypergraphs and are computationally expensive,
while co-optimal transport does not have these limitations. Measuring the computation time for spectral
alignment and co-optimal transport alignment for N P t5, 10, 25u, we find that spectral alignment is several
orders of magnitude more expensive in terms of runtime. Runs for N “ 50 with spectral alignment have
failed due to memory usage exceeding the available 32 GB.

5.2.3 Metabolic network alignment

Metabolic networks (and chemical reaction networks more generally) are an example of systems in which
higher-order relations are essential to retain information: chemical species may be modelled as nodes and
reactions as hyperedges, which may involve any number of reactants simultaneously [33]. We consider the
metabolic networks of E. coli and halophilic archaeon DL31, retrieved from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database [34] with accession numbers eco01100 and hah01100 respectively.
We model each metabolic network as a labelled measure hypernetwork, where nodes are identified with
metabolite compounds and hyperedges are identified with enzymes which catalyze reactions involving multiple
compounds (multiple reactants and products). For simplicity, we discard directionality information and model
the metabolic networks as undirected hypergraphs (i.e. we do not distinguish between reactants and products
within each hyperedge). For eco01100 (the source network) we construct a measure hypernetwork with 984
metabolites and 1005 reaction terms, and for hah01100 (the target network) a measure hypernetwork with
679 metabolites and 558 reaction terms. We find that the minimum and maximum hyperedge sizes are 2
and 9, respectively, in both the source and target hypergraphs. This verifies the heterogeneous, non-uniform
nature of these hypernetworks. We visualize each network in Figure 3(a), showing the associations between
compounds (nodes, red) and reactions (hyperedges, blue). In contrast to the previous synthetic example,
we now must align two hypergraphs that are non-uniform and different in size. Within our framework, the
unbalanced, fused hypergraph alignment scheme is the most suitable approach and we demonstrate the
effectiveness of this method.

As we mentioned previously in Section 5.2.1, this hypergraph alignment problem was addressed using a
spectral approach by [60]. As the metabolic hypernetworks are non-uniform, dummy nodes are added to
produce a d-uniform hypergraph, where d is the maximum hyperedge degree in the original non-uniform
hypergraph. This uniform hypergraph is then represented as a |V |d adjacency tensor. Due to the size of
the alignment tensor, in [60] a fairly involved computational scheme is described that exploits its symmetry
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Figure 3: (a) Genome-scale metabolic networks of E. coli (eco01100) and halophilic archaeon DL31
(hah01100). (b) Nodes (compounds) and hyperedges (enzymes) ranked by total out-going probability
mass as found by unbalanced alignment, coloured by whether its true match is shared in the target network.
(c) Hyperedge couplings for the subset of reaction terms (enzymes) common to both organisms, found using
(left) enzyme similarity only, (middle) labelled hypergraph alignment (with both metabolite and enzyme
similarities provided), and (right) ablated, labelled hypergraph alignment (with metabolite similarities pro-
vided, but not enzyme similarities). (d) Zoom-in on conserved tricarboxylic acid (TCA) cycle subnetwork as
shown in genome-scale metabolic network layout from (a). (e) Hypergraph layout of TCA cycle subnetwork,
shown as a rubber band diagram. (f) Alignment of reaction terms in TCA cycle subnetwork, from left to
right: enzyme similarity matrix for TCA cycle reaction terms; and alignments found using enzyme similarity,
labelled hypergraph alignment (with both metabolite and enzyme similarities provided), and ablated labelled
hypergraph alignment (with metabolite similarities provided, but not enzyme similarities), respectively.

properties. Even so, distributed computing is necessary to speed up the alignment, which was reported
to take over two hours to match the two networks (559 metabolites and 537 reactions for hah01100, 794
metabolites and 923 reactions for eco01100) [60, Supplementary Materials].

For metabolite compounds and reaction terms, we construct pairwise cost matrices between the source
and target using a similar approach to [60]. For metabolites, similarity scores are calculated using the
cheminformatics package ChemmineR [14]. For any two enzymes pe1, e2q, the similarity score is taken
to be 1{Npe1, e2q where Npe1, e2q is the number of enzyme entries in the lowest common level in the
Enzyme Commission (EC) classification [3]. Since there is not a one-to-one correspondence between the
two metabolic networks, we solve an unbalanced variant (see Section A.5) of the labelled hypergraph
alignment problem between the two hypernetworks using a proximal gradient variant of Algorithm 5, using
α “ 0.9, ε “ 10´3, λ “ 0.1 and 250 and 1000 inner and outer iterations respectively. This takes less than
a minute utilizing 4 cores of an Intel Xeon Gold 6242 system, several orders of magnitude faster than the
higher-order spectral method employed by [60].

To assess the quality of the matching, we use the fact that compounds and enzymes conserved between
these two organisms are known. For a subset of nodes and hyperedges therefore, we have a biological “ground
truth” correspondence to compare against. Since only parts of the two metabolic networks are shared, we
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expect the unbalanced matching to reflect this and assign more mass to shared components. In Figure 3(b)
we show reactions and compounds in each organism, ranked by the (log) total mass assigned to it by the
unbalanced matching algorithm. Components which have a true match in the target network are shown
in green: it is clear that more mass is assigned to components with a true match, and non-overlapping
components tend to be down-weighted. These weights can be thought of as a measure of confidence in the
alignment. We remark that the eco01100 network is larger, so a significant fraction of its components do not
have true matches in the hah01100 network. Despite this, we still observe a separation in hah01100 between
components with and without true matches.

To understand how our alignment method depends on the node and hyperedge labels and relational
information encoded in the hypergraph structure, we perform two additional alignments where some of this
information is hidden (i.e., ablation study). To study the performance of alignment using hyperedge label
information alone without the hypergraph structure, we directly align enzymes (hyperedges) using the enzyme
similarity matrix by solving a standard optimal transport problem using the proximal point method [76]. We
also consider hyperedge alignment using node labels and the hypergraph structure, when hyperedge labels
are hidden. To do this, we set the hyperedge-hyperedge cost matrix to zero and recompute the alignment
with the same parameters using only the node-hyperedge incidence matrix and the node-node cost matrix. In
Figure 3(c), for the subset of enzymes or reaction terms shared between both organisms, we show alignments
obtained using only hyperedge labels (enzyme similarity), the full labelled hypergraphs (hypergraph), and
only node labels (hypergraph, ablated). Compared to the full labelled hypergraph alignment result, we find
that using only enzyme similarity leads to a much more noisy alignment, with large amounts of mass assigned
away from the diagonal. Suppressing hyperedge labels leads to a slightly worse alignment of hyperedges
compared to the full labelled alignment, but still significantly cleaner than using hyperedge labels alone.

Finally, we focus on the tricarboxylic acid (TCA) cycle, a fundamental metabolic process that is conserved
between both organisms. In Figure 3(d) we highlight this subnetwork, and in Figure 3(e) we show its rubber
band visualization. In Figure 3(f), we find that a full labelled hypergraph alignment near-perfectly matches
the components, while the ablated hypergraph alignment without hyperedge labels again does slightly worse.
In contrast, the enzyme similarity score does not provide full information about the matching, and hence
alignment based on enzyme similarity alone performs much worse. Together, these results indicate that
utilizing the hypergraph structure in combination with label information is crucial for achieving a good
alignment between the two metabolic networks, outperforming alignments where either label or relational
information are suppressed.

5.2.4 Multi-omics sample and feature alignment

Co-optimal transport has previously been employed for simultaneously matching samples and features between
heterogeneous datasets [55]. One particularly popular example is that of multi-omics datasets, where two or
more sets of features (e.g. gene expression and protein marker expression) are observed in samples (cells) [69].
This problem can be cast in the setting of hypernetwork alignment by interpreting samples and features as
nodes and hyperedges respectively, and the sample-by-feature data matrix as the membership function. In
[69] the application of unbalanced co-optimal transport was demonstrated to improve alignment quality, and
in [26] the augmented Gromov-Wasserstein matching (see Definition 2.6) is introduced: this corresponds to
partitioned network matching when only node-node information is provided in addition to node-hyperedge
relations, but not hyperedge-hyperedge information. Here we consider 1, 000 cells sampled from the same
CITE-seq dataset as in [26], in which 15 genes and their corresponding marker proteins were measured.

Partitioned measure networks allow pairwise relations within as well as between partitions to be modelled,
so we incorporate pairwise similarities in each domain. This is in addition to the sample-feature information
contained directly in the data matrix. We choose to capture this by calculating sample-sample and feature-
feature correlations. Under the partitioned measure network alignment framework, we expect that pairwise
structure between samples (respectively features) should be preserved by the alignment. To get an initial
understanding of the data, we show the PCA embeddings and the partitioned network data constructed from

each modality in Figure 4(a): ω
pRNA,ADTq

00 , ω
pRNA,ADTq

11 are correlation matrices between samples and features

respectively, and ω
pRNA,ADTq

01 are the data matrices capturing cell-wise gene or marker expression. Put simply,
we expect that correlated (anti-correlated) pairs of genes should be matched to correlated (anti-correlated)
pairs of proteins, and similarly for cells between modalities.
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Figure 4: (a) Illustration of CITE-seq dataset shown in transcriptomic (gene expression or RNA) and surface
marker (protein expression or ADT) modalities. For modality m, ωm

01, ω
m
00, ω

m
11 denote the data matrix,

sample-sample similarities, and feature-feature similarities, respectively. (b) Sample and feature alignments
obtained using partitioned network matching, co-optimal transport, and augmented Gromov-Wasserstein
with sample-sample information and feature-feature information respectively. The ground truth matching
for samples and features corresponds to the diagonal. (c) Quality of feature alignments in terms of (top)
maximum probability assignment (higher is better); (middle) reverse KL-divergence to the diagonal coupling
(lower is better); and (bottom) quality of sample alignments in terms of FOSCTTM (lower is better).

We then compute an entropy-regularized alignment of the RNA and protein partitioned measure networks
using Algorithm 4. We introduce a parameter α P r0, 1s to control the trade-off between the contribution of
Gromov-Wasserstein type terms (ω00, ω11) and co-optimal transport type terms (ω01), scaling these inputs
by

?
α and

?
1 ´ α respectively. We choose values α P t0, 0.1, . . . , 0.9, 1u. For each partition, different levels

of entropic regularization ε0,1 P t5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 0.1, 0.5u are used, as it is well known that
regularization level may play a role in the alignment quality [26]. Finally, we consider the special cases where
pairwise information (i.e. the Gromov-Wasserstein term) on samples, features, or both, are suppressed. We

implement this by setting ωRNA,ADT
00 , ωRNA,ADT

11 to zero as needed.
For each set of parameter values we compute the alignment, and then calculate the fraction of gene

transcripts which are correctly matched to their corresponding protein in terms of maximum assigned
probability. We show in Figure 4(b) the best matchings obtained for the settings of partitioned matching,
co-optimal transport, and augmented Gromov-Wasserstein (AGW) on samples and features respectively. In
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terms of identification of features (Figure 4(c)), we found that the partitioned alignments and AGW with
sample-sample information were both able to correctly assign 13/15 (87%) features, in terms of maximum
probability. On the other hand, AGW with feature-feature information and co-optimal transport correctly
assigned 8/15 and 6/15 features respectively. While the fraction of correctly matched features by maximum
probability gives an indication of the alignment accuracy, it does not account for the level of uncertainty in the
matching. To account for this, we also calculate the KL divergence of the diagonal (ground truth) coupling
relative to the alignment, reasoning that alignments that produce the correct matching with a higher certainty
should have a lower divergence (i.e., lower divergence is better). We find that the partitioned matching
produces a more informative alignment (KL “ 0.502) compared to AGW (KL “ 1.027), which can also be
assessed visually from the couplings. Finally, in Figure 4(c) bottom, we assess the quality of sample matchings
in terms of the fraction of samples closer than true match (FOSCTTM) which is a standard performance
metric in the single cell alignment literature [26], for which a lower value indicates a better alignment. Both
the partitioned alignment and AGW with sample-sample information produce sample alignments of similar
quality, whereas AGW with feature-feature information and co-optimal transport have worse performance.

5.3 Partitioned networks for multiscale network matching

Whereas the previous examples focus on hypergraphs (i.e., partitioned networks with k “ 2), our framework
can be used to model multiscale data by setting k ě 2. This insight was obtained in [22]: a multi-scale graph
with k simplification levels can be modelled as k coupled hypergraphs. In Section A.6, we show how the
work of [22] can be framed and extended in terms of k-partitioned measure networks. Specifically, we can
model relations between nodes in the same simplification level, as well as between simplification levels using
partitioned measure networks. We demonstrate the application of our framework for matching geometric
networks (obtained from 3D objects), as well as non-geometric protein-protein interaction networks.

5.3.1 Multiscale point cloud matching

We apply multiscale matching to networks derived from 3D models of a wolf and a centaur from the TOSCA
object database [12]. In [22], co-optimal transport was employed to find semantic matchings between two
poses of the centaur graph across multiple scales. In their experiments, the two poses of the centaur graph
have the same number of nodes at each level and are nearly identical in structure. The co-optimal transport
framework of [22] is also applicable to finding semantic matchings between a wolf and a centaur, where the
two graphs are significantly different in their size, connectivity, and semantic components. Indeed, the “true”
semantic correspondence between the objects is not one-to-one, since the wolf has four limbs and the centaur
has six. In this section, we solve the multiscale object matching problem using a partitioned measure network
formulation and compare it against previous approaches.

For each input graph, a multi-scale topological simplification was produced using the heat kernel multiscale
reduction of [22, Section 5.3] with k “ 3 simplification levels. We take each of the ωi,i`1, ω

1
i,i`1, for 0 ď i ă 2

to be binary incidence matrices of node-hyperedge relations between successive reductions. Pairwise relations
ωii, ω

1
ii, 0 ď i ă 3 are constructed from the graph shortest path distances on each simplification level.

In Figure 5 we visualize the alignments obtained using multiple methods: (1st row) multiscale COOT (using
the algorithm of [22]); (2nd row) Gromov-Wasserstein measure network matching obtained independently on
each simplification level; (3rd row) the multiscale alignment using k-partitioned networks (Algorithm 4) and
(4th row) its unbalanced variant (Algorithm 6). At each simplification level, each node in the centaur graph
is connected to a node in the wolf graph with the maximum matching probability. While multiscale COOT
finds a matching that is largely consistent across scales, the matching is very noisy especially at fine scales as
evidenced by discontinuities in the colour gradient in the centaur. On the other hand, independent Gromov-
Wasserstein matchings at each simplification level leads to more locally consistent matchings (continuous
colour gradients), but the matching fails to be consistent across scales; this is apparent, for instance, by
looking at the matchings of the head/neck regions across simplification levels (blue arrows), as well as the
arms of the centaur. The multiscale partitioned network alignment produces a semantically reasonable,
consistent matching at each scale, correctly matching the head, neck, hind legs, as well as tail regions. Due
to the difference in the number of limbs across each model, we observe mismatches among the arms of the
centaur, which is not entirely surprising. Interestingly, a small portion of the front legs of the centaur model
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Figure 5: Multiscale network matchings: TOSCA wolf and centaur. Each row corresponds to a different
algorithm, and each column corresponds to a graph simplification level. 1st row: multiscale COOT [22]. 2nd
row: Gromov-Wasserstein measure network coupling obtained independently on each simplification level. 3rd
and 4th row: the multiscale alignment using k-partitioned networks (3rd row) and its unbalanced variant
(4th row). Blue arrows: matching of the wolf’s head is inconsistent across scales for Gromov-Wasserstein
alignment. Red arrows: discontinuity in centaur’s front leg disappears with an unbalanced alignment.

is matched to the hind legs of the wolf (red arrows), seen as a discontinuity in the colour gradient. However,
these mismatches disappear in the unbalanced partitioned measure network alignment. In other words, there
is a lack of one-to-one correspondence between the limbs of a centaur and those of a wolf causing a number of
mismatches, and unbalanced matching may alleviate these issues.

In addition to the visual assessment of semantic matchings, we show in Table 1(a) different components
of the objective (82) for the matchings found by multiscale COOT, Gromov-Wasserstein, and partitioned
measure network alignment, respectively. This table provides us with an unbiased quantification of alignment
quality directly in terms of the distortion. These results confirm our visual observations from Figure 5:
Gromov-Wasserstein alignment at each scale produces the minimal Gromov-Wasserstein loss reflecting
preservation of pairwise relations at each individual scale, but a very high COOT loss indicates a lack of
consistency across scales. Conversely, multiscale COOT minimizes the COOT loss while producing the highest
Gromov-Wasserstein loss, which suggests the reverse. The partitioned alignment on the other hand yields a
much lower Gromov-Wasserstein loss, while achieving a COOT loss only marginally worse than that found by
multiscale COOT. These results demonstrate that the partitioned multiscale alignment is able to incorporate
both pairwise and multiscale information effectively to simultaneously align networks at multiple scales.

5.3.2 Multi-scale biological network matching

Our multi-scale network matching approach is not limited to geometric graphs, e.g., those constructed from a
point cloud sampled from 3D objects. We now consider a dataset of protein-protein interaction (PPI) networks
[72], in which nodes and edges correspond to protein species and biochemical interactions respectively. We
take G0 to be the PPI network of high-confidence interactions among 1, 004 proteins, and G1

0 to be the PPI
network with 20% more low-confidence interactions. For each of G0, G

1
0 we construct a progressive topological

simplification using the heat kernel reduction described in [22], yielding multi-scale reductions tGiu
2
i“0 and

tG1
iu

2
i“0. We visualize in Figure 6(a) each multiscale reduction, in which nodes are coloured by the leading

non-trivial eigenvector of LG0
, the graph Laplacian of G0. Nodes in the low-confidence networks G1

0 are
also coloured using the ground truth node correspondence. We then calculate matchings at each scale by
employing partitioned measure network alignment, multiscale co-optimal transport, as well as independent
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COOT loss GW loss
Gromov-Wasserstein 0.036033 0.010600
Multiscale COOT 0.018261 0.019294
Partitioned alignment (projected gradient) 0.019534 0.012787

(a) TOSCA wolf and centaur: COOT and GW distortion losses.

Method COOT loss GW loss Node correctness Edge correctness
Gromov-Wasserstein 0.058684 0.016181 0.613546 0.967680
Multiscale COOT 0.028927 0.021701 0.036853 0.565782
Partitioned (proximal) 0.030732 0.016125 0.585657 0.964916
Partitioned (block) 0.032357 0.014105 0.597610 0.951580

(b) Protein-protein interaction network: COOT and GW distortion losses, as well as node and edge correctness.

Table 1: Gromov-Wasserstein (GW) and co-optimal transport (COOT) loss for multiscale network matching.
(a) TOSCA object matching. (b) Protein-protein interaction network matching.

Gromov-Wasserstein matchings at each simplification level.
In this example, we care about the exact node matchings and so we opt to solve the exact, unregularized

network matching problem: for the partitioned measure network alignment as well as Gromov-Wasserstein
measure network alignment, we use a proximal gradient algorithm (Algorithm 3). In Figure 6(b), the
matchings from each of these algorithms are shown across all three simplification levels. We also show a
set of “ground truth” couplings: between G0 and G1

0, this is the identity coupling, whereas between Gi

and G1
i (for i “ 1, 2) an approximate ground truth coupling is found by calculating a matrix of pairwise

correlations between coarse-grained nodes and then solving a linear assignment problem. From a visual
assessment of each of the matchings, we observe that both the partitioned and Gromov-Wasserstein alignment
find matchings between G0 and G1

0 that resemble the ground truth, while multiscale COOT performs quite
poorly: this reflects the fact that multiscale COOT is unaware of the pairwise adjacency information at
each scale. Between G1 and G1

1, we find that the partitioned alignment continues to resemble the ground
truth, but both Gromov-Wasserstein and multiscale COOT matchings begin to deviate significantly. Finally,
between G2 and G1

2, we find that Gromov-Wasserstein continues to appear differently from the ground truth.
Due to the non-geometric nature of the input graphs, an effective direct visualization of the matchings is very

difficult. To demonstrate the difference in matching results in a clearer way, we employ the Louvain community
detection algorithm [8] which finds a partitioning of G0 (and hence G1

0) into m “ 12 communities. Together
with the hypergraph coupling between simplification levels i and i ` 1, the matching πi at simplification
level i induces a matching of communities. In Figure 6(c), we show the induced community matchings
for each alignment method, as well as for the ground truth. At level 0, the partitioned alignment and
Gromov-Wasserstein both produce nearly perfect alignments, while multiscale COOT performs poorly. At
level 1, however, both Gromov-Wasserstein and multiscale COOT perform poorly, while partitioned alignment
continues to perform well. Finally, at level 2 from the ground truth matching, it is apparent that too much
information is lost by applying coarsening to the graphs to correctly identify communities. However, the
matching induced by the partitioned alignment is still closer to the ground truth, for instance in L1 norm
(L1 “ 0.265) compared to Gromov-Wasserstein (L1 “ 0.319) and multiscale COOT (L1 “ 0.508).

In Table 1(b), we show the loss terms similar to the previous TOSCA example: we observe that Gromov-
Wasserstein fails to find consistent matchings across scales as evidenced by a high COOT loss. On the other
hand, multiscale COOT leads to poor preservation of pairwise relations within each simplification level,
indicated by a high Gromov-Wasserstein loss. In contrast, partitioned alignments are able to find multiscale
matchings that are consistent within each scale as well as across scales. Furthermore, partitioned alignment
methods yield node and edge correctness scores for level 0 that are comparable to Gromov-Wasserstein, which
was found to outperform most other competing alignment methods in [78].
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Figure 6: Multiscale matchings for protein-protein interaction networks: (a) Network layouts of successive
simplifications tGiu and tG1

iu for i “ 0, 1, 2 with nodes coloured by the leading nontrivial eigenvector of
LG. (b) Matchings found at each scale using (from left to right): partitioned measure network matching;
multiscale COOT matching; Gromov-Wasserstein measure network matching at each level; and the ground
truth matching. (c) Matchings of Leiden communities induced by the node-level matching between Gi and
G1

i at each simplification level i. “Ground truth” shows the best possible matching of Leiden communities
using couplings at this level of granularity.

5.4 Geodesics and Fréchet means

In Section 4.3, we introduce the Fréchet functional (26) on the space of partitioned measure networks and
calculate its gradient. Recall from Theorem 1 that the spaces of measure networks and measure hypernetworks
isometrically embed into the space of partitioned measure networks, we recover from (26) the Fréchet functional
on measure networks [20, 52] and measure hypernetworks [22] as special cases. For simplicity we consider the
unlabelled case here, although in general our results can be straightforwardly extended to measure networks
with labels valued in an inner product space (see e.g., [74]).

In practice, a stationary point of the functional (26) can be found via gradient descent on the space of
partitioned measure networks using the “blow-up” scheme of [20] which progressively carries out alignment
of network representatives as per Proposition 4.11. This approach exploits the empirical observation that
optimal couplings of measure networks tend to be sparse (see e.g., [20, Appendix C] and [21, Theorem 2]),
allowing the geodesics of Proposition 3.9 to be explicitly constructed. While the approach of [20] handles
only measure networks, we implement an extension of [20, Algorithms 1-3] in order to handle measure
hypernetworks. We remark here that, although the question of sparsity of optimal couplings is open in the
general quadratic case, in the setting of co-optimal transport between measure hypernetworks, the alternating
scheme of Algorithm 1 is guaranteed to yield a sparse coupling. This is because each iterate is the solution
of a linear program and is therefore sparse. In what follows, we refer to this approach as the free support
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method, since the size of the networks is determined as part of the optimization procedure.
As an alternative to the more involved free support method, we also consider fixing the networks to those

described by matrices of a fixed size, as done in [52]. This makes the optimization much easier: as detailed in
Section A.7, this problem can be solved by alternating between solving independent alignment problems and
a closed form update for the barycenter. We refer to this approach as the fixed support method.

(a) 

(b) 

(e) 

(d) (c) 
Free support

Free support

Fixed support

Fixed support

0

max

Figure 7: Geodesic interpolations between three hypergraphs H0, H1, H2, shown in (a) as “rubber-band”
diagrams. Interpolations found using the free-support method are visualized in (b) as rubber band diagrams
and also directly as their membership functions ω in (c). (d) Fixed support (using 32 ˆ 32 matrices)
interpolations visualized as membership functions. (e) Hypergraph distance dH,2pHi, Hinterpq between each of
the three input hypergraphs and geodesic interpolations, for the free support and fixed support barycenters,
respectively.

In Figure 7(a), we take three hypergraphs H0, H1, and H2 shown as “rubber-band” diagrams in which
nodes are represented as points, and hyperedges are shown as “rubber bands” around the convex hull of
contained nodes. We interpolate between these hypergraphs by computing the Fréchet means of tH0, H1, H2u

with various weights pw0, w1, w2q, using both the free support and fixed support methods. Since the rubber
band visualization is unable to represent weighted node-hyperedge relationships, a threshold (in this case
we chose ωpx, yq ą 1{4) is applied to the membership function ωpx, yq before visualization. As a result,
Figure 7(b) cannot reflect the true nature of the interpolation in the measure hypernetwork space. In
Figure 7(c), we show the interpolated function ω, making the interpolation readily apparent. We remark that
the size (number of nodes and hyperedges) of each interpolating measure hypernetwork is determined by the
blowup scheme (in general, larger than each of the inputs), and that the ordering of rows and columns in the
visualization is arbitrary. In Figure 7(d), we show the membership functions of barycenters computed using
the fixed support method. We note a close resemblance between the results of the free and fixed support
approaches.
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Finally, in Figure 7(e), we compute the measure hypernetwork distance (per Definition 2.6) from each
interpolated hypernetwork to each input hypernetwork. For true interpolations, we would expect the distance
to vary affinely across the simplex. However, in the case of free support barycenters, we observe that is not
always the case. This suggests that local minima may have played a role in the calculation of the weighted
Fréchet means and calculating the distances to each endpoint, reflecting the non-convex nature of the distance
and alignment computation. On the other hand, for fixed support barycenters, we recover the expected trend.
This reflects the computationally simpler nature of the fixed support method, and may indicate that the
fixed support barycenters are more accurate representations of the true hypergraph barycenter.

5.5 Linear and non-linear dictionary learning

We may extend the barycenter question and ask for several characteristic partitioned measure networks that
best describe an ensemble of partitioned measure networks, rather than a single barycenter or Fréchet mean.
One common method is to learn a small basis of representatives (or archetypes), such that each ensemble
member can be approximated by a convex combination of these basis elements. Also known as dictionary
learning, this has become a classical analysis approach for vector-valued data [39] and has recently been
extended to graphs [74, 77] and topological descriptors such as merge trees [40] using the Gromov-Wasserstein
framework. We extend dictionary learning to the setting of partitioned measure networks, which also covers
the settings of measure networks and measure hypernetworks.

5.5.1 Nonlinear (geodesic) dictionary learning

We first recall the geodesic dictionary learning problem first stated in Section 4.3.2. Given an ensemble of N k-
partitioned measure networks tP1, . . . , PNu “ tPi P PkuNi“1, we aim to find a dictionary D “ tD1, . . . , Dmu “

tDj P Pkumj“1 (where m ! N) such that each Pi could be described by elements in D. Formally, we denote

each Pi “
`

Xi, µi, ωi

˘

, and the geodesic dictionary learning problem is

min
tDjumj“1PPk,tαiuNi“1P∆m

1

N

N
ÿ

i“1

dPk
pBpD, αiq, Piq

2
, (43)

where BpD, αq is the barycenter operator (28) for D and each α P ∆m encodes the corresponding coefficients.
We derive formal expressions for the gradients of this function in Section 4.3.2. Like related methods [58, 80],
solving problem (43) is a non-convex, bi-level minimization problem which is not straightforward even to find
a local optimum. While problems of this nature can be solved using more involved schemes such as [77], we
propose to simplify the problem by taking BpD, αq to be the fixed support barycenter operator, where we fix
the size (i.e. number of nodes) of the barycenter a priori and approximate it iteratively (see Section A.7, and
[52]). In practice, we also fix the sizes of the dictionary atoms tDjumj“1 a priori and seek a local minimum
solution for dictionary networks of fixed size by a simple gradient descent.

5.5.2 Linear dictionary learning

Even after fixing the support size of barycenters and dictionary atoms, solution of the bi-level problem (43)
is computationally demanding due to the need for inner-loop computations of the barycenter operator. As
an alternative, linear dictionary learning approaches have been proposed [74, 56], in which the (Fréchet)
barycenter operator BpD, αq is replaced with its Euclidean equivalent, a weighted superposition of the atoms
Drαs “ pX,µ,

řm
j“1 αjωDj q. Since reconstructions from the dictionary are carried out in the Euclidean space,

this eliminates the nested optimization arising from the barycenter computation, at the cost of departing
from the natural geodesic structure of the space of (partitioned) measure networks. We remark that in the
setting where the data Pi P Pk, 1 ď i ď N are sufficiently close together (in the sense of the injectivity radius
of the exponential map), that linear dictionary learning is equivalent to the nonlinear case.

The linearized equivalent of (43) is

min
tωDj

umj“1PL2pX2,µb2q, tαiuNi“1P∆m

1

N

N
ÿ

i“1

dPk
pDrαis, Piq

2
, (44)
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where, for brevity, we denote the linear combination of atoms in D with coefficients in α to be

Drαs “

˜

X,µ,
m
ÿ

j“1

αjωDj

¸

P Pk.

In this formulation, we ask for m ! N atoms, set tωDj
umj“1 P L2pX2, µb2q, and for each input network Pi,

we work with a corresponding set of coefficients tαijumj“1 such that the reconstructed network described by
incidence matrix Drαis is close to Pi in the sense of the optimal transport metric. In the above, we fix the
partitioned measure space to pX,µq respectively. We note that the computation of dPk

involves solution of a
nonlinear program for the coupling π. We can expand the dPk

terms within the objective (44):

min
tωDj

umj“1PL2pX2,µb2q, tαiuNi“1P∆m,tπiPΠkpµ,µiquNi“1

1

N

N
ÿ

i“1

xL pDrαis, ωPi
q , πi b πiy . (45)

Minimizing in πi can be done independently and in parallel for each of the 1 ď i ď N inputs. Fixing π, we
have a non-convex quadratic program in ωDj

and the coefficients αi. We solve the problem (44) using a
stochastic projected gradient descent.

Linear dictionary learning Geodesic dictionary learning
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Figure 8: (a) Learned dictionary weights for each interpolation instance using linear dictionary learning
(correlation = 0.894) and geodesic dictionary learning (correlation = 0.809), compared to the true weights.
(b) Measure hypernetwork distances between true networks and dictionary learning reconstructions, under
random permutation of dictionary elements. (c) Atoms learned by linear dictionary learning. (d) Atoms
learned by geodesic dictionary learning.

For an experiment, we consider again the example from Section 5.4 involving three hypergraphs. We
generate barycenters of these three hypergraphs with mixture weights uniformly spaced across a barycentric
grid inside a simplex (i.e., a triangle in this example) using the “blow-up” algorithm. This procedure produces
an ensemble of 45 hypergraphs across the grid, in which the number of nodes ranged from 6 to 23, and
the number of hyperedges between 4 and 17. By construction, the input hypergraphs H0, H1, H2 are the
ground truth atoms, and weights twiju1ďiďN,0ďjď2 serve as the ground truth mixture coefficients. In Figure
8(a) we show the dictionary weights learned by the linear and geodesic dictionary learning respectively,
compared to the true weights. Although geodesic dictionary learning (at least in theory) accounts correctly
for the underlying geometry of hypergraphs, we find that linearized dictionary learning yields better results
in practice. A potential explanation for this result is that linearization avoids the need to solve a non-convex
inner loop problem, replacing this with Euclidean averaging.
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Figure 9: (a) Sample instances from the hypergraph stochastic block model for k “ 4, 3, 2 blocks respectively.
(b) Illustration of hypergraph flattening. (c) left: learned hypergraph atoms capture the three underlying block
models; note the presence of hyperedges that span the node set between blocks; right: Barycentric projection
of learned weights, coloured by the ground truth label. (d) Learned graph atoms (left) and weights (right)
from Gromov-Wasserstein dictionary learning with flattened hypergraphs as input. (e) 10-fold cross-validation
results for SVM classification of hypergraph samples. (f) Coarse-grained hypergraph representations of
dictionary atoms learned by linear HDL.

To illustrate what we gain by using geodesic over linearized dictionary learning, for each method we
randomly permute the learned dictionary atoms and re-calculate the reconstruction error. We show in Figure
8(b) the reconstruction error across 10 independent permutations. In the space of measure hypernetworks,
this amounts to changing the choice of representative for the dictionary atoms. This leads to an increased
reconstruction error for linearized dictionary learning, relative to geodesic dictionary learning: this tallies
with geodesic dictionary learning objective being defined independent of choices of representative. Overall,
we find that linearized dictionary learning has an advantage over its geodesic variant due to computational
simplicity, and this is the algorithm we use in the following sections.

Finally, we show in Figure 8(c) and (d) the atoms learned by linear and geodesic dictionary learning
respectively. Both methods could reliably reconstruct the atoms shown in Figure 7(a), which are used to
generate the input ensemble.

5.5.3 Example: stochastic block model for hypergraphs

To further validate our numerical algorithm using synthetic data, we devise a simple generative model for
random non-uniform hypergraphs that is analogous to the stochastic block model in the case of simple graphs,
similar to the model introduced in [27]. For a (possibly random) number of nodes |V | and a fixed number of
blocks k, we partition the node set V into k blocks of size t|V |{ku, with one block containing any remainders.
A random number, |E|, of hyperedges are then sampled. With probability p, a sampled hyperedge will span
m ă tN{ku nodes, all residing in one of the k blocks chosen uniformly at random. Otherwise the hyperedge
will consist of m nodes sampled uniformly from all nodes in V . The key parameters at play are k and p,
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controlling respectively the number of blocks and the level of noise.
We set up three block models with k “ 2, 3, 4 blocks and p “ 2{3; 50 hypergraphs are sampled from

each model. For each hypergraph, the number of nodes and hyperedges are chosen uniformly from r16, 32s

and r24, 32s respectively. We show examples of sampled hypergraphs for each k in Figure 9(a). In total, we
generate a dataset of 150 hypergraphs. We apply both linearized and geodesic hypergraph dictionary learning
(HDL) algorithms to this dataset to learn three atoms.

To compare against graph-based methods, we apply the graph dictionary learning (GDL) method of [74]
using flattened hypergraphs. These flattened hypergraphs are obtained by taking the sum of hyperedges,

i.e., 1
|E|

ř|E|

i“1 1ei1
J
ei , that is, putting a weighted connected component in place of each hyperedge; see Figure

9(b). As can be seen from the learned atoms and coefficients in Figure 9(c) and (d), HDL is able to accurately
learn distinct atoms corresponding to different values of k. By comparison, GDL finds atoms that appear to
be mixed.

We use the learned coefficients from HDL and GDL as features for support vector machine (SVM)
classification. In Figure 9(e) we show the accuracy in 10-fold cross validation for both (linear and geodesic)
HDL and GDL. For comparison, we also show accuracy achieved by two commonly used graph kernels, the
Weisfeiler-Lehmann isomorphism test and the shortest path kernel [62], applied to the flattened hypergraphs.
We find that both variants of HDL achieve high accuracy, outperforming GDL. We also observe that linearized
HDL outperforms geodesic HDL. Strikingly, the two graph kernel approaches perform much worse than either
HDL or GDL. Finally, in Figure 9(f), we show rubber-band diagrams of the atoms found by linearized HDL.

5.5.4 Example: mutagenicity dataset

A real-world example is the well known MUTAG dataset [25] containing 188 small molecule structures,
labelled by their mutagenicity (mutagenic or non-mutagenic). This is a standard benchmarking dataset that
has been widely adopted for testing graph learning algorithms [62]. Starting from a molecular graph where
nodes are atoms and edges are chemical bonds, we propose to lift these chemical structures to partitioned
measure networks as follows. Using a graph heat kernel [21], we construct an atom-atom connectivity network
encoding proximity of atoms in the molecule. We also construct a persistent homology (PH) hypergraph
following the procedure described in [4] to encode information about geometric cycles: nodes and hyperedges
correspond to atoms and PH generators, respectively. We show the ensemble of persistence diagrams from
this dataset in Figure 10(a), where points are coloured by the ground truth mutagenicity label; see [48] for an
user-friendly introduction to persistent homology and [28] for the seminal work on the topic. A separation
between mutagenic and non-mutagenic compounds can be visually discerned from these persistence diagrams,
suggesting that persistent homology may be sensitive to molecular features that play a role in mutagenicity.
In Figure 10(b) we illustrate the computation of the connectivity kernel and the PH-hypergraph from an
example molecular graph.

Taking either the PH-hypergraphs or (heat kernel, PH)-partitioned networks as input data, we run
linearized partitioned network dictionary learning for k “ 8 atoms and extract the learned atoms and
coefficients. We reason that the learned dictionaries should capture aspects of the molecular structure that are
predictive of molecular properties such as mutagenicity. Using the learned coefficients, we train a RBF-kernel
SVM for binary classification of mutagenicity. We also apply the linear Gromov-Wasserstein dictionary
learning algorithm of [74] using the clique expansion of the PH-hypergraph as input. For reference, we consider
several other popular approaches for encoding geometric and topological information in machine learning
tasks. Specifically, we compare to persistence images [1] (PersImg), as well as the Weisfeiler-Lehmann graph
kernel [61] using either the molecular connectivity graphs (WL-conn) or clique-expansion of the persistent
homology hypergraph (WL-ph).

We find that both hypergraph dictionary learning (HDL) and partitioned network dictionary learning
(PDL) achieved comparable performance, suggesting that information on PH generators alone is sufficient
to distinguish between mutagenic and non-mutagenic compounds in the majority of cases; see Figure 10(c).
On the other hand, Gromov-Wasserstein dictionary learning exhibits worse performance despite being
provided with PH information in the form of the clique-expansion of the PH hypergraph. This reflects the
loss of higher-order information incurred by “flattening” of a hypergraph to a graph [63]. Similarly, we
find that classification using persistence images (encoding information about the persistence diagram, but
not node-generator membership information) as well as Weisfeiler-Lehman kernels (encoding only pairwise
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Figure 10: (a) Superimposed persistence diagrams (1-dimensional persistent homology or H1) for molecular
structures in the MUTAG dataset, coloured by mutagenicity. (b) Illustration of connectivity kernel and
persistent homology (PH) hypergraph construction from molecular graphs. (c) SVM binary classification
accuracy for mutagenicity, using different representations or kernels, shown over 5-fold cross validation. (d)
Atoms learned by hypergraph dictionary learning (HDL). (e) Atoms learned by partitioned network dictionary
learning (PDL). (f) Dictionary weights learned from HDL and PDL, respectively. (g) Coefficients learned
from HDL weights by linear SVM. (h) Atom 0 (predicted to be associated with non-mutagenic compounds)
and Atom 4 (predicted to be associated with mutagenic compounds).

relationships) perform relatively poorly. In order to ensure a fair comparison across the different methods we
consider, we do not use node labels in this analysis. We remark that our dictionary learning algorithm can be
straightforwardly extended to incorporate vector-valued node labels [74] and we expect that including that
additional information would further improve classification performance.

Figures 10(d) and (e) illustrate the atoms found by HDL and PDL, respectively. The learned atoms
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of the partitioned network dictionary consist of pairwise node-node similarities, as well as node-hyperedge
memberships. The partitioned network atoms capture both local detail as well as topological information in
a coupled fashion. By comparison, with only hypergraph information, nodes with membership in the same
homology generators may be indistinguishable. The dictionary coefficients in Figure 10(f) illustrate how each
molecule in the dataset is decomposed in terms of soft membership to each of the k “ 8 archetypes (atoms
or representatives). From visual inspection, it is already clear that the learned topics are largely able to
disentangle mutagenic compounds from non-mutagenic ones. To quantify this, we train a linear SVM on
the hypergraph dictionary coefficients, and extract the contribution of each atom towards the “mutagenic”
class; see Figure 10(g). We find that atoms are clearly separated into mutagenicity and non-mutagenicity
contributing factors. In Figure 10(h), we show example PH-hypergraph archetypes that are indicative of
mutagenicity or non-mutagenicity. For instance, Atom 0, which contributes towards non-mutagenicity, displays
a simple PH-hypergraph structure with two generators that do not share nodes. On the other hand, Atom 4
contributes towards mutagenicity and displays a complex PH-hypergraph structure with many interlinked
generators. These findings suggest that compounds with more cycles are more likely to be mutagenic, and
this is consistent with the chemical literature [25].

6 Discussion

We develop a theoretical footing for the analysis of generalized network objects, modelled by the space of
k-partitioned measure networks. We equip this space with a family of metrics dPp

k
(p ě 1) that extends

the well-known p-Gromov-Wasserstein metric originally developed for measure metric spaces [65, 44] and
recently applied to measure networks [19] and measure hypernetworks [22]. When p “ 2, we further provide
a geometric characterization of the space of partitioned measure networks in terms of geodesics, curvature
bounds, as well as its tangent space. We additionally consider the case where additional labels (valued in a
metric space) are available. We prove metric properties in the labelled setting, and for p “ 2, we show that
our geometric characterizations also apply (when labels are valued in an inner product space). Based on
these ideas, we provide a range of numerical examples illustrating the applicability of our framework across
multiple domains in network analysis and data science. We believe our work will be of broad interest to the
network science, geometry, and statistics communities.

Our work leaves several open avenues for future research. Among these, providing a geometric characteri-
zation of labelled networks when labels are valued in more general spaces, such as Riemannian manifolds (for
instance, conditions for uniqueness of geodesics and curvature). Additionally, a rigorous analysis of functionals
on the space of partitioned measure networks and their gradient flows remains to be constructed. Whereas
we have introduced notions of tangent vectors and gradients and have formally shown their calculation and
application, we have not addressed issues such as the existence and uniqueness of minimizer in the general
case.

On the application front, some of the example applications we have presented could be fruitful problems
to study separately. Among these, we think that multiscale network alignment and partitioned network
dictionary learning are particularly interesting. As an example of a specific application requiring extensions
of our theory, in [82], we develop a partial transport variant for applications in topological data analysis.
Finally, we remark that there are some alternative formulations of optimal transport applied to tensors [35]
that our framework does not cover. It remains an open question whether similar theoretical results to ours
can be established for the tensors.
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Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. POT: Python optimal
transport. Journal of Machine Learning Research, 22(78):1–8, 2021.

[32] Yanjun Han, Philippe Rigollet, and George Stepaniants. Covariance alignment: from maximum likelihood
estimation to Gromov-Wasserstein. arXiv preprint arXiv:2311.13595, 2023.

[33] Jürgen Jost and Raffaella Mulas. Hypergraph Laplace operators for chemical reaction networks. Advances
in mathematics, 351:870–896, 2019.

[34] Minoru Kanehisa and Susumu Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic acids
research, 28(1):27–30, 2000.
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A Details on numerical algorithms

In this section, we follow the notations introduced in Section 5.1.

A.1 Co-optimal transport

By taking k “ 2, ωii “ 0, ωij “ ωji, and L defined in (33), it is easy to verify the following identity:

xLpω12, ω
1
12q, π1 b π2y “ xLpω12, ω

1
12q b π2, π1y “ xLpωJ

12, pω1
12qJq b π1, π2y “ xLpωJ

12, pω1
12q

J
q, π2 b π1y.

We obtain from (35) the case of matching between labelled measure hypernetworks H “ pX1, µ1, X2, µ2, ω12q

and H 1 “ pX 1
1, µ

1
1, X

1
2, µ

1
2, ω

1
12q:

min
π1PΠpµ1,µ

1
1q,π2PΠpµ2,µ

1
2q

xLpω12, ω
1
12q, π1 b π2y ` xC1, π1y ` xC2, π2y ` ε1Ω1pπ1q ` ε2Ω2pπ2q, (46)

where for full generality we include the possibility of a regularization of each of the πi when εi ą 0, as per
(36).

The unregularized problem is a bilinear program in pπ1, π2q since the objective can be rewritten as
xLpω12, ω

1
12q`C1‘C2, π1bπ2y where pA‘Bqijkl “ Aij`Bkl. In the case of unlabelled measure hypernetworks

where C1 “ C2 “ 0, this has been studied in detail by [55, 22], among others. The alternating scheme of [55]
for finding a stationary point presents itself:

π1 Ð min
π1PΠpµ1,µ1

1q
xLpω12, ω

1
12q b π2 ` C1, π1y ` ε1Ω1pπ1q,

π2 Ð min
π2PΠpµ2,µ1

2q
xLpωJ

12, ω
1J
12q b π1 ` C2, π2y ` ε2Ω2pπ2q.

(47)

Employing the identity [52, Proposition 1] we have for π P Πpµ, µ1q that

Lpω, ω1q b π “
ÿ

kl

Lpω, ω1q¨¨kl b πkl “ ηpω, ω1q ´ ωπpω1qJ, (48)

where

ηpω, ω1q “
1

2

`

ω^2
˘

µ1J `
1

2
1
´

ω1^2
µ1
¯J

, (49)

and ω^2, ω1^2
are understood entrywise. ηpω, ω1q depends only upon pµ, µ1q, the marginals of π.

Algorithm 1 Alternating minimization: labelled hypergraphs (co-optimal transport)

1: Input: Incidence matrices ω12, ω
1
12, probability measures µi, µ

1
i, i “ 1, 2, label cost matrices C1,2

(optional).
2: Parameters: entropic regularization levels ε1, ε2 ě 0 (optional)
3: Initialize couplings: πi Ð µi b µ1

i, i “ 1, 2.
4: for t “ 1, 2, . . . , max iter do
5:

π1 Ð argmin
π1PΠpµ1,µ1

1q

xLpω12, ω
1
12q b π2 ` C1, π1y ` ε1Ω1pπ1q,

6:

π2 Ð argmin
π2PΠpµ2,µ1

2q

xLpωJ
12, ω

1J
12q b π1 ` C2, π2y ` ε2Ω2pπ2q,

7: end for
8: Output: couplings pπ1, π2q
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A.2 General matchings of partitioned measure networks

For general k-partitioned measure networks, the problem (35) is quadratic in pπiq
k
i“1. We propose to

obtain an approximate solution to this problem using block coordinate descent separately in each of the πi,
while holding pπjqj‰i fixed. Each block update amounts to solution of a problem closely resembling Fused
Gromov-Wasserstein matching [71]:

min
πiPΠpµi,µ1

iq

1

2
xLpωii, ω

1
iiq, πi b πiy ` xM rπ´is ` Ci, πiy ` εiΩipπiq, 1 ď i ď k, (50)

where π´i “ pπjqj‰i and

M rπ´is “
ÿ

j‰i

ˆ

1

2
Lpωij , ω

1
ijq `

1

2
LpωJ

ji, ω
1J
ji q

˙

b πj

“
1

2

ÿ

j‰i

”

ηpωij , ω
1
ijq ´ ωijπjpω1

ijqJ ` ηpωJ
ji, ω

1J

jiq ´ ωJ
jiπjω

1
ji

ı

,

(51)

Each subproblem (50) in πi amounts to the minimization of a non-convex quadratic objective on a closed
convex domain, and so a stationary point can be found using the conditional gradient algorithm of [71,
Algorithm 1]. We remark that a similar algorithm for the case of augmented measure networks was introduced
in [26].

Algorithm 2 Alternating minimization: labelled k-partitioned networks

1: Input: Matrices tωijuki,j“1, tω1
ijuki,j“1, probability measures µi, µ

1
i, 1 ď i ď k, label cost matrices pCiq

k
i“1

(optional)
2: Parameters: entropic regularization levels εi ě 0, 1 ď i ď k (optional)
3: Initialize couplings: πi Ð µi b µ1

i, 1 ď i ď k.
4: for t “ 1, 2, . . . , max iter do
5: for 1 ď i ď k do
6:

πi Ð argmin
πiPΠpµi,µ1

iq

1

2
xLpωii, ω

1
iiq, πi b πiy ` xM rπ´is ` Ci, πiy ` εiΩipπiq, with M rπ´is as per (51)

7: end for
8: end for
9: Output: couplings tπiu

k
i“1

A.3 Proximal gradient methods

As an alternative to relying on exact solvers for the unregularized problem, an entropic proximal gradient
algorithm can also be used to solve the problem (35). These algorithms have been shown to perform favorably
in terms of computational complexity as well as empirical results [79, 76]. Writing L to be the objective
function of (35),

Lpπ1, . . . , πkq “
1

2

k
ÿ

i,j“1

xLpωij , ω
1
ijq, πi b πjy `

k
ÿ

i“1

xCi, πiy, (52)

and choosing a regularization level (inverse step size schedule) λt ą 0, a proximal gradient descent on the
objective L starting from an initialization pπ0

i qki“1 generates the iterates for t ě 0:

pπt`1
i qki“1 Ð argmin

πiPΠpµi,µ1
iq, 1ďiďk

Lpπ1, . . . , πkq ` λt KLpbiπi| bi π
t
iq, (53)

where KLpα|βq denotes the (generalized) Kullback-Leibler divergence between probability distributions
(positive measures)

KLpα|βq “ xα, logpdα{dβqy ´ |α| ` |β|. (54)
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Replacing L with its linearization about pπt
1, . . . , π

t
kq yields the proximal gradient method [49, 78],

pπt`1
i qki“1 Ð argmin

πiPΠpµi,µ1
iq,1ďiďk

k
ÿ

i“1

x∇iLpπt
1, . . . , π

t
kq, πiy ` λt KLpbiπi| bi π

t
iq, (55)

where ∇i denotes the gradient of L in its ith argument. Since (for all probability measure inputs) KLpbiπi| bi

πt
iq “

ř

i KLpπi|π
t
iq, the proximal gradient update decouples in each of the πi:

πt`1
i Ð argmin

πiPΠpµi,µ1
iq

x∇iLpπt
1, . . . , π

t
kq, πiy ` λt KLpπi|π

t
iq, 1 ď i ď k. (56)

Rewriting each problem leads to an entropic optimal transport problem which can be solved via Sinkhorn
iterations [24]:

πt`1
i Ð argmin

πiPΠpµi,µ1
iq

λt KLpπi|π
t
i d e´Mi{λt

q, Mi “ ∇iLpπt
1, . . . , π

t
iq, 1 ď i ď k. (57)

Noting that
B

Bπ

1

2
xLpω, ω1q, π b πy “

ˆ

1

2
Lpω, ω1q `

1

2
LpωJ, ω1J

q

˙

b π,

we have the following formula for ∇iL:

∇iLpπ1, . . . , πkq “
1

2

´

Lpωii, ω
1
iiq ` LpωJ

ii , ω
1J

iiq

¯

b πi ` M rπ´is ` Ci

where M rπ´is is defined in (51).

Algorithm 3 Proximal gradient: labelled k-partitioned networks

1: Input: Matrices tωijuki,j“1, tω1
ijuki,j“1, probability measures µi, µ

1
i, 1 ď i ď k, label cost matrices pCiq

k
i“1

(optional).
2: Parameters: inverse step size schedule λt, t ě 0.
3: Initialize couplings: π1

i Ð µi b µ1
i, 1 ď i ď k.

4: for t “ 1, 2, . . . , max iter do
5: for 1 ď i ď k do

6: Mi Ð 1
2

´

Lpωii, ω
1
iiq ` LpωJ

ii , ω
1J

iiq

¯

b πt
i ` M rπt

´is ` Ci (see (51))

7: πt`1
i Ð argminπiPΠpµi,µ1

iq λ
t KLpπi|π

t
i d e´Mi{λt

q (solve using Sinkhorn algorithm).
8: end for
9: end for

10: Output: couplings tπiu
k
i“1

We remark that when all the ωii “ 0, then L coincides with its linearization and Algorithm 3 is in fact a
proximal point method.

Proposition A.1 (Convergence of proximal point method). The limiting iterates as t Ñ 8 of the problem
(53) converge to a stationary point of (35).

Proof. Writing π “ pπ1, . . . , πkq, (53) can be written as

min
πPU

upπ, πtq,

where
upπ, π1q “ Lpπ1, . . . , πkq ` λKLpbiπi| bi π

1
iq

and the set U “ ˆk
i“1Πpµi, µ

1
iq is closed and convex as a Cartesian product of closed, convex sets. Now we

note that
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• upπ, πq “ Lpπq for all π P U .

• upπ, π1q ě Lpπq by non-negativity of the KL-divergence.

• upπ, π1q is smooth in both of its arguments.

Taken together and applying [54, Proposition 1], we satisfy the conditions for [54, Theorem 1].
We remark that the unbalanced case (where the hard marginal constraints are replaced by soft constraints)

can be handled in the same way, if the marginal penalties are smooth. The constraint set is then U “ ˆk
i“1M`

which is also closed and convex.

A.4 Projected gradient descent

When solving the regularized problem (36) and setting Ω0 “ Ω1 “ KL, a projected gradient descent approach
[52] can be used. Then the minimization problem has the form

min
πiPΠpµi,µ1

iq,1ďiďk
Lpπ1, . . . , πkq `

k
ÿ

i“1

εi KLpπi|µi b µ1
iq. (58)

For a gradient step size ηi ą 0, a projected mirror descent step in each πi reads

πt`1
i Ð ProjKL

Πpµi,µ1
iq

“

πt
i d exp

`

´ηip∇iLpπt
1, . . . , π

t
kq ` εi logpπt

i{µi b µ1
iqq

˘‰

, 1 ď i ď k. (59)

Choosing ηi “ 1{εi, we get

πt`1
i Ð ProjKL

Πpµi,µ1
iq

”

e´ε´1
i ∇iLpπ1,...,πkqµi b µ1

i

ı

, 1 ď i ď k. (60)

Each of these projections can be computed through the Sinkhorn algorithm [52, 24]. Similarly, one may
consider Ωi “ 1

2} ¨ }2L2pµibµ1
iq
, in which case the projected L2-gradient descent steps are

πt`1
i Ð ProjFΠpµi,µ1

iq

„

´
1

εi
∇iLpπt

1, . . . , π
t
kqpµi b µ1

iq

ȷ

, 1 ď i ď k. (61)

Here, both the gradient and projection steps are calculated in L2pµ b µ1q. The L2-projection ProjFΠpµ,µ1qpAq

can be carried out by solving a quadratically regularized optimal transport problem. This formulation has
the notable advantage of producing couplings which are sparse, i.e. identically zero outside of a support set
[81, 42].

Algorithm 4 Projected gradient: labelled k-partitioned networks, regularized matchings

1: Input: Matrices tωijuki,j“1, tω1
ijuki,j“1, probability measures µi, µ

1
i, 1 ď i ď k, label cost matrices pCiq

k
i“1

(optional).
2: Parameters: entropic regularization levels εi ě 0, 1 ď i ď k (optional)
3: Initialize couplings: π1

i Ð µi b µ1
i, 1 ď i ď k.

4: for t “ 1, 2, . . . , max iter do
5: for 1 ď i ď k do

6: Mi Ð 1
2

´

Lpωii, ω
1
iiq ` LpωJ

ii , ω
1J

iiq

¯

b πt
i ` M rπt

´is ` Ci (see (51))

7: πt`1
i Ð argminπiPΠpµi,µ1

iq εi KLpπi|e
´ε´1

i Miµi b µ1
iq

8: end for
9: end for

10: Output: couplings tπiu
k
i“1
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A.5 Unbalanced matchings

We now consider the setting of unbalanced transport, in which marginal constraints are relaxed and replaced
with penalty functions that enforce a “soft” marginal constraint. Unbalanced transport has been well studied
from both a theoretical and practical viewpoint for the transportation of measures [17, 16, 41], and has
since been extended to the setting of (Fused) Gromov-Wasserstein matchings between metric measure spaces
[59, 67] and co-optimal transport [69]. An unbalanced formulation of the partitioned network alignment
problem is valuable in practical settings when there may only be partial correspondences between networks,
such as in the metabolic network alignment example of Figure 3.

The unbalanced transport problem for labelled partitioned measure networks includes unbalanced (Fused)
Gromov-Wasserstein [59, 67] and co-optimal transport [69] as sub-cases. We let λ1,2 ą 0 enforce the soft
marginal constraints for the source and target respectively, and we denote by M`pXq the space of positive
measures supported on X. For generality, and because this makes efficient computational schemes possible, we
optionally allow an entropic regularization with a coefficient ε ě 0. Then we pose the problem of (entropically
regularized) unbalanced matching as

min
πiPM`pXiˆX1

iq, 1ďiďk,
mpπiq“mpπjq, @1ďi,jďk

rLpπ1, . . . , πkq ` ε
k
ÿ

i,j“1

KLpπi b πj |µi b µ1
i b µj b µ1

jq

` λ1

k
ÿ

i,j“1

KLpπi1 b πj1|µi b µjq ` λ2

k
ÿ

i,j“1

KLpπJ
i 1 b πJ

j 1|µ1
i b µ1

jq.

(62)

In the above, rL denotes a variant of the objective function (52), modified to ensure that the function rL and
overall objective to be minimized remains homogeneous in pπ1, . . . , πkq:

rLpπ1, . . . , πkq “
1

2

k
ÿ

i,j“1

xLpωij , ω
1
ijq, πi b πjy `

k
ÿ

i“1

mpπiqxCi, πiy, (63)

where mpπq “
ş

dπ is the total mass of π. This is different to the setup in [67], in which the quadratic nature
of the Gromov-Wasserstein term in the coupling π conflicts with the linearity of the fused term. Importantly,
rL coincides with L when its inputs are restricted to be probability measures, i.e. mpπiq “ 1.

Extending the definition of partitioned measure networks (Definition 2.7), we will allow µi to be positive
measures in M`pXiq for each 1 ď i ď k, but require that mpµiq “ mpµjq, i ‰ j. The motivation is to
eliminate the non-uniqueness under scaling (e.g., pµi, µjq Ñ pλµi, λ

´1µjq) that becomes a particular issue in
the special case of co-optimal transport [69].

First, we state the following identity for the KL-divergence (see (54)),

KLpα b β|α1 b β1q “ mpβqHpα|α1q ` mpαqHpβ|β1q ´ mpαqmpβq ` mpα1qmpβ1q

“ mpβqKLpα|α1q ` mpαqKLpβ|β1q ` pmpαq ´ mpα1qqpmpβq ´ mpβ1qq,
(64)

where we have defined the relative entropy term

Hpα|α1q “

ż

log

ˆ

dα

dα1

˙

dα. (65)

Thus, pα, βq ÞÑ KLpα b β|α1 b β1q is 2-homogeneous up to additive constants [59]. Since rL is 2-homogeneous,
the objective of (62) is also 2-homogeneous. We remark that this is important, since if we used L instead of
rL, under the scaling πi ÞÑ λπi, quadratic terms would dominate when λ Ñ `8 and linear terms when λ Ñ 0.
Special case: measure hypernetworks. A special case is when k “ 2 and ωii “ ω1

ii “ 0: this amounts to
an unbalanced, fused co-optimal transport problem. This was the focus of [69] which considered the unlabelled

setting, and we discuss it for completeness. In this case, rL can be written in a bilinear form in pπ1, π2q:

rLpπ1, π2q “

B

1

2
Lpω12, ω

1
12q `

1

2
LpωJ

21, ω
1J
21q ` C1 b 1 ` 1 b C2, π1 b π2

F

. (66)
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Up to additive constants, the problem (62) for k “ 2 and ωii “ ω1
ii “ 0 can be re-written as

min
π1,π2

rLpπ1, π2q ` 2λ1 ppmpπ1q ` mpπ2qqHpπ11|µ1q ` pmpπ1q ` mpπ2qqHpπ21|µ2qq

` 2λ2

`

pmpπ1q ` mpπ2qqHpπJ
1 1|µ1

1q ` pmpπ1q ` mpπ2qqHpπJ
2 1|µ1

2q
˘

` 2ε
`

pmpπ1q ` mpπ2qqHpπ1|µ1 b µ1
1q ` pmpπ1q ` mpπ2qqHpπ2|µ2 b µ1

2qq
˘

´ pλ1 ` λ2 ` εq
`

mpπ1q2 ` mpπ2q2 ` 2mpπ1qmpπ2q
˘

,

(67)

where the minimum is taken over π1 P M`pX1 ˆ X 1
1q and π2 P M`pX2 ˆ X 1

2q such that mpπ1q “ mpπ2q.

Notice that rL is bilinear, but the terms corresponding to the soft marginal constraints contain quadratic
terms in π1 and π2. However, since we have the constraint mpπ1q “ mpπ2q, we could judiciously swap mpπ1q

and mpπ2q to derive an objective that remains equivalent under the mass equality constraint:

min
π1,π2

rLpπ1, π2q ` 4λ1 pmpπ2qHpπ11|µ1q ` mpπ1qHpπ21|µ2qq

` 4λ2

`

mpπ2qHpπJ
1 1|µ1

1q ` mpπ1qHpπJ
2 1|µ1

2q
˘

` 4ε
`

mpπ2qHpπ1|µ1 b µ1
1q ` mpπ1qHpπ2|µ2 b µ1

2q
˘

´ 4pλ1 ` λ2 ` εqmpπ1qmpπ2q.

(68)

In what follows, we drop the factor of 4 as it can be absorbed into the coefficients:

min
π1,π2

rLpπ1, π2q ` λ1 pmpπ2qHpπ11|µ1q ` mpπ1qHpπ21|µ2qq

` λ2

`

mpπ2qHpπJ
1 1|µ1

1q ` mpπ1qHpπJ
2 1|µ1

2q
˘

` ε
`

mpπ2qHpπ1|µ1 b µ1
1q ` mpπ1qHpπ2|µ2 b µ1

2q
˘

´ pλ1 ` λ2 ` εqmpπ1qmpπ2q.

(69)

We will for now remove the constraint mpπ1q “ mpπ2q. In this setting, we can tackle the problem by
alternating block minimization in pπ1, π2q. Fixing π2 and rearranging the objective function, the update in
π1 amounts to

min
π1PM`pX1ˆX1

1q
xM rπ2s, π1y ` λ1mpπ2qKLpπ11|µ1q ` λ2mpπ2qKLpπJ

1 1|µ1
1q ` εmpπ2qKLpπ1|µ1 b µ1

1q, (70)

where

M rπ2s “

ˆ

1

2
Lpω12, ω

1
12q `

1

2
LpωJ

21, ω
1J

21q

˙

b π2

` mpπ2qC1 `
`

xC2, π2y ` λ1 Hpπ21|µ2q ` λ2 HpπJ
2 1|µ1

2q ` εHpπ2|µ2 b µ1
2q
˘

1.

(71)

Fixing π1, the update in π2 is

min
π2PM`pX2ˆX1

2q
xM rπ1s, π2y ` λ1mpπ1qKLpπ21|µ2q ` λ2mpπ1qKLpπJ

2 1|µ1
2q ` εmpπ1qKLpπ2|µ2 b µ1

2q, (72)

where

M rπ1s “

ˆ

1

2
LpωJ

12, ω
1J

12q `
1

2
Lpω21, ω

1
21q

˙

b π1

` mpπ1qC2 `
`

xC1, π1y ` λ1 Hpπ11|µ1q ` λ2 HpπJ
1 1|µ1

1q ` εHpπ1|µ1 b µ1
1q
˘

1.

(73)

To enforce the equal mass constraint mpπ1q “ mpπ2q, given pπ1, π2q with mpπ1q ‰ mpπ2q, we use the
following to project onto the constraint set:

pπ1, π2q ÞÑ

˜

d

mpπ2q

mpπ1q
π1,

d

mpπ1q

mpπ2q
π2

¸

. (74)
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Algorithm 5 Unbalanced matchings: labelled measure hypernetworks

1: Input: Matrices ω12, ω
1
12, positive measures µi, µ

1
i, i “ 1, 2, label cost matrices C1,2 (optional).

2: Parameters: Entropic regularisation parameter ε ě 0, unbalanced parameters λ1, λ2 ą 0.
3: Initialize couplings: πi Ð µi b µ1

i{
a

mpµiqmpµ1
iq, i “ 1, 2.

4: for t “ 1, 2, . . . , max iter do
5:

π1 Ð argmin
π1PM`pX1ˆX1

1q

xM rπ2s, π1y `λ1mpπ2qKLpπ11|µ1q `λ2mpπ2qKLpπJ
1 1|µ1

1q ` εmpπ2qKLpπ1|µ1 bµ1
1q

6: π1 Ð

d

mpπ2q

mpπ1q
π1

7:

π2 Ð argmin
π2PM`pX2ˆX1

2q

xM rπ1s, π2y `λ1mpπ1qKLpπ21|µ2q `λ2mpπ1qKLpπJ
2 1|µ1

2q ` εmpπ1qKLpπ2|µ2 bµ1
2q

8: π2 Ð

d

mpπ1q

mpπ2q
π2

9: end for
10: Output: couplings tπiu

k
i“1

This projection, also used in [69], can be shown to be equivalent to the KL-projection of pπ1, π2q onto the set
mpπ1q “ mpπ2q.

General case. For general partitioned measure networks, the objective function rL introduces terms that
are non-trivially quadratic in πi and is therefore less straightforward to solve. While in the balanced case
these kinds of problems are typically tackled using a Frank-Wolfe algorithm [44], such an approach is not
feasible for problems with soft constraints. As done in related works [67, 59], we propose to solve the problem
instead via a biconvex relaxation. Consider two partitioned couplings pπ1, . . . , πkq and pξ1, . . . , ξkq. We us
the relaxation of (62):

min
πi,ξiPM`pXiˆX1

iq,1ďiďk
mpπiq“mpξjq,1ďi,jďk

rLpπ1, . . . , πk; ξ1, . . . , ξkq ` ε
k
ÿ

i,j“1

KLpπi b ξj |µi b µ1
i b µj b µ1

jq

` λ1

k
ÿ

i,j“1

KLpπi1 b ξj1|µi b µjq ` λ2

k
ÿ

i,j“1

KLpπJ
i 1 b ξJ

j 1|µ1
i b µ1

jq,

(75)

where we define the relaxed version of (63):

rLpπ1, . . . , πk; ξ1, . . . , ξkq “
1

2

k
ÿ

i,j“1

xLpωij , ω
1
ijq, πi b ξjy `

k
ÿ

i“1

B

1

2
pCi b 1 ` 1 b Ciq, πi b ξi

F

.

The form of the second term ensures symmetry under the exchange of pπ, ξq and that rLpπ1, . . . , πk;π1, . . . , πkq “

Lpπ1, . . . , πkq. The problem (75) is now convex separately in pπiq
k
i“1 and pξiq

k
i“1 respectively. Fixing pξiq

k
i“1
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and minimizing in pπiq
k
i“1, we find that the problem decouples across partitions in each of the πi:

min
πiPM`pXiˆX1

iq,1ďiďk
mpπiq“mpπjq,1ďi,jďk

rLpπ1, . . . , πk; ξ1, . . . , ξkq

`

˜

ÿ

i

mpπiq

¸˜

ε
ÿ

j

Hpξj |µj b µ1
jq ` λ1

ÿ

j

Hpξj1|µjq ` λ2

ÿ

j

HpξJ
j 1|µ1

jq

¸

` λ1

˜

ÿ

j

mpξjq

¸

ÿ

i

KLpπi1|µiq ` λ2

˜

ÿ

j

mpξjq

¸

ÿ

i

KLpπJ
i 1|µ1

iq

` ε

˜

ÿ

j

mpξjq

¸

ÿ

i

KLpπi|µi b µ1
iq.

(76)

Relaxing the mass equality constraint mpπiq “ mpπjq, 1 ď i, j ď k, the above problem amounts to k
regularized unbalanced optimal transport problems that can be solved independently and in parallel. The
resulting couplings can be projected onto the set tmpπiq “ mpπjq, 1 ď i, j ď ku:

pπiq
k
i“1 ÞÑ

ˆ

pmpπ1q . . .mpπkqq1{k

mpπiq
πi

˙k

i“1

. (77)

Similarly, fixing pπiq
k
i“1, the problem in pξiq

k
i“1 is

min
ξiPM`pXiˆX1

iq,1ďiďk
mpξiq“mpξjq,1ďi,jďk

rLpπ1, . . . , πk; ξ1, . . . , ξkq

`

˜

ÿ

j

mpξjq

¸˜

ε
ÿ

i

Hpπi|µi b µ1
iq ` λ1

ÿ

i

Hpπi1|µiq ` λ2

ÿ

i

HpπJ
i 1|µ1

iq

¸

` λ1

˜

ÿ

i

mpπiq

¸

ÿ

j

KLpξj1|µjq ` λ2

˜

ÿ

i

mpπiq

¸

ÿ

j

KLpξJ
j 1|µ1

jq

` ε

˜

ÿ

i

mpπiq

¸

ÿ

j

KLpξj |µj b µ1
jq,

(78)

and the same projection (77) can be used to enforce the mass equality constraint in pξiq
k
i“1. It is important

to note that this scheme aims to solve the biconvex relaxation (75) which is in general only a lower bound for
(62). In particular, at convergence, we may have πi ‰ ξi in general. While this biconvex relaxation scheme
was studied for the Gromov-Wasserstein setting by [59], they were unable to prove tightness or that the two
sets of couplings pπiqi, pξiqi coincide.
A remark on partial transport. On the other hand we may consider partial transport, where some fraction
0 ď s ď 1 of mass is required to be transported with the remainder being discarded and thus incurring zero
cost. This problem was considered by [15] in the case of Gromov-Wasserstein transport. For two probability
measures µ, µ1, define the set of partial couplings of mass s to be

Πpµ, µ1; sq “ tπ ě 0 : π1 ď µ, πJ1 ď µ1,mpπq “ su.

Then, the partial matching problem amounts to solving

min
πiPΠpµi,µ1

i;sq
Lpπ1, . . . , πkq. (79)

This amounts to the minimization of a non-convex objective on a convex and compact constraint set, and
similar to [15], we can tackle it via conditional gradient method. In particular, to compute the descent
directions in each of the πi, we need to solve:

min
πiPΠpµi,µ1

i;sq
x∇iLpπt

1, . . . , π
t
kq, πiy.

Each of these is a partial optimal transport problem which can be solved using the virtual point approach of
[15].
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Algorithm 6 Unbalanced matchings: labelled partitioned measure networks via biconvex relaxation

1: Input: Matrices tωijuki,j“1, tω1
ijuki,j“1, positive measures µi, µ

1
i, 1 ď i ď k, label cost matrices pCiq

k
i“1

(optional)
2: Parameters: Marginal penalties λ1, λ2 ą 0, entropic regularization ε ě 0 (optional).
3: Initialize couplings: πi Ð µi b µ1

i{
a

mpµiqmpµ1
iq, 1 ď i ď k.

4: Initialize additional couplings: ξi Ð πi, 1 ď i ď k.
5: for t “ 1, 2, . . . , max iter do
6: Update pπ1, . . . , πkq by solving (76) independently for each 1 ď i ď k.
7: Rescale pπiq

k
i“1 following (77)

8: Update pξ1, . . . , ξkq by solving (78) independently for each 1 ď i ď k.
9: Rescale pξiq

k
i“1 following (77)

10: pπiq
k
i“1, pξiq

k
i“1 Ð

´
b

mpξq

mpπq
πi

¯k

i“1
,
´
b

mpπq

mpξq
ξi

¯k

i“1
11: end for
12: Output: couplings tπiu

k
i“1, tξiu

k
i“1

A.6 Partitioned networks for multiscale network matching

Chowdhury et al. [22] introduced a generalized co-optimal transport problem for multiscale network matching.
Given an input graph G, they produced successive topological simplifications G “ tG “ G1, . . . , Gku. At each
level 1 ď i ď k ´ 1, the nodes of Gi are partitioned among the nodes of Gi`1. In this way, the coupling of Gi

to Gi`1 can be modelled as a hypergraph in which nodes and hyperedges are identified with nodes in Gi and
Gi`1 respectively. We now show that G can be formulated as a partitioned network with k partitions. Let Xi

be the node set of the ith simplification level Gi. Let ωi,i`1 (for 1 ď i ď k ´ 1) be the function encoding
relations between nodes in the ith and nodes the pi ` 1qth simplification:

ωpx, yq “

$

’

&

’

%

ωi,i`1px, yq, x P Xi, y P Xi`1 for i “ 1, . . . , k ´ 1;

ωi`1,ipx, yq, x P Xi`1, y P Xi for i “ 1, . . . , k ´ 1;

0, otherwise.

Together with a choice of weights pµiq
k
i“1, ppXi, µiq

k
i“1, ωq is a partitioned measure network encoding the

multiscale network G.
Given two graphs G and G1 and their respective simplifications G and G1, we can then construct two

partitioned measure networks: ppXi, µiq
k
i“1, ωq and ppX 1

i, µ
1
iq

k
i“1, ω

1q. For a candidate coupling pπiq
k
i“1, the

corresponding distortion functional is

k´1
ÿ

i“1

}ωi,i`1 ´ ω1
i,i`1}

p
Lppπibπi`1q

. (80)

The partitioned measure network alignment problem induced by this distortion is equivalent to the one
proposed in [22, Algorithm 1], i.e.

min
πiPΠpµi,µ1

iq,1ďiďk

k´1
ÿ

i“1

xLpωi,i`1, ω
1
i,i`1q, πi b πi`1y. (81)

This multiscale graph matching problem therefore fits into the problem of matchings of partitioned measure
networks. Encouragingly, while the formulation of [22] was in terms of pairs of couplings pπi, ξiq, 1 ď i ď k ´ 1
under the constraint ξi “ πi`1, the derivation of the problem from the viewpoint of partitioned measure
networks allows us to directly and naturally formulate the problem in terms of a single set of couplings
pπ1, . . . , πkq.

Furthermore, by modifying the function ω, we can incorporate pairwise information on each of the graphs
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Gi:

ωpx, yq “

$

’

’

’

&

’

’

’

%

ωi,i`1px, yq, x P Xi, y P Xi`1 for i “ 1, . . . , k ´ 1;

ωi`1,ipx, yq, x P Xi`1, y P Xi for i “ 1, . . . , k ´ 1;

ωiipx, yq, x, y P Xi ˆ Xi for i “ 1, . . . , k;

0, otherwise.

This choice of ω leads to the problem

min
πiPΠpµi,µ1

iq

k´1
ÿ

i“1

xLpωi,i`1, ω
1
i,i`1q, πi b πi`1y `

1

2

k
ÿ

i“1

xLpωii, ω
1
iiq, πi b πiy `

k
ÿ

i“1

εi KLpπi|µi b µ1
iq, (82)

which incorporates Gromov-Wasserstein like (i.e. quadratic in π) terms. In the above we allow optionally for
entropy regularization, εi ě 0. For εi ą 0, applying the projected gradient descent approach of Section A.4
leads to the update rule

πt`1
i Ð ProjKL

Πpµi,µ1
iq

´

e´ε´1
i ∇iLpπt

1,...,π
t
kqµi b µ1

i

¯

,

∇iLpπ1, . . . , πkq “
$

’

&

’

%

Lpω12, ω
1
12q b π2 ` 1

2

`

Lpω11, ω
1
11q ` LpωJ

11, ω
1J
11q

˘

b π1, i “ 1;

LpωJ
i´1,i, ω

1
i´1,iq b πi´1 ` Lpωi,i`1, ω

1
i,i`1q b πi`1 ` 1

2

`

Lpωii, ω
1
iiq ` LpωJ

ii , ω
1J
ii q

˘

b πi, 2 ď i ď k ´ 1;

LpωJ
k´1,k, ω

1J
k´1,kq b πk´1 ` 1

2

`

Lpωkk, ω
1
kkq ` LpωJ

kk, ω
1J
kkq

˘

b πk, i “ k.

(83)

When we look for an unregularized solution and εi “ 0, a block coordinate descent scheme similar to the
one proposed in [22] can be employed. The block update in each of the πi works out to be a Fused Gromov-
Wasserstein problem which can be tackled for instance using the Frank-Wolfe scheme of [71]. Alternatively, a
proximal gradient approach similar to the one described in Section A.3 can be employed, in which case the
gradient steps are the same as in (57).

An unbalanced formulation of this problem can also be solved by using the same biconvex relaxation
approach laid out in Section A.5. While this problem falls into the scope of Algorithm 6, it is in fact a
sub-case since each partition i is only coupled to its “adjoining” partitions (rather than all partitions in
the general case). We detail below the specific updates for the biconvex relaxation, in terms of two sets of
couplings, pπiq

k
i“1, pξiq

k
i“1. For each of the πi, 1 ď i ď k, solve

min
πiPM`pXiˆX1

iq
xMi, πiy `

˜

ε
ÿ

j

mpξjq

¸

KLpπi|µi b µ1
iq

`

˜

λ1

ÿ

j

mpξjq

¸

KLpπi1|µiq `

˜

λ2

ÿ

j

mpξjq

¸

KLpπJ
i 1|µ1

iq

(84)

where

Mi “ Li `
ÿ

j

`

εHpξj |µj b µ1
jq ` λ1 Hpξj1|µjq ` λ2 HpξJ

j 1|µ1
jq
˘

,

Li “

$

’

&

’

%

1
2Lpω12, ω

1
12q b ξ2 ` 1

2Lpω11, ω
1
11q b ξ1, i “ 1;

1
2

`

Lpωi,i`1, ω
1
i,i`1q b ξi`1 ` LpωJ

i´1,i, ω
1J
i´1,iq b ξi´1

˘

` 1
2Lpωii, ω

1
iiq b ξi, 2 ď i ď k ´ 1;

1
2LpωJ

k´1,k, ω
1J
k´1,kq b ξk´1 ` 1

2Lpωkk, ω
1
kkq b ξk i “ k.

(85)

Similarly, in each of the ξi, 1 ď i ď k, we solve

min
ξiPM`pXiˆX1

iq
xM 1

i , ξiy `

˜

ε
ÿ

j

mpπjq

¸

KLpξi|µi b µ1
iq

`

˜

λ1

ÿ

j

mpπjq

¸

KLpξi1|µiq `

˜

λ2

ÿ

j

mpπjq

¸

KLpξJ
i 1|µ1

iq,

(86)
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where

M 1
i “ L1

i `
ÿ

j

`

εHpπj |µj b µ1
jq ` λ1 Hpπj1|µjq ` λ2 HpπJ

j 1|µ1
jq
˘

,

L1
i “

$

’

&

’

%

1
2Lpω12, ω

1
12q b π2 ` 1

2LpωJ
11, ω

1J
11q b π1, i “ 1;

1
2

`

Lpωi,i`1, ω
1
i,i`1q b πi`1 ` LpωJ

i´1,i, ω
1J
i´1,iq b πi´1

˘

` 1
2LpωJ

ii , ω
1J
ii q b πi, 2 ď i ď k ´ 1;

1
2LpωJ

k´1,k, ω
1J
k´1,kq b πk´1 ` 1

2LpωJ
kk, ω

1J
kkq b πk i “ k.

(87)

These updates, together with the projections of Algorithm 6 onto the mass equality constraint sets, give a
numerical approach to approximating a solution of the general unbalanced multiscale alignment problem.

A.7 Barycenters with fixed support

As an alternative to the blow-up scheme of [20], we can consider an approximation of the barycenter problem
where we restrict our approach to seeking a minimizer over network representatives of a fixed size. This is
the same as the approach of [52], which was developed in the setting of the Gromov-Wasserstein distance.
That is, for an input ensemble of partitioned measure networks tP piq, 1 ď i ď Nu, we consider a barycenter
P “ ppXi, µiq

k
i“1, ωq in which we have fixed the cardinalities of Xi to |Xi| “ ni. We also prescribe the

probability measures µi for P , so that it remains to find the optimal function ω. Expanding the definition of
the partitioned network distance between hypernetworks, we have

min
ω

N
ÿ

i“1

widPk
pP , P piqq2 “ min

ω

N
ÿ

i“1

„

wi min
πpiqPΠkpµ,µpiqq

}ω ´ ωpiq}2L2pπpiqbπpiqq

ȷ

. (88)

From this, it is apparent that an alternating scheme can be developed by minimizing separately in the
couplings πpiq P Πkpµ, µpiqq and in the function ω. Fixing ω, the objective (88) can be minimized in each of
the πpiq, 1 ď i ď N by solving N independent partitioned network matching problems. Fixing the couplings
tπpiquNi“1, the minimization problem in ω becomes

min
ω

ÿ

i

wi }ω ´ ωpiq}2L2pπpiqbπpiqq
,

this amounts to minimizing a quadratic objective and therefore has a closed form solution.

Proposition A.2 (Barycenter update for fixed couplings). For fixed couplings πpiq, 1 ď i ď N , the objective
(88) is quadratic and minimized in ω at

ω‹
jl “

1

µj b µl

N
ÿ

i“1

wiπ
piq
j ω

piq
jl π

piq
l

J

, 1 ď j, l ď k. (89)

We note that the derivation of the form of this update is identical to that of [52], except for the presence
of two possibly distinct couplings in the summand.

65


	Introduction
	Metric geometry of spaces of generalized networks
	Spaces of generalized networks
	Generalized networks
	Generalized network distances

	Partitioned measure networks and generalized networks
	Partitioned measure networks
	Partitioned network distance
	Metric properties of the partitioned network distance
	Geodesics and curvature


	Extension to labelled networks
	Labelled partitioned measure networks
	Metric properties of the labelled distance
	Consequences and comparisons to other results

	Alexandrov geometry of labelled partitioned networks
	Geodesic structure
	Completeness and curvature
	The case of unlabelled networks

	Interpretation of partitioned distance as a labelled distance
	Notation for networks labelled in extended metric spaces
	Partitioned distance as a labelled network distance
	Labelled partitioned distance as a labelled network distance


	Riemannian structure of partitioned networks
	Tangent spaces
	The labelled case
	The unlabelled case

	Gradients
	Calculating gradients
	Fréchet functional
	Geodesic dictionary learning


	Applications and algorithms
	Numerical algorithms
	Network matching and comparison
	Relation to spectral network alignment
	Comparison to spectral network alignment for random graphs and hypergraphs
	Metabolic network alignment
	Multi-omics sample and feature alignment

	Partitioned networks for multiscale network matching
	Multiscale point cloud matching
	Multi-scale biological network matching

	Geodesics and Fréchet means
	Linear and non-linear dictionary learning
	Nonlinear (geodesic) dictionary learning
	Linear dictionary learning
	Example: stochastic block model for hypergraphs
	Example: mutagenicity dataset


	Discussion
	Details on numerical algorithms
	Co-optimal transport
	General matchings of partitioned measure networks
	Proximal gradient methods
	Projected gradient descent
	Unbalanced matchings
	Partitioned networks for multiscale network matching
	Barycenters with fixed support


