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Abstract We study the probabilistic convergence between the mapper graph
and the Reeb graph of a topological space X equipped with a continuous
function f : X — R. We first give a categorification of the mapper graph
and the Reeb graph by interpreting them in terms of cosheaves and stratified
covers of the real line R. We then introduce a variant of the classic mapper
graph of Singh et al. (2007), referred to as the enhanced mapper graph, and
demonstrate that such a construction approximates the Reeb graph of (X, f)
when it is applied to points randomly sampled from a probability density
function concentrated on (X, f).

Our techniques are based on the interleaving distance of constructible
cosheaves and topological estimation via kernel density estimates. Following
Munch and Wang (2018), we first show that the mapper graph of (X, f), a
constructible R-space (with a fixed open cover), approximates the Reeb graph
of the same space. We then construct an isomorphism between the mapper
of (X, f) to the mapper of a super-level set of a probability density function
concentrated on (X, f). Finally, building on the approach of Bobrowski et
al. (2017), we show that, with high probability, we can recover the mapper of
the super-level set given a sufficiently large sample. Our work is the first to
consider the mapper construction using the theory of cosheaves in a probabilistic
setting. It is part of an ongoing effort to combine sheaf theory, probability, and
statistics, to support topological data analysis with random data.

A. Brown
IST Austria, E-mail: adam.brown@Qist.ac.at

O. Bobrowski
Technion - Israel Institute of Technology, E-mail: omer@ee.technion.ac.il

E. Munch
Michigan State University, E-mail: muncheli@msu.edu

B. Wang
University of Utah, E-mail: beiwang@sci.utah.edu



2 Adam Brown et al.

Keywords topological data analysis - mapper - computational topology -
constructible cosheaves

1 Introduction

In recent years, topological data analysis has been gaining momentum in aiding
knowledge discovery of large and complex data. A great deal of work has been
focused on data modeled as scalar fields. For instance, scientific simulations and
imaging tools produce data in the form of point cloud samples equipped with
scalar values, such as temperature, pressure and grayscale intensity. One way to
understand and characterize the structure of a scalar field f : X — R is through
various forms of topological descriptors, which provide meaningful and compact
abstraction of the data. Popular topological descriptors can be classified into
vector-based ones such as persistence diagrams (Edelsbrunner et al., 2002) and
barcodes (Ghrist, 2008; Carlsson et al., 2004), graph-based ones such as Reeb
graphs (Reeb, 1946) and their variants merge trees (Beketayev et al., 2014)
and contour trees (Carr et al., 2003), and complex-based ones such as Morse
complexes, Morse-Smale complexes (Gerber and Potter, 2012; Edelsbrunner
et al., 2003b,a), and the mapper construction (Singh et al., 2007).

For a topological space X equipped with a function f : X — R, the Reeb
graph, denoted as R(X, f), encodes the connected components of the level
sets f~1(a) for a ranging over R. It summarizes the structure of the data,
represented as a pair (X, f), by capturing the evolution of the topology of
its level sets. Research surrounding Reeb graphs and their variants has been
very active in recent years, from theoretical, computational and applications
aspects, see Biasotti et al. (2008) for a survey. In the multivariate setting,
Reeb spaces (Edelsbrunner et al., 2008) generalize Reeb graphs and serve as
topological descriptors of multivariate functions f : X — IR?. The Reeb graph
is then a special case of a Reeb space for d = 1.

One issue with Reeb spaces are their limited applicability to point cloud
data. To facilitate their practical usage, a closely related construction called
mapper (Singh et al., 2007) was introduced to capture the topological structure
of a pair (X, f) (where f : X — R%). Given a topological space X equipped
with a R%valued function f, for the classic mapper construction, we work with
a finite good cover U = {Uy }aeca of f(X) for some indexing set A, such that
f(X) CUUy,. Let f*(U) denote the cover of X obtained by considering the
path-connected components of f~1(U,) for each a. The mapper construction
of (X, f) is defined to be the nerve of f*(U), denoted as N« (), see Figure 1(h)
for an example. By definition, the mapper is an abstract simplicial complex;
and its 1-dimensional skeleton is referred to as the classic mapper graph in this
paper.

As a computable alternative to the Reeb space, the mapper has enjoyed
tremendous success in data science, including cancer research (Nicolau et al.,
2011) and sports analytics (Alagappan, 2012); it is also a cornerstone of
several data analytics companies such as Ayasdi and Alpine Data Labs. Many
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variants have been studied in recent years. The «-Reeb graph (Chazal and Sun,
2014) redefines the equivalence relation between points using open intervals
of length at most «. The multiscale mapper (Dey et al., 2016) studies a
sequence of mapper constructions by varying the granularity of the cover. The
multinerve mapper (Carriére and Oudot, 2018) computes the multinerve (Eric
Colin de Verdiére et al., 2012) of the connected cover. The Joint Contour
Net (JCN) (Carr and Duke, 2013, 2014) introduces quantizations to the cover
elements by rounding the function values. The extended Reeb graph (Barral
and Biasotti, 2014) uses cover elements from a partition of the domain without
overlaps.

Although the mapper construction has been widely appreciated by the prac-
titioners, our understanding of its theoretical properties remains fragmentary.
Some questions important in theory and in practice center around its structure
and its relation to the Reeb graph.

Q1. Information content: What information is encoded by the mapper? How
much information can we recover about the original data from the mapper
by solving an inverse problem?

Q2. Stability: What is the structural stability of the mapper with respect to
perturbations of its function, domain and cover?

Q3. Convergence: What is an appropriate metric under which the mapper
converges to the Reeb graph as the number of sampled points goes to
infinity and the granularity of the cover goes to zero?

To the best of our knowledge, our work is the first to address convergence
in a probabilistic setting. Given a mapper construction applied to points
randomly sampled from a probability density function, we prove an asymptotic
result: as the number of points n — oo, the mapper graph construction
approximates that of the Reeb graph up to the granularity of the cover with
high probability.

Information, stability and convergence. We discuss our work in the con-
text of related literature in topological data analysis. As many topological
descriptors, the mapper summarizes the information from the original data
through a lossy process. To quantify its information content, Dey et al. (Dey
et al., 2017) studied the topological information encoded by Reeb spaces, map-
pers and multi-scale mappers, where 1-dimensional homology of the mapper was
shown to be no richer than the domain X itself. Carriére and Oudot (Carriére
and Oudot, 2018) characterized the information encoded in the mapper using
the extended persistence diagram of its corresponding Reeb graph. Gasparovic
et. al. (Gasparovic et al., 2018) provided full descriptions of persistent homology
information of a metric graph via its intrinsic Cech complex, a special type of
nerve complex. In this paper, we study the information content of the mapper
via a (co)sheaf-theoretic approach; in particular, through the notion of display
locale, we introduce an intermediate object called the enhanced mapper graph,
that is, a CW complex with weighted 0-cells. We show that the enhanced
mapper graph reduces the information loss during summarization and may be
of independent interest.
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In terms of stability, Carriére and Oudot (Carriére and Oudot, 2018) derived
stability for the mapper graph using the stability of extended persistence
diagrams equipped with the bottleneck distance under Hausdorff or Wasserstein
perturbations of the data (Cohen-Steiner et al., 2009). Our work is similar
to (Carriére and Oudot, 2018) in a sense that we study the stability of the
enhanced mapper graph with respect to perturbation of the data (X, f), where
the local stability depends on how the cover U is positioned in relation to
the critical values of f. However, we formalize the structural stability of the
enhanced mapper graph using a categorification of the mapper algorithm and
the interleaving distance of constructible cosheaves.

When f is a scalar field and the connected cover of its domain R consists of
a collection of open intervals, the mapper construction is conjectured to recover
the Reeb graph precisely as the granularity of the cover goes to zero (Singh
et al., 2007). Babu (Babu, 2013) studied the above convergence using levelset
zigzag persistence modules and showed that the mapper converges to the
Reeb graph in the bottleneck distance. Munch and Wang (Munch and Wang,
2016) characterized the mapper using constructible cosheaves and proved the
convergence between the (classic) mapper and the Reeb space (for d > 1) in
interleaving distance. The enhanced mapper graph defined in this paper is
similar to the geometric mapper graph introduced in (Munch and Wang, 2016).
The differences between the enhanced mapper graph and geometric mapper
consist of technical changes in the geometric realization of each space as a
quotient of a disjoint union of closed intervals. Proposition 1 implies that the
enhanced mapper graph is isomorphic to the display locale of the mapper
cosheaf, giving theoretic significance to the geometrically realizable enhanced
mapper graph.

Dey et al. (2017) established a convergence result between the mapper and
the domain under a Gromov-Hausdorff metric. Carriére and Oudot (Carriére
and Oudot, 2018) showed convergence between the (multinerve) mapper and
the Reeb graph using the functional distortion distance (Bauer et al., 2014).
The enhanced mapper graph we define plays a role roughly analogous to
the multinerve mapper in (Carriére and Oudot, 2018), although with several
important distinctions. Most significantly is the fact that the enhanced mapper
graph is an R-space, and as such is not a purely combinatorial object, in
contrast to the multinerve mapper, which is a simplicial poset. Carriére et
al. (Carriére et al., 2018) proved convergence and provided a confidence set
for the mapper using a bottleneck distance on certain extended persistence
diagrams. They showed that the mapper is an optimal estimator of the Reeb
graph and provided a statistical method for automatic parameter tuning using
the rate of convergence. Like Carriére et al. (2018), this paper studies a notion of
consistency (detailed below) for the mapper algorithm. In contrast to Carriére
et al. (2018), the results provided here use the Reeb distance on constructible
R-graphs (defined in Section 2) rather than bottleneck distances on extended
persistence diagrams, and are applicable to more general topological spaces
(i-e., we do not require X to be a smooth manifold).
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Probabilistic mapper inference. This work is part of an effort to harness
the theory of probability and statistics to support and analyze the use of
topological methods with random data. To date, most of this effort has been
put into problems related to the homology and persistent homology of random
point clouds. The problem of homological inference relates to the ability to
recover the homology (or persistent homology) of an unknown space or function
given random observations. In a noiseless setup this problem was studied in
Niyogi et al. (2008); Bobrowski (2019); Chazal et al. (2015); de Kergorlay
et al. (2019); Wang and Wang (2018). The noisy setup was studied in Niyogi
et al. (2011); Bobrowski et al. (2017b); Chazal et al. (2017); Fasy et al. (2014).
Briefly, these works provide methods to recover the homology, together with
assumptions that guarantee correct recovery with high probability. In many of
these, the results are asymptotic, taking the number of points n — co. The
main reason for taking limits, is that the mathematics become more tractable,
and provide simpler and more intuitive statements. Such asymptotic results can
be considered as proofs of consistency for such homology estimation procedures.
In Section 3, we apply results of Bobrowski et al. (2017b) to study consistency
of the enhanced mapper construction introduced in Section 2. The statistical
techniques we use are similar to those developed in Chazal et al. (2011). For
further discussion of the differences between the techniques used in Section 3
and the results of Chazal et al. (2011), see Bobrowski et al. (2017b).

In a way, the work here uses similar ideas to perform “mapper inference”,
a type of structural inference, and proves consistency. Other probabilistic
studies related to applied topology mainly include limiting theorems (laws of
large numbers, and central limit theorems), and extreme value analysis for
the homology and persistent homology of random data (see e.g. Yogeshwaran
et al. (2016); Hiraoka et al. (2018); Owada and Adler (2017); Bobrowski et al.
(2017a); Kahle and Meckes (2013)). However, these are much more detailed
quantitative statements than what we are looking for when working with the
mapper construction.

Contributions. We highlight four contributions of this paper.

— First, in Section 2.3, we introduce and construct an enhanced mapper graph.
This graph retains more geometric information about the underlying space
than the combinatorially defined classic mapper graph, multinerve mapper
graph, and geometric mapper graph (defined in Munch and Wang (2016)).
Moreover, we show that the enhanced mapper graph construction provides
a concrete realization of the display locale of a constructible cosheaf.

— Second, in Section 2.5, we give a categorical interpretation of the mapper
construction. This categorification allows us to view mapper construction
as a functor from the category of cosheaves to the category of constructible
cosheaves. We can recover a geometric realization of the mapper construction
from the categorical realization by taking enhanced mapper graphs, i.e.,
the display locales, of the corresponding constructible cosheaves.

— Third, we prove convergence (Theorem 1) and stability (Theorem 3) for
the mapper cosheaf in the interleaving distance.
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— Finally, we obtain results on the approximation quality of random mapper
graphs obtained from noisy data on spaces which are not assumed to be
manifolds (Theorem 2).

Moreover, using the results of de Silva et al. (2016), each of our theorems are
reinterpreted in terms of the geometrically-defined enhanced mapper graph
and Reeb distance on R-graphs. This reinterpretation allows us to state our
main result below without referring to the machinery of cosheaf theory.
Theorem (Corollary 3) Let R(X, f) be the Reeb graph of a constructible
R-space (X, f), @Z be the enhanced mapper graph associated to the cosheaf
P defined in Section 4, and dg(-,-) be the Reeb distance defined in Section 2.
Using the notation defined in Section 3, if there exists € < &y such that p is
e-concentrated on X, then

Tim P (dp (D7, R(X, f)) < respd ) = 1.
Intuitively speaking, the above theorem states that we can recover (a variant
of) the mapper graph using the theory of cosheaves in a probabilistic setting.
In particular, with high probability, the distance between an enhanced mapper
graph and the Reeb graph is upper bounded by the resolution of the cover
(denoted as ressU, see Definition 15) as the number of samples goes to infinity.
The proof of the theorem relies on two preliminary results. First, in Theorem
1, we construct an interleaving between the Reeb cosheaf and mapper cosheaf.
Proposition 8 is the second key ingredient of the proof, giving a probabilistic
recovery of the mapper cosheaf from random points. By interpreting the
enhanced mapper graph in terms of cosheaf theory, we are able to simplify
many of the proofs for convergence and stability. Generally, this paper illustrates
the utility of combining sheaf theory with statistics in order to study robust
topological and geometric properties of data.

Pictorial overview. To better illustrate our key constructions, we give an
example of an enhanced mapper graph. As illustrated in Figure 1, given a
topological space equipped with a height function (X, f), we are interested
in studying how well its classic mapper graph (h) (with a fixed cover) ap-
proximates its Reeb graph (b). In order to study this problem, we construct
a categorification of the mapper graph, through the theory of constructible
cosheaves (d). The display locale functor is used to recover a geometric object
from these category-theoretic constructible cosheaves. The geometric realiza-
tion of the display locale of the mapper cosheaf is referred to as the enhanced
mapper graph (g). We outline an explicit geometric realization of the enhanced
mapper graph as a quotient of a disjoint union of closed intervals (f).

The main result of the paper, Theorem 2, gives (with high probability) a
bound on the interleaving distance between the Reeb cosheaf and the enhanced
mapper cosheaf. In order to interpret this result in terms of probabilistic
convergence (Corollary 3), we apply the display locale functor to obtain the
Reeb graph and the enhanced mapper graph from their cosheaf-theoretic
analogues. This procedure results (with high probability) in a bound on the
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Reeb distance between an enhanced mapper graph and the Reeb graph of a
constructible R-space with random data.

@ () © (@ © O @

Fig. 1 An example of an enhanced mapper graph. (a) An R-space (X, f) given by a
topological space X (in blue) equipped with a height function f : X — R. (b) Reeb graph of
(X, f)- (c) Nice cover of R with open intervals. (d) Visualization of the mapper cosheaf. (e)

Stratification of R. (f) Disjoint union of closed intervals (D, in the notation of Section 2.3),
with quotient isomorphic to the enhanced mapper graph. (g) Enhanced mapper graph (9, in
the notation of Section 2.3). (h) Classic mapper graph of (X, f).

2 Background

In this section, we review the results of de Silva et al. (2016) together with Munch
and Wang (2016), showing that the interleaving distance between the mapper
of the constructible R-space (X, f) relative to the open cover U of R and the
Reeb graph of (X, f) is bounded by the resolution of the open cover. Motivated
by the categorification of Reeb graphs in de Silva et al. (2016), we introduce
a categorified mapper algorithm, and restate the main results of Munch and
Wang (2016) in this framework.

Categorification, in this context, means that we are interested in using the
theory of constructible cosheaves to study Reeb graphs and mapper graphs. We
can accomplish this by defining a cosheaf (the Reeb cosheaf) whose display locale
is isomorphic to a given Reeb graph. One goal (completed in (de Silva et al.,
2016)) of this approach is to use cosheaf theory to define an extended metric on
the category of Reeb graphs. A natural candidate from the perspective of cosheaf
theory is the interleaving distance. Suppose we want to use the interleaving
distance of cosheaves to determine if two Reeb graphs are homeomorphic.
We can first think of each Reeb graph as the display locale of a cosheaf,
Z and ¥, respectively. This allows us to rephrase our problem as that of
determining if the cosheaves, .# and ¥, are isomorphic. In general, interleaving
distances cannot answer this question, since the interleaving distance is an
extended pseudo-metric on the category of all cosheaves. In other words, having
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interleaving distance equal to 0 is not enough to guarantee that .# and ¢ are
isomorphic as cosheaves. This seems to suggest that the interleaving distance is
insufficient for the study of Reeb graphs. However (due to results of (de Silva
et al., 2016)), if we restrict our study to the category of constructible cosheaves
(over R), we can avoid this subtlety. The interleaving distance is in fact an
extended metric on the category of constructible cosheaves. If two constructible
cosheaves have interleaving distance equal to 0, then they are isomorphic as
cosheaves. Therefore, the display locales of constructible cosheaves (over R) are
homeomorphic if the interleaving distance between the cosheaves is equal to 0.
In other words, if we want to know if two Reeb graphs are homeomorphic, it is
sufficient to consider the interleaving distance between constructible cosheaves
Z and ¥, provided that the display locales of the constructible cosheaves
recover the Reeb graphs. Therefore, in the remainder of this section, we define
a mapper cosheaf, and show that the Reeb cosheaf of a constructible R-space is
a constructible cosheaf, and that the mapper cosheaves are constructible. This
allows us to use the commutativity of diagrams and the interleaving distance
to prove convergence of the corresponding display locales, that is, the Reeb
graphs and the enhanced mapper graphs. We use the example in Figure 1 as a
reference for various notions.

2.1 Constructible R-spaces

We begin by defining constructible R-spaces, which we consider to be the
underlying spaces for estimating the Reeb graphs, see Figure 1. Constructible R~
spaces can be considered as a class of topological spaces which provide a natural
setting for generalizing aspects of classical Morse theory to the study of singular
spaces. Like smooth manifolds equipped with a Morse function, constructible
R-spaces are topological spaces equipped with a real valued function f, whose
fibers, f~1(z), satisfy certain regularity conditions. Specifically, the topological
structure of the fibers of the real valued function are required to only change
at a finite set of function values. The function values which mark changes in
the topological structure of fibers are referred to as critical values.

Definition 1 (de Silva et al. (2016)) An R-space is a pair (X, f), where

X is a topological space and f : X — R is a continuous map. A constructible

R-space is an R-space (X, f) satisfying the following conditions:

1. There exists a finite increasing sequence of points S = {ag, - ,an} C R,
two finite sets of locally path-connected spaces {Vg,--- ,V,} and {Eq, - ,E,_1},
and two sets of continuous maps {¢; : E; — V;} and {r; : E; = V,41}, such
that X is the quotient space of the disjoint union

n n—1
HVZ X {az} L H ]Ez X [ai,aiﬂ]
=0 =0

by the relations

(bi(),a;) ~ (z,a;) and (r;(x), ai+1) ~ (@, ait1)
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for all i and = € E;.
2. The continuous function f: X — R is given by projection onto the second

factor of X.

These are the objects of categories R-space and R-space€, consisting
of R-spaces and constructible R-spaces, respectively. Morphisms in these
categories are function-preserving maps; that is, ¢ : (X, f) — (Y, g) is given by
a continuous map ¢ : X — Y such that g o p(z) = f(z).

Example 1 A smooth compact manifold X with a Morse function f constitutes
a constructible R~space. For instance, Figure 1(a) illustrates a topological space
X equipped with a height function f; the pair (X, f) is an R~space. Similarly,
a height function f on a torus X gives rise to an R-space (X, f) in Figure 6(a).

In fact, X is not required to be a manifold for (X, f) to be an R-space. Through-
out the remainder of this paper, we assume that (X, f) is a constructible
R-space.

Definition 2 (de Silva et al. (2016)) An R-graph is a constructible R-
space such that the sets V; and E; are finite sets (with the discrete topology)
for all 7.

Ezample 2 The Reeb graph of a constructible R-space is an R-graph. For
instance, the Reeb graph of (X, f) in Figure 1(b) is an R~graph. Similarly, the
Reeb graph of a Morse function on a torus is an R-graph, see Figure 6(b).

2.2 Constructible cosheaves

Sheaves and cosheaves are category-theoretic structures, called functors, which
provide a framework for associating data to open sets in a topological space.
These associations are required to preserve certain properties inherent to the
topology of the space. In this way, one can study the topological structure of
the space by studying the data associated to each open set by a given sheaf or
cosheaf. In the following sections, we will use cosheaves to encode information
about a constructible R-space by associating open intervals in the real line
to sets of (path-)connected components of fibers of the real valued function
corresponding to the constructible R-space.

Let Int be the category of connected open sets in R with inclusions which
we refer to as intervals, and Set the category of abelian groups with group
homomorphism maps. We first define a cosheaf over IR, which we propose to
be the natural objects for categorifying the mapper algorithm.

Definition 3 A pre-cosheaf % on R is a covariant functor .% : Int — Set.
The category of precosheaves on R is denoted Set™® with morphisms given by
natural transformations.

A pre-cosheaf Z is a cosheaf if

3_3 F(V) = Z(U)
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for each open interval U € Int and each open interval cover V C Int of U, which
is closed under finite intersections. The full subcategory of Set™* consisting of
cosheaves is denoted Csh.

Remark 1 We note that usually, cosheaves are defined over the category of
arbitrary open sets rather than the category of connected open sets. However,
the category of cosheaves defined over connected open sets is equivalent to the
category of cosheaves defined over arbitrary open sets, by the colimit property
of cosheaves. When we define smoothing operations on cosheaves in Section 2.4,
there are important distinctions that will make clear the need for the definition
with respect to Int, as set-thickening operations do not preserve the cosheaf
property otherwise.

Since we are interested in working with cosheaves which can be described
with a finite amount of data, we will restrict our attention to a well-behaved
subcategory of Csh, consisting of constructible cosheaves (defined below).
Constructibility can be thought of as a type of “tameness” assumption for
sheaves and cosheaves.

Definition 4 A cosheaf .# is constructible if there exists a finite set S C R of
critical values such that .Z[U C V] is an isomorphism whenever SNU = SNV.
The full subcategory of Csh consisting of constructible cosheaves is denoted
Cshe°.

2.3 The Reeb cosheaf and display locale functors

We introduce the Reeb cosheaf and display locale functors. These functors
relate the category of constructible cosheaves to the category of R-graphs, and
provide a natural categorification of the Reeb graph (de Silva et al., 2016).
In other words, via both Reeb cosheaf functor and display locale functors,
one could consider the translation between the data and their corresponding
categorical interpretations.

Let Z¢ be the Reeb cosheaf of (X, f) on R, defined by

‘%f(U) = 7.‘-O(ng)v
where XV := f~1(U) and my(XY) denotes the set of path components of XV.

Definition 5 The Reeb cosheaf functor C from the category of constructible
R-spaces to the category of constructible cosheaves

R-space® —£ 4 Csh®
is defined by C((X, f)) = %Zy. For a function-preserving map ¢ : (X, f) — (Y, g),

(Y
the resulting morphism C[y] is given by Cly] : Z;(U) = moo [~ (U) —
o0 g N(U) = %Z,(U) induced by po f~1(U) C g~ }(U).
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Definition 6 The costalk of a (pre-)cosheaf .# at z € R is
Fo =m F(I).

I>x
For each costalk .%,, there is a natural map %, — .% (I) (given by the universal
property of limits) for each open interval I containing x.

In order to related the Reeb and mapper cosheaves to geometric objects, we
make use of the notion of display locale, introduced in (Funk, 1995).

Definition 7 The display locale of a cosheaf .# (as a set) is defined as

D(F) =[] Z..

A topology on D(Z%) is generated by open sets of the form
Ug={s€Fy:xe€land s—ac.F(I)},
for each open interval I € Int and each section a € .Z(I).

The display locale gives a functor from the category of cosheaves to the category
of R~graphs,
Csh® —2 R-graph.

We proceed by giving an explicit geometric realization of the display locale
of a constructible cosheaf. Let .% be a constructible cosheaf with set of critical
values Ryp C R. Let R; = R\ Ry be the complement of Rg, so that we form a
stratification

R =Ry URy,
See Figure 1(e) for an example (black points are in Rg, their complements are
in IRy). Let S7 be the set of connected components of Ry, i.e., the 1-dimensional

stratum pieces. For € Ry, let I, denote the largest open interval containing
x such that I, NRg = {z}. Let

D(F) = [[ VxZzWV)u [] {z} x Z(L),

Vves; z€R

where V is the closure of V and the product C x ~(Z) of a set C' with the empty
set is understood to be empty. Geometrically, D(.%) is a disjoint union of
connected closed subsets of R; if the support of % is compact, then (%) is a

disjoint union of closed intervals and points. Let m denote the projection map
:D(F) =R
(z,a) — x.

Suppose (z,a) € V x . Z(V) C D(F) and z € Rg. We have that VN RRg = 0)
and I, NV # () (because z lies on the boundary of V). By maximality of I,
we have the inclusion V' C I;. Let ¢, 4) be the map

P(z,a) * ﬁ(v) - ﬁ(Ix)



12 Adam Brown et al.

induced by the inclusion V' C I,. We can extend this map to the fiber of 7
over x,

U N 2) = F(1L),

where ¥,((2,a)) = @ (a) if (z,a) € V x F(V) and ¥,((z,a)) := a if
(z,a) € {z} x F(I,). Finally, we define an equivalence relation of points in
D(.F). Suppose (z,a), (y,b) € D(F). Then (x,a) ~ (y,b) if

1. x =y € Ry, and

2. Yo(a) = (b) € F(Iy).

Finally, let ~
D(F) =D(F)/ ~

be the quotient of 555(27 ) by the equivalence relation. The projection 7 factors
through the quotient, giving a map 7 : (%) — R.

Proposition 1 If .7 is a constructible cosheaf with set of critical values S,
then ©(F) is a 1-dimensional CW-complex which is isomorphic (as an R-space)
to the display locale, D(.F), of F.

Proof We will construct a homeomorphism ~ : ©(.#) — D(.%) which preserves
the natural quotient maps f : D(#) — R and 7 : ®(F) — R. Given = € Ry,
we have that 771(z) = {z} x Z#(V), where V is the connected component
of Ry which contains z. Since .# is constructible with respect to the chosen
stratification, we have that .7 (V) = .#,. This gives a bijection from 7~!(z)
to f~1(x). For x € Ry, the fiber 77!(z) is by construction in bijection with
F(I). Again, since .Z is constructible and I, N Ry = B(z) N Ry for each
sufficiently small neighborhood B(x) of z, we have that .#(I,) = .%#,. These
bijections define a map 7 : D(F) — D(.F), which preserves the quotient maps
by construction. All that remains is to show that v is continuous.

Suppose z € Ry, and let V be the connected component of IRy which
contains x, and B(x) be an open neighborhood of x such that B(xz) C V. Then
Fy = F (V) for each y € B(z), and F (B(x)) = F (V). Recall the definition
of the basic open sets Uy, in the definition of display locale (with notation
adjusted to better align with the current proof),

UI,GZ{SG}EC Hﬂx:yGIands»—)aeﬁ(I)}.
zeR

Using the above isomorphisms to simplify the definition according to the current
set-up, we get

UB(I),@ =Jqac H j(V)

yEB(z)

Therefore, 7_1(UB(1),a) = B(x) x {a}, which is open in the quotient topology
on D(F).
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Suppose x € Ry, and let B(x) be a neighborhood of x such that B(z) C I,.
Let V7 and V5 denote the two connected components of IR; which are contained
in I,. If y € B(x), then %, is isomorphic to either .#(V1), F(V2), or Z ().
Moreover, since .Z is constructible, we have that % (B(z)) = % (I,). Let o’ €
F (1) correspond to a € % (B(z)) under the isomorphism #(I,) = % (B(x)).
Following the definitions, we have that

(Y UB()a) =
(Vi N B(2)) x ZIVi € L] H(a') U (Va N B(z)) x F[Va € L] (a) U {x} x {d'},

where .Z[V; C I,]7!(a') is understood to be a (possibly empty) subset of
F(V;). Tt follows that v~ (Up(y),,) is open in the quotient topology on D(.7).
Therefore, 7~! maps open sets to open sets, and we have shown that « is a
homeomorphism which preserves the quotient maps f and 7, i.e., f(y((z,a))) =
7((z,a)) = . O

It follows from the proposition that ©(.%) is independent (up to isomorphism)
of choice of critical values Rg. Additionally, we now note that we can freely use
the notation ®(.%) or D(F) to refer to the display locale of a constructible
cosheaf over R. We will continue to use both symbols, reserving D for the
display locale of an arbitrary cosheaf, and using ® when we want to emphasize
the above equivalence for constructible cosheaves.

In (de Silva et al., 2016), it is shown that the Reeb graph R(X, f) of (X, f)
is naturally isomorphic to the display locale of %Z¢. Moreover, the display
locale functor D and the Reeb functor C are inverse functors and define an
equivalence of categories between the category of Reeb graphs and the category
of constructible cosheaves on R. This equivalence is closely connected to
the more general relationships between constructible cosheaves and stratified
coverings studied in (Woolf, 2009). The result allows us to define a distance
between Reeb graphs by taking the interleaving distance between the associated
constructible cosheaves as shown in the following section.

2.4 Interleavings

We start by defining the interleavings on the categorical objects. Interleaving
is a typical tool in topological data analysis for quantifying proximity between
objects such as persistence modules and cosheaves. For U C R, let U — U, :=
{yeR||ly—Ul| <e}. U = (a,b) € Int, then U, = (a —¢,b+¢).

Definition 8 Let .# and ¢ be two cosheaves on R. An e-interleaving between
Z and ¢ is given by two families of maps

v FU)—=9U.), Yv:90U)— F(U,)
which are natural with respect to the inclusion U C U,, and such that

Yy, ooy = FU C U], ¢u. oy =9[U C Us]
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for all open intervals U C R. Equivalently, we require that the diagram

FU) — F(U,) —— F(Us)
v N&
% /

gU) — ¥ 9 (Use)

commutes, where the horizontal arrows are induced by U C U, C Use..
The interleaving distance between two cosheaves .% and ¥ is given by

di(#,9) .= inf{e | there exists an e-interleaving between .# and ¥4}.

Now that we have an interleaving for elements of Csh® along with an
equivalence of categories between Csh® and R-graph, we can develop this
into an interleaving distance for the Reeb graphs themselves. The interleaving
distance for Reeb graphs will be defined using a smoothing functor, which we
construct below.

Definition 9 Let (X, f) be a constructible R-space. For ¢ > 0, define the
thickening functor 7. to be

7-E(X7 f) = (X X [7578]3 fs)a
where fe(x,t) = f(z) +t. Given a morphism a : X = Y,

Te(a) : X x [—g,e] = Y x [—¢,¢]
(z,t) = (a(x),t).

The zero section map is the morphism (X, f) — T=(X, f) induced by

X = X x [—¢¢]
x — (x,0).

Proposition 2 ((de Silva et al., 2016, Proposition 4.23)) The thickening
functor Te maps R-graphs to constructible R-spaces, i.e., if (G, g) € R-graphs
then To(G, g) € R-spaces®.

In general, the thickening functor 7; will output a constructible R-space,
and not an R-graph. In order to define a ‘smoothing’ functor for R-graphs
(following de Silva et al. (2016)), we need to introduce a Reeb functor, which
maps a constructible R-space to an IR-graph.

Definition 10 The Reeb graph functor R maps a constructible R-space (X, f)
to an R-graph (X, f), where X; is the Reeb graph of (X, f) and f is the
function induced by f on the quotient space X¢. The Reeb quotient map is the
morphism (X, f) = R(X, f) induced by the quotient map X — X;.

Now we can define a smoothing functor on the category of R-graphs.
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Definition 11 Let (G, f) € R-graph. The Reeb smoothing functor S
R-graph — R-graph is defined to be the Reeb graph of an e-thickened
R-graph

Se(G, f) =R(T:(G, f)) -

The Reeb smoothing functor S, defined above is used to define an inter-
leaving distance for Reeb graphs, called the Reeb interleaving distance. The
Reeb interleaving distance, defined below, can be thought of as a geometric
analogue of the interleaving distance of constructible cosheaves. Let (f be
the map from (F, f) to Sc(F, f) given by the composition of the zero section
map (F, f) — Te(F, f) with the Reeb quotient map 7-(F, f) — R(7T:(F, f)). To
ease notation, we will denote the composition of (g : (F, f) — S:(F, f) with

CSE(]F,f) : SE(F’ f) — SE(‘SE(]F?f)) by CI‘;(C[?(F’ f))

Definition 12 Let (F, f) and (G,g) be R-graphs. We say that (F, f) and
(G, g) are e-interleaved if there exists a pair of function-preserving maps

a:(F, f) = S8(G,g) and  B:(G,g) = S(F, f)
such that

Se(B) (aF, f)) = G (G (F, f)) and  Sc(a) (B(G,9)) = ¢ (¢&(G, 9)) -
That is, the diagram

(F, f) —— G (F, f) *>C]F (G (F, f))

/\ s

(G,9) — (G, g) *> (G (C&(G, 9))

commutes.
The Reeb interleaving distance, dg ((F, f),(G,g)), is defined to be the
infimum over all € such that there exists an e-interleaving of (F, f) and (G, g):

r((F, f),(G,g)) :=inf{e: there exists an e-interleaving of (F, f) and (G, g)}.

Remark 2 We should remark on a technical aspect of the above definition.
The composition (& o (5(F, f) is naturally isomorphic to (2(F, f). However,
since the definition of the Reeb interleaving distance requires certain diagrams
to commute, it is necessary to specify an isomorphism between (f o (%(F, f)
and (2*(F, f) if one would like to replace (& o (& (F, f) with ¢2(F, f) in the
commutative diagrams. Therefore, we choose to work exclusively with the
composition of zero section maps, rather than working with diagrams which
commute up to natural isomorphism.

The remaining proposition of this section gives a geometric realization of
the interleaving distance of constructible cosheaves.

Proposition 3 (de Silva et al. (2016)) D(.%) and D(¥) are e-interleaved
as R-graphs if and only if F and 4 are e-interleaved as constructible cosheaves.



16 Adam Brown et al.
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Fig. 2 A counter example showing why we use Int rathar than Open(R) for the definition
of cosheaves in our context. See Remark 3.

Remark 3 Cosheaves are usually defined as functors on the category of open
sets instead of functors on the connected open sets. We choose to use Int instead
of Open(R) due to technical issues that arise when we begin smoothing the
functors. Basically, smoothing the functor does not produce a cosheaf when
the intervals are replaced by arbitrary open sets in R. Consider the example
of Fig. 2, where X is a line with map f projection onto R. Say U€ is the
thickening of a set, U¢ = {z € R | |x — U| < }. Then we can pick an ¢ so
that A° is two disjoint intervals, and (A U B)® is one interval. Let F' be the
functor U + 7o f~1(U) which is a cosheaf representing the Reeb graph. Then
the functor F o (-)¢ is not a cosheaf since by the diagram,

h=F(ANB)*) —— F(A°) = {ee}

l

{.} = F(Bs) ******* > colim = {o ° o}

F(AU B)® = {e} is not the colimit of F(A%) and F(B*).!

2.5 Categorified mapper

In this section, we interpret classic mapper (for scalar functions), a topological
descriptor, as a category theoretic object. This interpretation, in terms of
cosheaves and category theory, simplifies many of the arguments used to prove
convergence results in Section 4. We first review the classic mapper and then
discuss the categorified mapper. The main ingredient needed to define the
mapper construction is a choice of cover. We say a cover of R is good if all
intersections are contractible. A cover U is locally finite if for every x € R,
U, ={V €U : 2z €V} is a finite set. In particular, locally finiteness implies
that the cover restricted to a compact set is finite. For the remainder of the
paper, we work with nice covers which are good, locally finite, and consist only
of connected intervals, see Figure 1(c) for an example.

We will now introduce a categorification of mapper. Let U be a nice cover of
RR. Let Ay be the nerve of U, endowed with the Alexandroff topology. Consider

1 'We thank Vin de Silva for this counterexample.
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the continuous map
n: R — Nu

m|—>ﬂV,

Veu,

where the intersection mVeuI V is viewed as an open simplex of Ay. The
Int N SetInt

Mu(C) =n"(n(%)),

where n* and 7, are the (pre)-cosheaf-theoretic pull-back and push-forward
operations respectively. However, rather than defining n* and 7, in generality,
we choose to work with an explicit description of My (%) given below. For
notational convenience, define

mapper functor My, : Set can be defined as

Ty - Int — Int
U =~ (St(n(U))),

where St(n(U)) denotes the minimal open set in Ny, containing n(U) :=
Uzeun(z) (the open star of n(U) in Ny). It is often convenient to identify
Ty (U) with a union of open intervals in IR.

Lemma 1 Using the notation defined above, we have the equality

)= NV

zeU Ve,

where Ny ¢y, V is viewed as a subset of R (not as a simplex of Ny ).

Proof Ity € U,cpr MNyey, V, then there exists an x € U such that y € V for all
V € U,. In other words, U, C U,. Therefore, n(y) > n(zx) in the partial order
of Ny Therefore, 1(y) € St(n(U)). This implies that e Nyey, V' € Zu(U).
For the reverse inclusion, assume that u € 7y (U), i.e., n(u) € St(n(U)). This
implies that there exists v € U such that n(u) > n(v). In other words, U, C U,.
Therefore u € Ny ey, V, and u € U, ey Ny ey, V- O

Under this identification, it is clear that Z/(U) is an open set in IR (since the
open cover U is locally finite), and if U C V then Zy(U) C Iy (V). Moreover,
since ﬂveux V' is an interval open neighborhood of x and U is an open interval,
then Zy(U) is an open interval. Therefore, 7, can be viewed as a functor from
Int to Int.

Finally, we can give My (%) an explicit description in terms of the functor
Ty.

Definition 13 The mapper functor My : Set™® — Set™* is defined by
My (€)(U) :=€(Zu(U)),

for each open interval U € Int.
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Since 7, is a functor from Int to Int, it follows that My, is a functor from
Set!™ to Set™*. Hence, My/(%) is a functor from the category of pre-cosheaves
to the category of pre-cosheaves. In the following proposition, we show that if
% is a cosheaf, then My(%) is in fact a constructible cosheaf.

Proposition 4 Let U be a finite nice open cover of R. The mapper functor
My is a functor from the category of cosheaves on R to the category of
constructible cosheaves on R:

My : CSh — CSh°.

Moreover, the set of critical points of My/(F) is a subset of the set of boundary
points of open sets in U.

Proof We will first show that if % is a cosheaf on R, then My (%) is a cosheaf
on R. We have already shown that My, (%) is a pre-cosheaf. So all that remains
is to prove the colimit property of cosheaves. Let U € Int and V C Int be a
cover of U by open intervals which is closed under intersections. By definition
of My(%), we have

liny My (€)(V) = ling @ (Zu (V).

—
vev vev

Notice that 7y (V) := {Zyy(V') : V € V} forms an open cover of Z(U). However,
in general this cover is no longer closed under intersections. We will proceed by
showing that passing from V to Zy (V)" := {(;c; Wi : {Wi}ier € Zu(V)} does
not change the colimit

lim € (Zu (V).

veb
Suppose I; and I, are two open intervals in V such that I; N Iy = ) and
Ty (L) NIy (I2) # 0. Recall that U’ is the union of U with all intersections
of cover elements in U, i.e., the closure of U under intersections. By the

identification
o= N
zel;, VEU,

there exists a subset {W;},c; C U’ such that

Ty (1) N Ty () = | W;.
jeJ
Suppose there exist V1, Vo € U’ such that V; C V3 U V4 (i.e., one set is not a
subset of the other), and V; U Vo C Zyy(I1) N Zy(I2). In other words, suppose
that the cardinality of J, for any suitable choice of indexing set, is strictly
greater than 1. Then there exists x1,x2 € I; such that z; € V4 \ V5 and
xo9 € Vo \ V5. Let w either be a point contained in V3 N V4 (if V4 NV, # 0)
or a point which lies between V; and V5. Since I; is connected, we have that
w € I;. A similar argument shows that w € I, which implies the contradiction
I; N Iy # (). Therefore,
Tu(l) NIy (L2) = W,
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for some W € U'. Suppose W = [, Wi for some {Wy}lrex C U, and
let Iy = Jy,Js,---,J, = I be a chain of open intervals in V, such that
J; N Jj41 # 0. We have that

LU U Wi U Iy
ke K

is connected, because Iy, I, and [ J, o Wi are intervals with (J,c Wi N 11
and (J,c g Wi N I> nonempty. Therefore, for each j, J; N W), # (0 for some k,
ie., W C Iy(J;). In conclusion, we have shown that

Tu(I1) NIy (I2) € Zy(J;) for each j.

Following the arguments in the proof of Proposition 4.17 of (de Silva et al.,
2016), it can be shown that

lim €T (V) = lm €)= lim @U).
vey UeTy (V) UeTy (V)

Since % is a cosheaf, we can use the colimit property of cosheaves to get

lim My, (€)(V) = € (Z(U)).
vey

Therefore My(%) is cosheaf. We will proceed to show that My(%) is con-
structible.

Let S be the set of boundary points for open sets in Y. Since U is a finite,
good cover of R, S is a finite set. If U C V are two open sets in IR such that
UNnS=vVnS§S, then Iy (U) = Ty (V). Therefore My (F)(U) — My (F)(V)
is an isomorphism. ]

We use the mapper functor to relate Reeb graphs (the display locale of
the Reeb cosheaf Z;) to the enhanced mapper graph (the display locale of
My (%y)). In particular, the error is controlled by the resolution of the cover,
as defined below.

Definition 14 Let U/ be a nice cover of R and .% a cosheaf on IR. The resolution
of U relative to .%, denoted resz U, is defined to be the maximum of the set
of diameters of Uz :={V el : F(V) # 0}:

resg U = max{diam(V) : V € Ugz}.

Here we understand the diameter of open sets of the form (a, +00) or (—oo, b)
to be infinite. Therefore, the resolution resg U can take values in the extended
non-negative numbers R>¢ LI {+0c0}.

Remark 4 If Z; is a Reeb cosheaf of a constructible R-space (X, f), then
Ryr(V) # 0 if and only if V N f(X) # 0.
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Definition 15 Define resy U by
resy U = max{diam(V) : V € Uy},
where Uy :={V el : V N f(X) # 0}.

The following theorem is analogous to (Munch and Wang, 2016, Theorem
1), adapted to the current setting. Specifically, our definition of the mapper
functor My, differs from the functor Pg of (Munch and Wang, 2016), and the
convergence result of (Munch and Wang, 2016) is proved for multiparameter
mapper (whereas the following result is only proved for the one-dimensional
case).

Theorem 1 (cf. (Munch and Wang, 2016, Theorem 1)) Let U be a nice
cover of R, and .% a cosheaf on R. Then

di(F, My(F)) <reszU.

Proof If resz U = +00, then the inequality is automatically satisfied. Therefore,
we will work with the assumption that resgz U < +o00. Let dyy = resgz U < +0o.
We will prove the theorem by constructing a §;-interleaving of the sheaves
F and My/(F). Suppose I € Int. For each = € I, let W, =y, V. Recall
that
Tu(I) = | Wa.
xel

Ideally, we would construct an interleaving based on an inclusion of the form
Tu(I) C Is,. However, this inclusion will not always hold. For example, if U is
a finite cover, then it is possible for I to be a bounded open interval, and for
Ty(I) to be unbounded.

We will include a simple example to illustrate this behavior. Suppose
U ={(—o00,—1),(-2,2), (1, +00)} and let .# be the constant cosheaf supported
at 0,ie. Z(U)=0if0¢ U and F(V) = {x} if 0 € V. Consider the interval
I =(0,3). For each x € (0,1] C I, we have that W, = (=2,2). If z € (1,2) C I,
then W,, = (=2,2) N (1,+00). Finally, if € [2,3) C I, then W, = (1, 400).
Therefore, Zy(I) = (=2, +00), which is unbounded. However, we observe that
F((—o00,—1)) =0, F((—2,2)) = {}, and Z((1,400)) = 0. Therefore, (in the
notation of Definition 14) Uz = {(—2,2)}, and resz U = diam((—2,2)) = 4.

Although Z3/(I) may be unbounded, we can construct an interval I’ which
is contained in Is,, and satisfies the equality % (Zy(I)) = % (I'). The remainder
of the proof will be dedicated to constructing such an interval.

Let W :={U : U = NgeaW, for some A C I} be an open cover of Zy/(I)
which is closed under intersections and generated by the open sets W,.. Then
the colimit property of cosheaves gives us the equality

F(Tu(D) = lig F(U).
Uew

t =0} U = NgeaW, and AN E # 0, then
FU) =0. Let Wpng ={U € W : U = NgeaW, for some A C I\ E}. We
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should remark on a small technical matter concerning I \ E. In general, this
set is not necessarily connected. If that is the case, we should replace I \ F
with the minimal interval which covers I \ E. Going forward, we will assume
that I \ E is connected. Altogether we have

Mu(Z)I) = Z(Tu(D) = im Z(U)= lm #0)=7( |J W,

vew UeWne z€I\E

If e € I\ E, then W, NI # 0 and F(W,) # 0. Therefore, W,, C I, since
diam(W,,) < &;. Moreover,

U we <.
z€I\E

The above inclusion induces the following map of sets
er s Myu(F)I) = F(1s,),

which gives the first family of maps of the §y-interleaving. The second family
of maps

Y1 F (1) = Mu(F)Us,),

follows from the more obvious inclusion I C Zy(1I5,). Since the interleaving
maps are defined by inclusions of intervals, it is clear that the composition
formulae are satisfied:

Vrg, 001 =F[I C o], 15, 01 = My(F)[I C Izs,].
O

Remark 5 One might think that Theorem 1 can be used to obtain a convergence
result for the mapper graph of a general R-space. However, we should emphasize
that the interleaving distance is only an extended pseudo-metric on the category
of all cosheaves. Therefore, even if the interleaving distance between # and
My (F) goes to 0, this does not imply that the cosheaves are isomorphic.
We only obtain a convergence result when restricting to the subcategory of
constructible cosheaves, where the interleaving distance gives an extended
metric.

The display locale © (M (Zy)) of the mapper cosheaf is a 1-dimensional
CW-complex obtained by gluing the boundary points of a finite disjoint union
of closed intervals, see Figure 1(h). We will refer to this CW-complex as the
enhanced mapper graph of (X, f) relative to U, see Figure 1(g). There is a
natural surjection from © (M (Z%y)) to the nerve of the connected cover pull-
back of U, Ny« ), i.e., from the enhanced mapper graph to the mapper graph,
when the cover U contains open sets with empty triple intersections.

Using the Reeb interleaving distance and the enhanced mapper graph, we
obtain and reinterpret the main result of (Munch and Wang, 2016) in the
following corollary.
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Corollary 1 (cf. (Munch and Wang, 2016, Corollary 6)) Let U be a
nice cover of R, and (X, f) € R-space®. Then

dR(R(X’ f)a Q(MU(‘%JC))) < resyr u.

Throughout this section we introduce several categories and functors which
we will now summarize. Let R-graph be the category of R-graphs (i.e., Reeb
graphs), R-space® the category of constructible IR-spaces, Csh® be the category
of constructible cosheaves on R, S; and 7. the smoothing and thickening
functors, © the display locale functor, and My, the mapper functor. Altogether,
we have the following diagram of functors and categories,

D T

S, R-graph Csh¢ D My.
7Te R
R-space®

Enhanced mapper graph algorithm. Finally, we briefly describe an algo-
rithm for constructing the enhanced mapper graph, following the example in
Figure 1. Let (X, f) be a constructible R-space (see Section 2.1). For simplicity,
suppose that the cover U consists of open intervals, and contains no nonempty
triple intersections (U NV NW =0 for all U, V,W € U). Let Ry be the union
of boundary points of cover elements in the open cover U. Let Ry be the
complement of Ry in R. The set Ry is illustrated with gray dots in Figure 1(e).
We begin by forming the disjoint union of closed intervals,

TT7 > mo(f (W),
I

where the disjoint union is taken over all connected components I of Ry, I
denotes the closure of the open interval I, and U; denotes the smallest open
set in UU{UNV | U,V € U} which contains I. In other words, U; is either
the intersection of two cover elements in U or U7 is equal to a cover element in
U. The sets mo(f~1(Uy)) are illustrated in Figure 1(d). Notice that there is a
natural projection map from the disjoint union to R, given by projecting each
point (y,a) in the disjoint union onto the first factor, y € R. The enhanced
mapper graph is a quotient of the above disjoint union by an equivalence
relation on endpoints of intervals. This equivalence relation is defined as follows.
Let (y,a) € I x mo(f~1(U;)) and (z,b) € J x mo(f~1(Uy)) be two elements
of the above disjoint union. If y € Ry, then y is contained in exactly one
cover element in U/, denoted by U,. Moreover,if y € Rg, then there is a map
mo(f~H(Ur)) = mo(f~*(Uy)) induced by the inclusion Uy C U,. Denote this
map by 1, 7). An analogous map can be constructed for (z,b), if z € Ro. We
say that (y,a) ~ (z,b) if two conditions hold: y = z is contained in Rg, and
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Yy, 1)(a) = 1Pz, 1)(b). The enhanced mapper graph is the quotient of the disjoint
union by the equivalence relation described above.

For example, as illustrated in Figure 1, seven cover elements of I/ in (c) give
rise to a stratification of R into a set of points Ry and a set of intervals R; in
(e). For each interval I in IRy, we look at the set of connected components in
f~Y(U;). We then construct disjoint unions of closed intervals based on the
cardinality of mo(f~1(U;)) for each I € Ry. For adjacent intervals I; and Io
in Ry, suppose that I; is contained in the cover element V and I5 is equal to
the intersection of cover elements V' and W in U. We consider the mapping
from 7o (f~1(Uy,)) to mo(f~*(Uyz,)) (d). Here, we have that Uz, = V N W and
Ur, = V. We then glue these closed intervals following the above mapping,
which gives rise to the enhanced mapper graph (g). Appendix A outlines these
algorithmic details in the form of pseudocode.

3 Model

Let X be a compact locally path connected subset of R%. As stated in the
introduction, study related to topological inference usually splits between
noiseless and noisy settings. In the former, we assume that a given sample
is drawn from X directly, while in the latter we allow random perturbations
that produce samples in R? that need not be on X, but rather in its vicinity.
In this paper, we address the noisy setting directly, using the machinery for
super-level sets estimation developed in (Bobrowski et al., 2017b). The basic
inputs are a continuous function f : R — R, and a probability density function
p: R — R. Our R-space of interest will be (X, f|x), and we will assume we
are provided samples of X via p. Then, given a nice cover U, we can compare
the Reeb graph of (X, f|x) to the mapper graph computed from the samples.

3.1 Setup

In this section, we give some basic assumptions on f, p, U, and their interactions.
We start with some notation for the various sets of interest. Let X5 = {y €
R : inf,ex d(x,y) < 8} be the §-thickening of X, and let Dy, = p~!([L, +00))
be a super-level set of p. Given an open set V C R, define XV := XN f=1(V).
Let XY := X; N f~5(V) be the elements of X; which map to V, and DY :=
Dp N f~1(V). See 3 for an example of this notation. It is important to note
that X(‘;/ is not necessarily equal to the d-thickening of XV .

With this notation, we will assume that p is e-concentrated on X as defined
next with an example given in 4.

Definition 16 A probability density function p is e-concentrated on X if there
exists open intervals I1, I5, and a real number § > 0 such that

XCcDp, cXsCDp, CX,,

for any L; € I and Lo € I5.
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Fig. 3 This figure illustrates the inverse images XV (in purple) and X(‘s/ (union of tan and
purple) for an annulus with height function and open interval V. Notice that in this example
the §-thickening of XV would include X} as a proper subset, hence (XV)s # XY .

3 3 3

E E E

3 = 2 a 0 1 2 = 2 a 0 1 2

= 2 a1 o 1 2

Fig. 4 An example of the concentrated definition. The left side of the figure illustrates a
probability density function (PDF) p which is e-concentrated on an annulus X. The center
image illustrates the thickened space Xg, bounded by the red curves, and the super-level set
Dy, . The right side of the figure illustrates the thickened space X, bounded by the blue
curves, and the super-level set Dy,,. Together, we see that X C Dy, C X5 C D, C X..

Definition 17 A probability density function p is concentrated on X if p is
e-concentrated on X for all € > 0.

We now turn our attention to U, a nice cover of RR.
Definition 18 The local Hy-critical value over V is defined as
Sy =sup{d | Hy(XV) = Ho(X¥)}.

Let U := {V C R : V = NaecalU, for some {Uy}aeca C U}. The global
Hy-critical value over U is defined as
0y := min Oy .
u ‘%1151, \%
Throughout the paper, we assume that the global Hy-critical value over U
is positive, i.e.
0y = min § .
= iy b >0
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The positivity of local Hy-critical values is nontrivial and often fails for con-
structible R-spaces which have singularities which lie over the boundary of one
of the open sets in the open cover Y. In future work, it would be interesting to
relax this assumption, and study convergence when the diameter of the union
of open sets V for which dy = 0, is small.

3.2 Approximation by super-level sets

In this section, we study how super-level sets of probability density functions
(PDF's) can model the topology of constructible R-spaces.

We need some further control over the relationship between the PDF p and
the cover elements via the following definition.

Definition 19 Given an open set V', we say that L is Hy-regular over V if
there exists v > 0 such that for all e; < g2 € (L — v, L + v), the inclusion

D., C D,, induces an isomorphism Hy(DY)) = Hy(DY).

Throughout the paper we will assume that the PDF p is tame, in the sense
that the set of points which are Hy-regular over V is dense in R, for any given
open set V.

Assume the global Hy-critical value &, is positive, and p is do-concentrated
on X for some d5 such that 0 < ds < dy. By definition, there exist Lq, Lo and
01 such that
1. XCc Dy, X5, CDyp, CXs,

2. 0< 81 <o < Oy
3. L, and Ly are Hy-regular over V for each V € U'.

The set of points which are Hy-regular over V for each V € U’ is dense
in R. If Ly is not Hg-regular over V for some V € U’, then L; can be turned
into a regular value with an arbitrarily small perturbation. Moreover, by the
Definition 16, this perturbation can be done without breaking the chain of
inclusions X C Dy, C X5, C Dy, C Xs,. We therefore continue under the
assumption that L; is Hp-regular over V for each V € U’.

Proposition 5 Assume that p is e-concentrated on X for some ¢ < &y. Let
2(V):=1Im (Ho(Dy,) = Ho(Dy))) -

Then for each V € U’', we have Ho(XV) = P(V) and further for each V C
W e U the following diagram commutes,

Js

Ho(XV)

|

Ho(XY)

2(V)

¥

2(U).

The proof will require the following technical lemma.
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Lemma 2 Suppose we have the following commutative diagram of vector spaces

N

with C = D= E. Then Im(D — B) =Im(A — B) and the map

D = Im(A — B)
18 an isomorphism of vector spaces.

Proof The map D — B is injective since D — FE is an isomorphism and the
diagram commutes. Therefore, Im(D — B) = D. Moreover, since the diagram
commutes, Im(A — B) C Im(D — B). Suppose b € Im(D — B), i.e., there
exists d € D which maps to b. Since C — D is an isomorphism, there exists
¢ € C' which maps to d € D. Let a € A be the image of ¢ € C' under the map
C — A. Since the diagram commutes, we have that a« € A maps to b € B
under the map A — B. Therefore, b € Im(A — B). We have therefore shown
that Im(A — B) =Im(D — B) ¥ D. O

Proof (Proof of 5) Choose d2 > 0 such that dy < &y and p is do-concentrated
on X. Applying the definition of Ja-concentrated, we have X C Dy, C X, C
Dy, CXs,. For V.C W we have the following commutative diagram of vector
spaces

Hy(DY,) ————— Ho(D})

7 ~ 7 ~
Hy(XW) ————+—— Ho(X}/) ——————— Ho(X}))
~ e ~ 7

Ho(D}}) ———————— Ho(D[))
Since §; < 62 < dy, by definition of global Hy-critical value over U, all four
horizontal maps
Ho(XV) — Ho(X§) — Ho(Xy,)  and  Ho(X") — Ho(X}) — Ho(X}))
are isomorphisms. Applying 2, we can conclude that
HyXY) — 2(V) and  Ho(X") — 2(W)

are isomorphisms of vector spaces. Since the diagram commutes, the image of
2 (V) under the map Ho(Dy ) — Ho(D}) is contained in Z(W). Therefore,
HO(D‘L/Z) — HO(DK) induces a map 2(V) — 2(W), which completes the
commutative diagram of the theorem. O
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3.3 Point-cloud mapper algorithm

Given data {X7,---, X} il p, where p is a PDF, we can estimate p using a
kernel density estimator (KDE) of the form,
@)= =23 Ko X)
T) = — (x—X3),
p Crnrd — !

where K (z) is a given kernel function, K, := K(z/r), and Ck is a constant
defined below. The kernel function should satisfy the following:

1. supp(K) C B1(0), and K () is smooth in B(0).
2. K(z) €10,1], and max, K(x) = K(0) =1,
3. f]Rd K($ dr = Cg with Ck € (0, 1).

Using p we can estimate the super-level sets Dy, using
Dimr) = |J B.x), &
ip(X:)> L
and the sets D} using
Dy (n,r):= Dr(n,r) 0 f7H(V). (2)

Choose ¢; such that L; 4+ 2¢;, L; — 2¢; are within the Hy-regularity range of L;
over V for each V € U and L; — 2e7 > Ly + 2¢5. In the following, we will use
the term “with high probability” (w.h.p.) to mean that the probability of an
event to occur converges to 1 as n — oo.

Proposition 6 Fiz L and V, and set ﬁ‘L/ = ﬁ‘L/(n,T) Fizing € > 0, there
exists a constant C. > 0 (independent of L and V') such that if nr? > C. logn,
then the following diagram of inclusion relations holds w.h.p.,

Proof The proof appears as part of the proof of Theorem 3.3 in (Bobrowski
et al., 2017b). 0

Next, define the random vector space
9V i=Tm (Ho(DY, ,.,) = Ho(DY,_.)).
Corollary 2 If nr® > C., logn, then w.h.p. the random map
HO<D)Z/1-) - Z;(V)

s an isomorphism.
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Proof The corollary follows from applying 2 to 6. O

From here on, unless otherwise stated, we will assume that r is chosen so that
nrd > max(C.,, C.,) logn, so that 2 holds for both ey, 5.

Proposition 7 For every V. C W € U, we have the following commutative
diagram w.h.p.,

Ho(DY.) — Gy(v)

C

L
S

Ho(D}) 7;(W).

Proof The proof follows the same arguments as the proof of Proposition 5, and
using Corollary 2. O
Finally, we define the following random vector space,

P(V) :=Im (HO(DgﬁEl) - Ho(b{ﬁg)) .

Proposition 8 Assume that p is e-concentrated on X for some € < 6. For
every V.C W e U, we have the following commutative diagram w.h.p.,

Ho(XV) — (V)

C

1

Hy(X") — g(W),

where the constants Ly and Lo (defining 9) are given by the definition of
e-concentrated, and the constants €1 and €3 are given by the Hy-regularity of
L1 and Lo, respectively.

Proof We will use the assumption that Ly —2e1 > Lo+ 29 repeatedl;i for each
of the super-level set inclusions in the proof. The inclusion of spaces D‘L/l_ o C
ﬁ‘L/z_EQ induces a homomorphism Hg(ﬁ}fl_gl) — HO(E‘L/Q—EZ)~ Restricting the
domain of this map, we get a homomorphism %, (V) — Ho(DY.

L2—82
L1 —e1>Ly+ey > Ly — ey, the map @1(‘/) — Ho(DV

Lo—e2

). Since
) factors through

HO(D‘L/2+52) — HO(D‘L/TQ)7 forming the commutative diagram
G(V) —— Ho(DY,__,)

O

HO(DZ2+€2)
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This implies that Im(Z; (V) — HO(DZT@)) C 95(V), and gives a map

F1(V) = D5(V), which w.h.p. completes the following commutative diagram,

Ho(DY.) —+ ,(v)

C

Ho(DY,) —» G(V)

where the horizontal maps are given by Corollary 2. Therefore, applying
Proposition 5, we have

Since lA)XlJrEl c DY C ljgﬁsz c DY we have that Im (Ql(V) — 92(V)> =

Llfsl L27627
Z(V). The map 2(V) — Z(W) in the statement of the proposition (and
the commutativity of the resulting diagram) is induced by the inclusion

ZA)‘L/z_Ez — lA)Evz_52 in the following commutative diagram. 0
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v w
X62 C X(SQ

|4 w
—
DL2—282 DL2—282

\ J

ﬁ}z/z—m — DIVZ—EQ
DY, « JT JT DY
D}4/2+€2 — DIVZJrQ

J \

14 w
-
DL2+282 DL2+262

XY ] ] X5

DY, ., — D},
VSRR
Dy « J J DY
/
\ B‘L/l-‘rel — ﬁKm
/ \
D‘L/1+2sl - DK+251
XV ¢ <W

4 Main results

In this section, we prove convergence of the random enhanced mapper graph
to the Reeb graph, as well as stability of the enhanced mapper graph under
certain perturbations of the corresponding real valued function. Using the
model described in Section 3, we generate random data, which is used to define
a cosheaf which estimates the connected components of fibers of the real valued
function associated to a given constructible IR-space. In the proof of Theorem
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2, we show that, with high probability, the cosheaf constructed using random
data is isomorphic to the mapper functor applied to the Reeb cosheaf defined
in Section 2. We then use the results established in Section 2 to translate the
cosheaf theoretic statement into a geometric statement (Corollary 3) for the
corresponding R-graphs.

To begin, we identify a sufficient condition for determining when a morphism
of constructible cosheaves is an isomorphism. A morphism .% — ¢ of cosheaves
is a family of maps F (V) — 4(V), for each open set V, which form a
commutative diagram

FV) —— S G(V)

(V)
\ :
FW) ——— G(W)

for each pair of open sets V' C W. The morphism .% — ¢ is an isomorphism if
each of the maps % (V) — ¢ (V) is an isomorphism. Our first result shows that
for cosheaves of the form My (%), it is sufficient to consider only the maps
My (F)V) = My (4)(V) for open sets V € U'.

Proposition 9 Let € and 2 be cosheaves on R. An isomorphism My (€) —
My (2) of cosheaves is uniquely determined by a family of isomorphisms

My (€)Y V) = My (2)(V) for each V € U', which form a commutative diagram

~

My(€)(V) —————— My(2)(V)

O

o

Mu(€)W) ———— My(2)(W)

for each pairV.C W el'.

Proof Proposition 4 shows that My, (%) and My, (2) are constructible cosheaves
over R. The proof then follows from (de Silva et al., 2016, Proposition 3.10). O

Recalling the notation of Section 2 and Section 3, for a super-level set Dy, of p,
let Zp, be the Reeb cosheaf of (Dr, f) on R, defined by

Xp, (U) = mo(DY)

for each open set U C R. Let #Zp, be the Reeb cosheaf of (ﬁL, f) on R,
defined by A
Ry, (U) = mo(DY)

where Dy, ﬁg are defined in (1), (2), respectively, and U C R is an open set.
We should note that (Dy, f) and (Dp, f) are not apriori constructible spaces,
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so the cosheaves Zp, and Z b, are not necessarily constructible. However, in
what follows we will work exclusively with My (%p,) and My (%, ), which
are constructible cosheaves by Proposition 4.

Let 7 be the cosheaf defined by

97 = My (Im (%f)Ll+gl — %ﬁLz—E’L’)) ’

with constants n, Ly, Ls, €1, and €2 chosen in Section 3. More explicitly, .@]{
maps an open interval U to elements of the set Zp  (Zy(U)) which lie in
27€2

the image of the set #Zp . (Zy(U)) under the map induced by the inclusion
1T€1
D +e, € Dr,_.,. By Proposition 4, 7 is a constructible cosheaf.

Theorem 2 Assume there exists € < &y such that p is e-concentrated on X,
then .
lim P (d;(@;{,%x) < resfl/{) =1.

n—0o0

Proof An inclusion of open sets Y C Z induces a map
mo(Y) = mo(2),

of the corresponding sets of path-connected components of Y and Z respectively.
Each set of path-connected components forms a basis for the homology group
in degree 0. Therefore, the map from 7 (Y") to mo(Z) extends to a map between
homology groups, resulting in the following commutative diagram

mo(Y) —— Ho(Y)
O

mo(Z) —— Ho(Z).

By combining the preceding commutative diagram with Proposition 8, we see
that for every V. .C W € U’, the following diagram commutes w.h.p.

ro(XV) — G (V)

s
n

e o
)
3

7o (XW) (W).

n

Notice that if V'€ U’, then T;(V) = V. By Proposition 9 we have that

w.h.p.

74 My (%x).

IRE

Therefore, w.h.p. R
di(2F, My (%#x)) = 0.

Theorem 1, combined with the triangle inequality, implies the theorem. a
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Corollary 3 Let R(X, f) be the Reeb graph of a constructible R-space (X, f),
and D(DT) be the display locale of the mapper cosheaf defined above. If there
exists € < 0y such that p is e-concentrated on X, then

lim P (dp(D(7), RIX, f)) < ressUd) = 1.
n—oo

If p is concentrated on X, then the above corollary will hold for nice
open covers with arbitrarily small resolution, as long as §;; remains positive.
Therefore, Corollary 3 implies that we can use random point samples from p
to construct mapper graphs that are (w.h.p.) arbitrarily close (in the Reeb
distance) to the Reeb graph of X.

To conclude, we will turn our attention to the stability of mapper cosheaves
corresponding to a constructible space (X, f) under perturbations of the func-
tion f. The following theorem uses the machinery of cosheaf theory to prove
that the mapper cosheaf is stable as long as the singular points of the con-
structible R-space X are sufficiently “far away” from the set of boundary points
of our open cover U.

Theorem 3 Suppose .F and 4 are constructible cosheaves over R, with a
common set of critical values S. Let U be a nice open cover of R, with set of
boundary points B. Assume that

di(Z,9) <min{|s —b| : s € S,b € B}.

Then
di(Mu(F), Mu(¥)) < di(F,9).

Moreover, if & is the Reeb cosheaf of (X, f) and & is the Reeb cosheaf of (X, g),
then
di(My(F), Mu(¥4)) <I|f = 9llc-

Proof Suppose ¢y : F(U) = 4(U.) and ¢y : 9(U) — F(U:) give an e-
interleaving of % and ¢. Recall that

Mu(F)(U) = F(Zu(U)).

Then
o1,y Mu(F)(U) = G(Zu(U)e).

In general, this does not give us an e-interleaving of My (%) and My (9),
because Iy (U). # Ty (U:). However, we will proceed by showing that each of
these sets contain the same set of critical values.

Following the definition of 7y, we see that for each U € Int, Z;y(U) is an
open interval in R, with boundary points contained in B. Therefore Z;,(U)NS C
T1y(U)e N S. If the inclusion is not an equality, then there must exist s € S such
that s € Ty (U). and s ¢ Ty (U). In other words, if T, (U)N S C Ty (U)-. NS,
then there exists s € S and b € B such that |s — b <e.

Define

NU,E(U) =Ty (Us) NIy (U)e
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By the arguments above, if ¢ < min{|s — b| : s € S,b € B}, then Zyy(U) N S =
Tu(U)e N S. Tt follows that Ny (U) NS =Ty (U)NS =1y (U). NS, because
Tu(U) C Ty (Ue:). By the definition of constructibility, this implies that the
natural extension map ¥[Ny (U) C Zy(U).| (denoted by e for notational
brevity)

G (Nu(U)) —— 9(Tu(U)e)

is an isomorphism, and therefore is invertible. The composition

Mu(F)U) % G(Zu(U):) < G (Ny o(U)) = 9 (Tu(U2)) = Mu(#)(U:)

gives an e-interleaving of My (%) and My (¥), because each map in the
composition is natural with respect to inclusions. Therefore

dy(My(F), Mu(9)) < di(F,9).

When . is the Reeb cosheaf of (X f) and ¢ is the Reeb cosheaf of (X g), the
second statement of the theorem is a direct consequence of the above inequality
and (de Silva et al., 2016, Theorem 4.4). O

5 Discussion

In this paper, we work with a categorification of the Reeb graph (de Silva et al.,
2016) and introduce a categorified version of the mapper construction. This
categorification provides the framework for using cosheaf theory and interleaving
distances to study convergence and stability for mapper constructions applied
to point cloud data. In this setting, the Reeb graph of a constructible IR-space
is realized as the display locale of a constructible cosheaf (which we refer
to as the Reeb cosheaf, following de Silva et al. (2016)). In Section 2.5, we
define a mapper functor from the category of cosheaves to the category of
constructible cosheaves, giving a category theoretic interpretation of the mapper
construction. We then define the enhanced mapper graph to be the display
locale of the mapper functor applied to the Reeb cosheaf. We give an explicit
geometric realization of the display locale as the quotient of a disjoint union of
closed intervals, as illustrated in Figure 5. In Section 3, we give a model for
randomly sampling points from a probability density function concentrated on
a constructible R-space. After applying kernel density estimates, we consider
an enhanced mapper graph generated by the random data. The main result of
the paper, Theorem 2, then gives (with high probability) a bound on the Reeb
distance between the Reeb graph and the enhanced mapper graph generated
by a random sample of points.

Refinement to classic mapper graph. The enhanced mapper graph sug-
gests a few refinements to the classic mapper construction. Firstly, rather
than an open cover U of f(X) (the image of the constructible R-space X in
RR), it is more natural from the enhanced mapper perspective to start with
a finite subset Ry of R. From this finite subset, the enhanced mapper graph
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Fig. 5 An example of the enhanced mapper graph ©(My(Zy)) and the Reeb graph R(T, f)
of the height function f on the torus T, with an open cover U of f(T) consisting of two open
intervals. The maps ¢ and f, are the natural quotient factorization of f obtained from the

definition of the Reeb graph. Similarly, p and ?p are the quotient map and factorization of f
obtained from the definition of the enhanced mapper graph.

can be computed by first producing a finite disjoint union of closed intervals,
with each interval associated to a connected component of the complement of
Ry. Then, by prescribing attaching maps on boundary points of the disjoint
union of closed intervals, one can obtain a combinatorial description of the
enhanced mapper graph as a graph with vertices labeled with real numbers.
The enhanced mapper graph then has the structure of a stratified cover of f(X),
the image of the constructible R-space X in R. As such, the enhanced mapper
graph contains more information than the classic mapper graph. Specifically,
edges of the enhanced mapper graph have a naturally defined length which
captures geometric information about the underlying constructible R-space.
Therefore, the enhanced mapper graph is naturally geometric, meaning that it
comes equipped with a map to RR.

Variations of mapper graphs. We return to an in-depth discussion among
variations of classic mapper graphs. As illustrated in Figure 6 for the R-space
(T, f), that is, a torus equipped with a height function, the enhanced mapper
graphs (g), geometric mapper graphs (i) studied by Munch and Wang (2016),
and multinerve mapper graphs (j), have all been shown to be interleaved with
Reeb graphs (b) (Munch and Wang, 2016; Carriére and Oudot, 2018). To further
illustrate the subtle differences among the enhanced, geometric, mutinerve and
classic mapper graphs, we give additional examples in Figure 7 and Figure 8.
In certain scenarios, some of these constructions appear to be identical or very
similar to each other. We would like to understand the information content
associated with the above variants of mapper graphs, all of which are used as
approximations of the Reeb graph of a constructible R-space. As illustrated
in Figure 6, given an enhanced mapper graph (g) and an open cover (c), one
can recover the the multinerve mapper graph (j), the geometric mapper graph
(i), and the classic mapper graph (k). In future work, it would be interesting
to quantify precisely the reconstruction ordering of these variants with and
without any knowledge of the open cover.
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In order to study convergence and stability of each variation of the mapper
graph, it is necessary to assign function values to vertices of the graph. For
the classic mapper graph or multinerve mapper graph, each vertex can be
assigned, for instance, the value of the midpoint of a corresponding interval in
R. However, the display locale of a cosheaf over R admits a natural projection
onto the real line, making a choice of function values unnecessary for the
enhanced mapper graph. For this reason, we view the enhanced mapper graph
as a natural variation of the mapper graph, well-suited for studying stability
and convergence, with a natural interpretation in terms of cosheaf theory.

Enhanced Geo- ||\ tinerve| | Classic

R _ | metric
Vv

o & &
(b) © (C)] @ @ [WEEO] (0] (k)

LT + N

—_—

Fig. 6 Variations of mapper graphs for the height function on a torus. (a) Torus with a
height function. (b) Reeb graph. (c) Nice cover. (d) Visualization of the mapper cosheaf.

(e) Stratification of R. (f) Disjoint union of closed intervals, 5(Mu(%f)), with quotient
isomorphic to the enhanced mapper graph. (g) Enhanced mapper graph, ®(M(Zy)). (h)
Disjoint union of closed intervals used to construct geometric mapper graph (Munch and
Wang, 2016). (i) Geometric mapper graph. (j) Multinerve mapper graph. (k) Classic mapper
graph.

Multidimensional setting and parameter tuning. It is natural to extend
the enhanced mapper graph (and more generally the categorification of mapper
graphs) to multidimensional Reeb spaces and multi-parameter mapper through
studying constructible cosheaves and stratified covers of RV, for N > 1.
We would also like to study the behavior of the parameter &, for various
constructible spaces and open covers. In general, this parameter can vanish for
“bad” choices of open cover U. It would be worthwhile to extend the results
of this paper to obtain bounds on the interleaving distance when ¢&;; vanishes.
In conclusion, we hope for the results of this paper to promote the utility of
combining methods from statistics and sheaf theory for the purpose of analyzing
algorithms in computational topology.
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Fig. 7 A return to the example illustrated in Figure 1. Variations of mapper graphs of a
height function on a topological space. (a) A topological space with a height function. (b)
Reeb graph. (c) Nice cover. (d) Visualization of the mapper cosheaf. (e) Stratification of R.
(f) Disjoint union of closed intervals with quotient isomorphic to the enhanced mapper graph.
(g) Enhanced mapper graph. (h) Disjoint union of closed intervals used to construct geometric
mapper graph (Munch and Wang, 2016). (i) Geometric mapper graph. (j) Multinerve and
classic mapper graph.

Enhanced & | Multinerve
geometric & classic
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Fig. 8 Variations of mapper graphs of a height function on a topological space consisting of
two line segments. (a) A topological space consisting of two line segments. (b) Reeb graph. (c)
Nice cover. (d) Visualization of the mapper cosheaf. (e) Stratification of R. (f) Disjoint union
of closed intervals with quotient isomorphic to the enhanced mapper graph. (g) Enhanced
and geometric mapper graph. (i) Multinerve and classic mapper graph.
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A Pseudocode for the Enhanced Mapper Graph Algorithm

The following pseudocode (Algorithm 1) outlines an algorithm for computing the enhanced
mapper graph, which is stored as a graph G = (F, F) with a vertex set F' and an edge set F,
together with a real-valued function f: F' — R.

The algorithm assumes that we are given sets o (f~2(U)) (denoted by X in the pseu-
docode) and set maps mo(f~1(U)) = 7o(f~(V)) (denoted by p in the pseudocode) for
various U C V' C R. In other words, the algorithm assumes that there is an oracle (referred
to as a set oracle) that takes as input an inverse mapping of an interval and returns its
corresponding set of path-connected components. It also assumes that there is a set-map
oracle that keeps tracks of set maps between a pair of path-connected components (each
component is denoted by s in the pseudocode). In Section 3, we give a statistical approach
for computing such sets and set maps through kernel density estimates.

In Algorithm 1, let & = {U; };c a4 denote a finite set of pairwise intersecting open intervals.
For simplicity, suppose the index set A C Z contains consecutive integers. That is, for each
interval U; := (u:,uj') (for some i € A), we have u; < “3——1 <wug, < uj’ < uj’_‘_l
(assuming i — 1,4 + 1 € A). For each interval U;, X; := mo(f~1(U;)) denotes the set
of path-connected components. For each path-connected component s € X;, the pairs
(s,+) € i x {+,—} and (s,—) € X; X {+, —} represent the two vertices associated to
the edge in the enhanced mapper graph which corresponds to s. Similarly, for each path-
connected component ¢ € X; ;41), the pairs (p; (), +) and (pj’ (t), —) represent the two
vertices associated to the edge in the enhanced mapper graph which corresponds to t.

For clarity, Figure 9 illustrates notations used in the pseudocode of Algorithm 1. It is
based on a zoomed view of Figure 1(c)-(f). The maps p; and p;r define how the red vertices
and blue vertices (as end points of intervals) are glued together to form an enhanced mapper
graph. In this particular example, (p; (t),+) (a blue vertex) matches with (s,+) (a red
vertex), due to the fact that p; (t) = s.

Fig. 9 An illustration of notations used in the pseudocode of Algorithm 1.
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Algorithm 1: Compute an enhanced mapper graph with oracles.

Input:
— A finite set of pairwise intersecting open intervals: {U; := (u; , uzr)},-eA
— For each interval, a set returned by a set oracle:
— For each U;, a set X; := mo(f~1(U;))
— For each (Ui, Uz‘+1), a set E(i,i+1) = Tl'()(f_l(Ui N Ui+1))
— For each pair of intervals, a set map returned by a set-map oracle:
For each (U;,U;41), set maps

Pyt Zarny = T o i) = Sig

Output:
— A graph G = (F, E) with a vertex set F' and an edge set E C F x F
— A function f: F - R

Initialize F =0 and E =0

for i € A do

Set It == 3y x {+}

Set ¥ = % x {—}

F« Fux; uxt

for s € ¥; do

E+ EU ((87 _)7 (57 +))

fur, ifitleA
f((s’+))'_{u+ ifitl¢A,

Foifi—1eA
f&=) = {Zl—l ;f;—IZA

end

end

for (i,i+1) € Ax Ado

for t € E(i,i+1) do

E <+ EU((p; (t),+), (o) (£),—))

end

end
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