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Abstract

A Reeb graph is a graphical representation of a scalar function on a topological
space that encodes the connected components of the level sets. A Reeb space is
a generalization of the Reeb graph to a multiparameter function. In this paper,
we propose novel constructions of Reeb graphs and Reeb spaces that incorporate
the use of a measure. Specifically, we introduce measure-theoretic Reeb graphs
and Reeb spaces when the domain or the range is modeled as a metric measure
space (i.e., a metric space equipped with a measure). Our main goal is to enhance
the robustness of the Reeb graph and Reeb space in representing the topological
features of a scalar field while accounting for the distribution of the measure. We
first introduce a Reeb graph with local smoothing and prove its stability with
respect to the interleaving distance. We then prove the stability of a Reeb graph
of a metric measure space with respect to the measure, defined using the distance
to a measure or the kernel distance to a measure, respectively.
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1 Introduction

A Reeb graph [1] is a topological descriptor that captures the evolution of level sets
of a scalar function. Specifically, given f : X — R defined on a topological space X
with enough regularity, the Reeb graph of f is a graph where each node corresponds
to a critical point of f and each edge captures the relationships among the connected
components of the level sets of f. A Reeb space is a generalization of the Reeb graph to



a multiparameter (multivariate) function f : X — R?. Reeb graphs and Reeb spaces
are popular in topological data analysis and visualization; see [2—4] for surveys.

In this paper, we introduce measure-theoretic Reeb graphs, extensions to the con-
ventional Reeb graph constructions that integrate metric measure spaces—metric
spaces endowed with probability measures—to enhance their robustness in capturing
the topological features. We argue that a metric measure space arises naturally in
data. In many data science applications, we would like to associate weights to data
points in the domain or function values in the range, which represent how much we
trust these data points or how important their corresponding features are. Conven-
tional Reeb graphs, however, do not take into consideration the data distributions and
(possibly) non-uniform importance of data points, leading to discrepancies between
the represented and actual topologies of the data. For example, a loop with a large
height difference in the Reeb graph might be caused by a sparse set of data points or
lie in regions of low importance in function values. Our measure-theoretic approach
allows Reeb graphs to capture robust topology in data, in line with recent advances
in topological data analysis for building robust topological descriptors [5-7]. Our
contributions include:

® We define a Reeb graph of a metric measure space where the domain is equipped
with a measure, and present two stability results:

— We first introduce a Reeb graph with local smoothing (Definition 11) and prove
its stability with respect to the interleaving distance (Lemma 7);

— We then prove the stability of a Reeb graph of a metric measure space with
respect to the measure, defined using the distance to a measure [7] and the kernel
distance to a measure [6], respectively (Theorem 8 and Theorem 9).

® We expand the measure-theoretic construction to consider a measure on the range,
referred to as a range-integrated Reeb graph (Definition 15), and prove its stability
(Proposition 16).

e We extend our measure-theoretic constructions (Definition 14 and Definition 17)
and stability results to Reeb spaces (Theorem 14, Theorem 15, and Proposi-
tion 18).

e We define a notion of interleaving distance between Reeb spaces (Definition 13)
that generalizes that of Reeb graphs and prove the stability of Reeb spaces with
respect to this interleaving distance (Theorem 12).

2 Related Work

Reeb graphs and Reeb spaces. A Reeb graph [1] is a topological abstrac-
tion of the level sets of a scalar function. A Reeb space [8] is analogous to Reeb
graphs for a multiparameter function. Theoretical investigations of Reeb graphs, Reeb
spaces, and their variants (in particular, Mapper constructions [9]) have been quite
active, exploring their distances, information content [10, 11], stability [11-18], and
convergence [10, 19-22].

There are a number of distances proposed for Reeb graphs and their variants, such
as interleaving distance [12, 23-27], functional distortion distance [13, 15], functional



contortion distance [28], edit distance [18, 29-31], Gromov—Hausdorff distance [32, 33],
and bottleneck distance [32]; see [4, 34] for surveys. In particular, de Silva, Munch, and
Patel [12] introduced an interleaving distance that quantifies the similarity between
Reeb graphs by utilizing a smoothing construction. The smoothing idea was further
expanded by Munch and Wang [20], where they proved the convergence between the
Reeb space and Mapper [35] in terms of the interleaving distance between their corre-
sponding categorical representations. Bauer, Munch, and Wang [15] showed that the
interleaving distance is strongly equivalent to the functional distortion distance [13].
In this paper, we introduce a local smoothing idea and define an interleaving distance
between Reeb spaces that generalizes that of Reeb graphs and prove the stability of
Reeb spaces with respect to this interleaving distance.

Reeb graphs and their variants have been widely used in data analysis and visu-

alization, including shape analysis [36-39], flexible isosurfaces [40], isosurface denois-
ing [41], data skeletonization [42], topological quadrangulations [43], loop surgery [44],
feature tracking [45], and metric reconstruction of filament structures [46]. See [2, 4]
for more applications in computer graphics and data visualization, respectively.
Metric measure spaces. A metric measure space is a metric space equipped with a
probability measure, providing a natural framework for statistical inference, machine
learning, and data analysis [47]. This concept is particularly relevant in real-world
data, often sampled from probabilistic distributions, with inherent distance relation-
ships among data points. In machine learning, metric measure spaces have been used
in the study of generative models [48], graph learning [49], and natural language
processing [50]. In topological data analysis, metric measure spaces are instrumen-
tal in developing statistically robust persistent homology invariants [5, 7], studying
functional data [51] and providing measure-theoretic perspective on Vietoris—Rips
complexes [52, 53].
Robust geometric inferences. Chazal, Cohen-Steiner, and Mérigot [54] introduced
the distance to a measure function that supports geometric inferences that are robust
to noise and outliers. It is applied to enhance the robustness of persistent homology
invariants [7] As an alternative method, Phillips, Wang, and Zheng [6] showed that
robust geometric inference of a point cloud can be achieved by examining its kernel
density estimate, and subsequently, the kernel distance. The kernel distance enjoys
similar reconstruction properties of distance to a measure, and additionally possesses
small coresets [55] for inference tasks. These robust techniques enhance the resilience
of geometric inference against noise and outliers, and are utilized in this paper to
attune the measures on metric measure spaces.

3 Background on Reeb Graphs and Reeb Spaces

A Reeb graph [1] starts with a topological space X equipped with a continuous real-
valued function f : X — R. It captures the evolution of the level sets of f. Unless
otherwise specified, we always work with continuous functions in this paper.
Definition 1 (Reeb graph). The Reeb graph is the quotient space R(X, f) == X/~
obtained by identifying equivalent points where, for every x,y € X,x ~y y if and only
if © and y belong to the same connected component of the level set f=1(f(z)).



By construction, as shown in Figure 1, there is a natural quotient map m: X —
R(X, f) that sends a point € X to its equivalence class [z] € R(X, f). Meanwhile,
f naturally induces a function f : R(X, f) — R defined as f([z]) = f(x). The pair
(X, f) is referred to as an R-space [12].

In this paper, we assume that X and f are regular enough (e.g. constructible R-
spaces [12] which includes the case when f is a piecewise linear function on a finite
simplicial complex or a Morse function on a compact manifold) so that the Reeb
graph R(X, f) is a finite graph. We will use this regularity assumption of Reeb graphs
throughout the paper.

o=

Fig. 1 An example of a Reeb graph.

Let (X, f) and (Y, g) be two R-spaces. We say that a continuous map ¢ : X — Y
is a function preserving map if f = g o ¢. A function preserving map ¢ : X — Y
induces a map ¢ : R(X,f) — R(Y,g) between the Reeb graphs by sending [z] to
[¢(x)]. Additionally, ¢ is also a function preserving map between (R(X, f), f) and
(R(Y,g),§), for a proof in the setting of Reeb graphs, see [12, Proposition 2.8].

To simplify the notation, we write a Reeb graph R(X, f) as G := (G, f) with G
being a finite graph and f being a real-valued function on G such that f is monotonic
on each edge of G. We omit f from (G, f) when it is clear from the context. In
particular, G is a special case of an R-space. We say two Reeb graphs are isomorphic
if there exist function preserving maps between them that are inverse to each other.

We review the smoothing of Reeb graphs [12] that facilitates the study of the
stability of Reeb graphs. It is used to define the interleaving distance between Reeb
graphs.

Definition 2 (Smoothing of Reeb graph [12]). Given a Reeb graph G, the e-smoothing
of G is defined as the Reeb graph of the function:

fe: Gx|—g¢e] —R
(z,t) — f(z) +1.

That is, the e-smoothing of a Reeb graph is the quotient space G x [—¢,¢e]/ ~y.,
denoted as S:(G, f).



Fig. 2 From left to right: a Reeb graph G, its e-thickening with a function f., and the Reeb graph
of the e-thickening.

The space G x[—¢, €] is referred to as the e-thickening of G. Then the e-smoothing is the
Reeb graph of the e-thickening. See Figure 2 for an example, where the e-thickening
is tilted slightly to reveal its structure. We have the following maps associated with
the smoothing of a Reeb graph:

® The zero-section inclusion 1 : G — S.(G, f) is defined as n(x) = [x,0], where we
use [z, 0] to denote the equivalence class of (z,0) in S.(G, f);

e Let ¢ : (G, f) — (H,h) be a function preserving map between two Reeb graphs.
Then we have the induced map S:[¢] between their smoothings S¢[¢] : Sc(G, f) —
S:(H,h) defined as ¢.([z,t]) = [¢(z), t].

With the above preparations, we can now present the definition of interleaving distance
between Reeb graphs introduced by de Silva et al. [12].

Definition 3 (Interleaving distance [12, Definition 4.35]). For any ¢ > 0, an -
interleaving between two Reeb graphs (G, f) and (H,h) is a pair of maps, ¢ : (G, f) —
Se(H,h) and v : (H,h) = S<(G, f) such that the diagram

(Gvf) — SE(Gvf) — SQs(Ga f)

~ 1

(H.h) ——s S.(Hh) ————— \Egs(H, 1)

commutes, where S¢[@] is the map induced by ¢ : G X [—¢€,e] — S:(H,h) x [—¢,¢]
defined as ¢(x,t) = (¢(x),t). The interleaving distance d;((G, f),(H,h)) is defined as

di((G, f), (H, h)) = inf{there exists an e-interleaving of (G, f) and (H,h)}.

It is shown in [12] that the interleaving distance is a pseudometric on the set
of isomorphism classes of Reeb graphs that takes values in [0,00). Additionally, the
interleaving distance is zero if and only if the two Reeb graphs are isomorphic.
Remark 1 (Other distance notions between Reeb graphs). There are other dis-
tance measures between Reeb graphs, such as the functional distortion distance (dgp)



introduced in [13]. It is shown in [15, Theorem 14] (for the lower bound) and [56,
Theorem 1.1] (for the upper bound) that the interleaving distance between Reeb
graphs is strongly equivalent to the functional distortion distance with the following
inequality:

dI(R(X’ f)’R(K g)) < dFD(R(X7f)>R(Ya g)) < 3dI(R(X7 f)’R(K g))

Therefore, the results in this paper can be applied to the functional distortion dis-
tance as well. We focus on the interleaving distance in this paper for proving a
tighter stability bound as well as its generalization to Reeb spaces. Additionally, we
can also consider bottleneck distance of the Oth persistence diagrams Dmg,(R(X, f))
and Dmg,(R(Y,g)) and 1st extended persistence diagrams ExDmg,(R(X, f)) and
ExDmg, (R(Y, g)) of the Reeb graphs R(X, f) and R(Y,g), respectively, of the level-
set filtrations on the Reeb graphs, see [57] for more details. By applying the following
bound between the interleaving distance and the bottleneck distance [58, Theorem 3.8],
we can translate the stability results in this paper to the bottleneck distance.

dB(DmgO(R(X7 f))v DmgO(R(K g))) < dI(R(Xv f)v R(K g))a
dp (EXDmgl(R(X> f))7 EXDmgl (R(Y> g))) < 2d; (R(X7 f)ﬂ R(K g))

We illustrate in Remark 2 on how to apply the stability results in this paper to the
functional distortion distance and the bottleneck distance.
Proposition 1 ([12, Proposition 4.6]). Let (G, f) and (H, h) be two Reeb graphs. Then

df((Gv f)v(th')) =0

if and only if (G, f) is isomorphic to (H,h).

Note that the smoothing can also be applied to X, that is, we consider S.(X, f) =
X x [—¢g,e]/ ~y. where f. : X X [—¢,¢] — R is defined as f.(z,t) = f(z) + ¢. Indeed,
the above smoothing construction is discussed in [12, Definition 4.19], and this con-
struction is naturally isomorphic to the one used in Definition 2 (in the sense of
category theory) as shown in [12, Theorem 4.21]; see also Lemma 10, where we prove
this result in the general context of Reeb spaces. This fact allows for the following
construction of interleaving maps between Reeb graphs.
Proposition 2. Let (X, f) and (Y,g) be two R-spaces. Then R(X, f) and R(Y,g)
are e-interleaved if there are function preserving maps ¢ : X — Y X [—¢,¢| and
Y :Y = X x [—¢,¢| such that the following diagram commutes:

R(X,f) ———— R(X x [—g,¢e], fe) ———— R(X x [—2¢,2¢], fac)
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T:['l;]/ -7 T~ N

.- s
R(Y,9) ————— R(Y x [-¢,¢e],9.) —— R(Y x [-2¢,2¢], goc)




where Tc[@] is the map induced by T.[¢] : X x [—e,e] = Y X [—2¢,2¢] defined as

Te[o)(x,t) = (Pri(¢(x)), Pra((z)) +1).

We use Pry and Pry to denote the projection maps from'Y x [—e,e] to Y and [—¢,€]
respectively.

Finally, we mention the following stability result of Reeb graphs R(X, f) and
R(X,g) that are built from the same ambient space X.
Theorem 3 ([12, Theorem 4.4]). Let R(X, f) and R(X,g) be two Reeb graphs built
from the same ambient space X. Then the interleaving distance defined in Defini-
tion 3 satisfies

dI(R(X7 f)’ R(X7 g)) < ||f - g”oo

The Reeb space [8] is a natural generalization of the Reeb graph to a multiparam-
eter function f : X — R? Again, we will assume that X and f are regular enough
(e.g. they induce a constructible cosheaf [59]).
Definition 4 (Reeb space). For any continuous R%-valued functions f : X — R%, the
Reeb space R(X, f) := X/~ is a quotient space of X obtained by identifying points
that belong to the same connected component of the level set f~1(c) for any ¢ € R?.

As in the case of the Reeb graph, the multiparameter function f also induces a
continuous function f : R(X, f) — R? on the Reeb space R(X, f) by f([z]) = f(x)
for any € X. For two Reeb spaces R(X, f) and R(Y,g), amap ¢ : X — Y is
function preserving if f = g o ¢. Then the function preserving map ¢ induces a map
¢ : R(X,f) — R(Y,g) on the Reeb spaces by ¢([z]) = [¢(x)] for any z € X. With
an abuse of notation, similar to the Reeb graph, we also use the notation (G, f) to
denote a Reeb space in Section 6.

4 Background on Measure-Theoretic Concepts

We review measure-theoretic concepts, in particular, the Wasserstein distance between
two probability measures on a metric space, which originates from optimal transport.
We refer the readers to [60] for more details on the Wasserstein distance. We also
discuss distance to a measure [7, 54] and kernel distance [6, 61] important for robust
structural inference.

Definition 5 (Metric measure space [47]). A metric measure space is a triple
(X,dx, 1) where (X,dx) is a metric space and u is a probability measure on the Borel
o-algebra of X.

Here, we require that the metric space (X, dx) is complete and separable, and the
measure p is a locally finite (Borel) probability measure. For simplicity, we use X to
denote a metric space (X,dx), and (X, u) for a metric measure space, when dx is
obvious from the context.

Definition 6 (2-Wasserstein distance). Let (X, dx) be a metric space and u,v be two
probability measures on X. The 2-Wasserstein distance between p and v is defined as

Wa(p,v) = _inf </Xxxdx($>y)2d7f($,y)>l/2,

mell(p,v)



where I1(p, v) is the set of all probability measures on X x X with marginals p and v.
The distance to a measure function is introduced in [7, 54] and it serves as a robust

enhancement for geometric inference.

Definition 7 (Distance to a measure [7, Definition 1.1]). Let (X, u) be a metric

measure space and let m € (0,1] be a mass parameter. We define the distance to a

measure function dym: X — R as

1 m
dym € X — ”m/o 62 o(w)ds,

where 8,5 is defined as 6,5 : x € X ~ inf{r > 0 | u(B(z,r)) > s} and B(z,r)
denotes the closed ball of radius r centered at x.

The distance to a measure function satisfies the following stability property:
Theorem 4 ([7, Theorem 3.3] for R™; [62, Proposition 3.14] for general metric spaces).
Let p and v be two probability measures on a metric space (X,dx) and let m € (0, 1]
be a mass parameter. Then: ||dy m — dymll < ﬁWg(u,u), where Wo(u,v) is the
2-Wasserstein distance between p and v.

The kernel distance to a measure, as introduced in [6], also offers an alternative
robust enhancement for geometric inference. It is closely related to the kernel density
estimation from statistics. We generalize this definition from R™ to general topological
spaces by utilizing the notion of integrally strictly positive definite kernel functions [61].
Definition 8 (Integrally strictly positive definite kernel function, [61]). Let X be
topological space. A (Borel) measurable function K : X x X — R is called an integrally
strictly positive definite kernel function if for all bounded signed Borel measures jn on
X, there is

K(z,2")du(z)du(z") > 0.
XxX

Examples include the Gaussian kernel function K(z,z’) = exp(—|z —
2'||?/20%),0 > 0 on R" and certain period function K(z,2') =
exp® °(#=2") cos(asin(z — 27)),0 < a < 1 on the circle S! (See Section 3.3 of [61] for
details). It is shown in [61] that Definition 8 allows us to define a metric on the set
of probability measures on X.

Definition 9 (Kernel distance, [6, 61]). Let X be a topological space. Let v and v be
two probability measures on X. Let K be an integrally strictly positive definite kernel
function. Then the kernel distance Dk between p and v is defined as

DK(NJ) V) = \/K)(,U,, N) + H(Vv V) - 2’{(/% V)v

where k(p,v) is defined as k(u,v) := [y  K(z,2")dp(z)dv(z’).
Theorem 5 ([61, Theorem 7]). Let X be a topological space. Let p and v be two prob-
ability measures on X . Let K be an integrally strictly positive definite kernel function.
Then Dy is a metric on the set of probability measures on X.

The kernel distance (Definition 9) is utilized in [6] to define the kernel distance
to a measure by considering the kernel distance between a measure and the Dirac



delta measure at a point. We make a slight generalization of the definition to general
topological spaces.
Definition 10 (Kernel distance to a measure, [6]). Let u be a probability measure on
a topological space X. Let K be an integrally strictly positive definite kernel function.
Then the kernel distance D, ik with respect to p is a function D, x : X — R defined
as D, x(x) = Di (i, 05), where 05 is the Dirac delta measure at x.

Applying the triangle inequality for the kernel distance, we obtain the following
stability result of the kernel distance to a measure function.
Theorem 6 (Stability of kernel distance to a measure, [6]). Let u and v be two
probability measures on a topological space X. Let K be an integrally strictly positive
definite kernel function. Then ||D, x — Dy k| < Dx(p,v), where D (u,v) is the
kernel distance between p and v.

5 Reeb Graphs for Metric Measure Spaces

With the ingredients from Section 3 and Section 4, we now introduce Reeb graphs
for metric measure spaces that are robust to noise in the domain. We achieve this by
utilizing the smoothing operation and using either the distance to a measure [7] or the
kernel distance to a measure [6] to define a measure-aware local smoothing factor. We
first introduce a Reeb graph with local smoothing and prove its stability with respect
to the interleaving distance. We then prove the stability of Reeb graphs with respect
to the measure, defined using the distance to a measure and the kernel distance to a
measure, respectively.

Definition 11 (Reeb graph with local smoothing). Let (X, f) be a R-space. Let r :
X — R be a bounded positive function on X with M := sup,cx r(z). The function
r is viewed as a local smoothing factor. Let X, denote the space X, = {(x,t) €
X x [-M,M] | |t| < r(x)}. Then the function f naturally extends to a function f,. on
X, by fr(x,t) = f(x) +t. We define the r-smoothed Reeb graph of (X, f) to be the
Reeb graph R(X,, ).

The standard Reeb graph smoothing is a special case of local smoothing where r
is a constant function. The choice of r can be either the distance to measure function
dy,m or the kernel distance to a measure function D,, k. We will call them the distance
to a measure smoothed Reeb graph and the kernel distance smoothed Reeb graph,
denoted as R(Xg, ., fd,.,.) and R(Xp, x, fp, ;) respectively.

We have the following stability result regarding the local smoothing of Reeb graphs.
Lemma 7 (Stability of locally smoothed Reeb graph). Let X be a topological space
and f be a function on X. Additionally, let r1 and ro be two bounded positive function
on X with € := sup,¢cx |r1(x) — ra(x)|. Then the ri-smoothed Reeb graph R(X,,, fr,)
and the ro-smoothed Reeb graph R(X,,, fr,) are e-interleaved.



Proof. According to Proposition 2, we need to show the existence of maps ¢ and 1
such that the following diagram commutes:

N Nry e

R(Xﬁvf?”l) —_— R(Xh X [_575]’fT1,6) R(Xﬁ X [_28725]7.][7“1,25)

o T
T.[¢] \\\\\\ /’/,/’/
-7 T
R(Xyy, fry) — 2 R(Xyy X [—£, €], frae) — s R(X,, X [~2¢,26], fry20)

In the above diagram, we use the notation f,, . to denote the function X,, x[—e,¢] = R

defined as fr, «(z,t) = fr, (x)+t. We define f,, o, fry 26, and fr, 2 in a similar manner.
Now, let us introduce the maps ¢ and ¥. We use the pair (z,t) to represent a point

in X,, and the pair ((z,t),t’) to represent a point in X,, x [—¢,¢] or X, X [—2¢, 2¢].
For any r > 0, we define the r-parameterized projection map m,. : R — [—r, 7] as

7.(t) = argmin [t — /.
—r<t’'<r

Recall r; and 75 are bounded positive functions on X. We now define the map
¢: Xy = Xy, X [—e,e] as ¢ 1 (2,8) = (2, Ty () (1)), £ — Ty () (£)) . We want to prove
that the map ¢ preserves the function value, i.e., fr, = fr,c 0 ¢ for all (z,t) € X,,.
Indeed, for any (z,t) € X,,, we have

Frae(@(@, 1)) = fro (2, 0y@) (1) +E = Tryo) () = f(2) + £ = fr, (2, 1).

We define the map ¢ : X, = X, x[—¢,e] as ¢ : (z,1) = (2,70, () (1)), T — Ty () (1)) -
By a similar proof as above, we can show that the map ¢ preserves the function
value, i.e., fr, = fr,c 09 for all (z,t) € X,,. We define 7,, to be the inclusion map
Ny 2 Xy = Xy, X [—¢€, €], that is, 0, (z,t) = ((z,t),0). Additionally, let 7,, . be the
natural inclusion map X,, X [—¢,¢] = X,, x [—2¢,2¢|, and the maps 7,, and 7, . are
defined similarly. It is straightforward to see that 7,,,mr, , ry, Mry.e are all function
preserving maps. Then we have the following diagram with all the maps preserving
function values:

(Xrlvfrl) L (Xrl X [7675]7.}%"1,6) (Xrl X [725725]7]‘}1,25)

. _x

Try,e

- S

(Xrgs fra) —— 2 (X X [—2,€], frae) — 2 (X, X [26,2¢], fry 20)

Since each map preserves function values, we obtain a diagram about maps between
Reeb graphs induced by the maps between the spaces in the diagram above. To con-
clude the proof, it suffices to show that the induced diagram between Reeb graphs

10



commutes. We use the notation [p] to denote the induced map between Reeb graphs
for any map ¢ between spaces. By symmetry, it suffices to show

(i) [TS[¢] [777‘1,6] = [777“2,6] o [d)]’ as maps between R(Xrnfn) and R<sz X
(~22,2¢], £y ).

() [L00] 0 16 = [ o ], as maps between R(X,.fn) and R(X,, x
[ 25728] fr1,26)

For item (i), let (z,t) € X,,. Then we have

(Tz[¢l o 1y ) (1) = (Te[0]) (2, 1), 0) = (Pra(@(z, 1)), Pra(o(z, 1)) + 0)
= o((, 1)) = Ny 2 0 D(, 1),

where Pr; and Pry are the projection maps from X, x [—¢,¢] to X, and [—e,¢],
respectively. For item (ii), let (x,t) € X,,. Then we have

(Te[9) 0 @) (2, t) = (Te[P) (2, Ty () (£))s £ = Ty (a) (1))
= (Pra(((@, ry (2) (1)) £ = Ty @) (1)), Pra(@((2, Ty @) (8)), 8 = Ty () () + & = Ty @) (1))

Note that ¥ ((2, T, (2)(1)) = (&, Tpy (@) © Ty (8)), Ty (2) (E) — Ty () © Ty (T)). Sinee [t <
ri(z) and |7, ) (1) < b, 7,0 (B)] < ri(x), consequently, 7, (g) © Tpy () = Tpy(2)(t).

Therefore,
V(2 Ty (1) (1)) = (@, 75 () (), 0).
Thus, we have

(T:[Y] 0 ¢)(, 1)
= (Pr1(¥((z, Ty () (8))s t = Try(a) (£)))s Pra(@ (2, Ty () (8)) st = Try(2) () + T = Ty (1))
= (Pr1((@, mpy(2) (1)), 0), Pra((2, mpy(2) (1)), 0) + ¢ — 7py () (1))
= (T Try(2) (1)) s T — Tpy(a) (1))

Note that n,, . o, (x,t) = ((z,t),0) and hence T [¢)] o ¢ and n,, . o 7, are not
necessarily the same maps. However, when we pass down to the Reeb graph R(X,, X
[—2¢, 2¢], fry 2¢), the induced maps from (T:[¢)] o ¢) and (7, ¢ 07y, ) agree with each
other. Indeed, note that the path v :[0,1] — X,., x [—2e¢,2¢] defined by

RE-Ramd ((fﬂ, Try(x) (t) + s(t - ﬂrz(m)(t)))v (1 - s)t - 7Tv“z(azc)(t))

satisfies ’7(0) = ((LU, 7Tr2(z)(t))at - WTQ(z)(t)) = (TEWJ] o ¢)(£C,t) and '7(1) = (((E,t), 0) =
(Mry e © Ny )(x,t). Additionally, fr 2. is a constant function on the path v and
hence (T¢[¢)] o ¢) and (7, c 01y, ) are the same maps from R(X,,, fr,) to R(X

[—2¢, 2¢], fr, 2¢). This completes the proof. O

Now we are ready to prove the stability result of the d,, y,,-smoothed Reeb graph and
the D, kx-smoothed Reeb graph with respect to a pair of measures p and v.

11



Theorem 8 (Stability of d,, ,-smoothed Reeb graph). Let (X,dx,p) and (X,dx,v)
be two metric measure spaces and f,g : X — R be two continuous functions. Let
m € (0,1] be a mass parameter. Then we have

dr(R(Xa, s fa,.) B(Xa, ., 9d,..)) < |f =gl + Wa(p, v).

1
vm
Proof. By the triangle inequality of interleaving distance, we have

dr(R(Xa, ., fa,..) R(Xd, . 9d,.,)) <dr(R(Xaq,,., fa,..), BR(Xa, . 9d,..))
+ dI(R(Xdu,nu gdu,'nL)’ R(Xdu,'ln, ) gdu,m))

1
<|\f = glloo + —=Wa(p,v),
m

vm

where the last step uses Theorem 3 and Lemma 7. O]

Similarly, for a topological space X with an integrally strictly positive definite

kernel function K, we can obtain a similar stability result for the D, x-smoothed Reeb
graph.
Theorem 9 (Stability of D, x-smoothed Reeb graph). Let X be a topological space.
Let p and v be two probability measures on X. Let K be an integrally strictly positive
definite kernel function on X. Consider two continuous functions f,g: X — R. Then
we have

dl(R(XDM,K’fD;L,K)7R(XDu,K’gDu,K)) < ||f _g”oc +DK(,M7V)'

Proof. By the triangle inequality of interleaving distance, we have

dI(R(XD[L,K ) fD“,K)v R(XDV‘K ; gD,,,K)) < dI(R(XD[L,K’ fDu,K)7 R(XD[L,K ) gD[L,K))
=+ dI(R(XDu,K ) gD“,K)a R(XDu,K ’ gDu,K))
<|If = gllos + Dx (s v),
where the last step uses Theorem 6 and Lemma 7. O

Remark 2. When considering the functional distortion distance or the bottleneck
distance (see Remark 1), we can obtain similar stability results for the d,, n,-smoothed
Reeb graph and the D, k-smoothed Reeb graph. For example, for the d,, ,,,-smoothed
Reeb graph with the functional distortion distance, we have

drp (R(Xdu,m ) fdu,m)7 R(Xdu,m ) gdu,m)) < 3d1(R(XdH,m ) fdu,m)7 R(Xdu,m ) gdu.m))
1
<3 (17 =l + = Walur) )
and with the bottleneck distance, we have

dp(R(Xa,,,., fa,..) B(Xa,,.,9d,,)) < di(R(Xaq,,., fa, ), R(Xa, .., 9d,,,))

12



1
< — Gl + —=Walp,v) | ;
< (17 = gl + =Wl
together with
dB (EXDmgl (R(Xdp,,m7 fdu,m)? EXDmgl (R(Xdy,m7 gdu,m)) < 2dI(R(Xdu,ma fdu,m)’ R(Xdy,ma gdu,m))

<2 (If =gl + \/%Wz(u,v)> :

Similar results can be obtained for the D, x-smoothed Reeb graph or the range-
integrated Reeb graph to be introduced in Section 7.

o o o o o o o
N © s o o 3
ey
-1/\
y <
‘\ -
N

(@) (b) © (d)

Fig. 3 Smoothed Reeb graphs based on distance to a measure (top) and kernel distance to a measure
D, k (bottom) with Gaussian kernel function. From left to right: (a) the original topological space X
colored by a bounded positive function (e.g., dy,m or D,, i) on X; (b) the (locally) thickened spaces
with a small ;4 value together with (c) the d,, m-smoothed Reeb graph (top) and the D, x-smoothed
Reeb graph (bottom); (d)-(e): similar to (b)-(c) with a large p value.

Example 1. We use an example in Figure 3 to demonstrate the d,, ,,-smoothed Reeb
graphs (top) and D,, x-smoothed Reeb graph with Gaussian kernel function (bottom),
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respectively. Our original space X consists of one large loop containing two small loops
a and 8, where « is slightly bigger than §. Since the measure based on D,, x considers
the larger loop o on the bottom left corner to be more important, the D,, g-smoothed
Reeb graph retains a at a larger p value. On the other hand, the measure based on
d,,m emphasizes the significance of the smaller loop 8 on the upper right corner, the
d,,m-smoothed Reeb graph thus retains 3 at a larger p value.

6 Reeb Spaces for Metric Measure Spaces

The stability results in Section 5 extends to the setting of Reeb spaces for metric
measure spaces. In this section, we use R(X, f) to denote the Reeb space of a mul-
tiparameter function f : X — R?. We assume that the topological space X and the
resulting Reeb space R(X, f) are compact and Hausdorff. The smoothing and hence
the notion of interleaving distance of Reeb graph is extended to Reeb space in [20]
through categorical language. In this section, we focus on a geometric approach for
smoothing a Reeb space.

We first introduce the following notations. Let I. := {t € R? | [t|oo < €} be the
£+ ball of radius € centered at the origin, it serves as a higher-dimensional analogue
of the 1-dimensional interval.

Definition 12 (Smoothing of Reeb space). Let (G, f) be a Reeb space. For anye > 0,
the e-smoothing S. (G, f) of (G, f) is a Reeb space R(G x I, f.) where f. : Gx I. — R?
is the continuous function defined by f-(x,t) = f(x) +t for any (x,t) € G x I..

We now define a geometric notion of interleaving distance between Reeb spaces.
Definition 13 (Interleaving distance between Reeb spaces). For any ¢ > 0, an e-
interleaving between two Reeb spaces (G, f) and (H,h) is a pair of maps, ¢ : (G, f) —
Sc(H,h) and ¢ : (H,h) = S:(G, f) such that the diagram

(G, f) ——— 5.(G, f)\ — S5 (G, f)

(HB) s SU(H.B) s Sy (H. )

commutes, where S:[@] is the map induced by ® : G x I, — S.(H,h) x I. defined as
O(x,t) = (¢(x),t). The interleaving distance dr((G, ), (H,h)) is defined as

dr((G, f), (H,h)) = inf{there exists an e-interleaving of (G, f) and (H,h)}.

Suppose the Reeb space R(X, f) is induced by a continuous function f : X — R%.
Then the e-smoothing Sc (R(X, f), f) is the same as the Reeb space induced by the
continuous function f. : X x I, — R? on X x I, defined by f.(z,t) = f(x) +t for any
(z,t) € X x I.. Indeed, we have the following lemma.

Lemma 10. Let R(X, f) be a Reeb space induced by a continuous function f: X —

R?. Let R(X x 1., f.) be the Reeb space induced by the continuous function f. : X xI. —
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R? on X x I. defined by f-(x,t) = f(x) +t for any (x,t) € X x I.. Then there exists
a homeomorphism from Sc(R(X, f)) to R(X X I, f-) that preserves function values.

The proof approach is analogous to the 1-parameter (univariate) case established
in [12, Theorem 4.21], though we employ direct geometric arguments rather than the
pre-cosheaf formalism used in the original work.

Proof. We will prove this lemma through some results about quotient spaces (see
[63, Section 2.4]) and the fact that X is compact and Hausdorff. Consider the map
®: X xI. > R(X, f) x I defined by ®(x,t) = ([z],t) for any (z,t) € X x I.. Then ®
is a continuous surjective map and function preserving with respect to f. on X x I,
and f. on R(X, f) x I.. Since ® preserves function values, so is the induced map 3.
Additionally, note that ® induces a continuous surjective map P : R(X x I, f.) —
S.(R(X, f)) defined by ®([z,t]) = [[z],]. Next, we show that ® is a homeomorphism.
This is done by showing that ® is a bijective quotient map ([63, Corollary 2.4.7]). We
will introduce some notations before showing that P is a quotient map.

We will use the notations 7y, : X x I, = R(X x I, f.) and 7y, : R(X, f) x I. —
S.(R(X, f)) to denote the quotient maps. Then 7y, 0 ® = ® o 7. Note that as ®
is a continuous surjective map between compact Hausdorff spaces, ® is closed and is
a quotient map. As the composition of two quotient maps, m¢, o ® is also a quotient
map. Hence ® is a quotient map by applying [63, Corollary 2.4.5] to the equality
Ty ofl):i)on'fs.

As @ is surjective so is ®. Then it remains to show that @ is injective. That is
for any [x,t],[y,s] € R(X x I, f.), if ®([z,t]) = ®([y, s]), then [z,t] = [y, s]. Since
®([z,t]) = ®([y, 5]), then we have f.([z],t) = f-([¢],s) = ¢ for some ¢ € R and there
exist a connected set C' C f=1(c) such that [z,t], [y, s] € C. Then f(z)+t= f(y) +s
which implies f.(x,t) = f.(y,s). As both R(X x I, f.) and Sc(R(X, f)) are compact
Hausdorff spaces, the map @ is closed. Then ® is a continuous closed quotient map
such that for any point [[z],t] € S.(R(X, f)), the preimage ®~1([[z],]) is a connected
set. We then apply [63, Theorem 2.4.4] to conclude that ®~*(C) is also connected.
Note that ®~1(C) belongs to f='(c) and contains both [z,t] and [y, s]. Then we have
[,t] = [y, s]. This completes the proof. O

As a direct consequence, we have the following extension of Proposition 2 to
Reeb spaces.
Proposition 11. Let R(X, f) and R(Y,g) be two Reeb spaces induced by continuous
functions f: X — R and g : Y — R respectively. Then R(X, f) and R(Y,g) are e-
interleaved if there are function preserving maps ¢ : X — Y X I. and ¢ : Y — X x I,
such that the following diagram commutes:

R(X,f) ———— R(X x I, f.) ———— R(X X I, fac)

Sl 1

R(Y,g) ——— R(Y x I, gc) ——— R(Y X Iz, g2c)
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where T.[p] is the map between Reeb graphs induced by Te[¢] : X x I. = Y X I,
defined as
T:[¢](z,t) = (Pri(¢(z)), Pra(¢(z)) + 1).

Here, we use Pry and Pry to denote the projection maps from'Y X Is. to 'Y and I
respectively.

As in the case of Reeb graph, we have the following stability result for Reeb spaces
built from the same space with multiparameter functions.
Theorem 12. Let f,g: X — R? be two bounded continuous functions on X. Then
the Reeb spaces R(X, f) and R(X,g) are (||f — g|loo)-interleaved.

When d = 1, the above theorem reduces to the stability result for smoothings of
Reeb graphs in [12]. In particular, the proof in [12] works for general setting and with
categorical language. We provide a direct proof here for completeness.

Proof. Let € = ||f — g|loo- We will prove the theorem by constructing the function
preserving maps ¢ : X — X x I and ¢ : X — X x I.. Specifically, we define ¢ and v
as follows:
¢(z) = (2, f(z) — g(x)) and ¢(z) = (2,9(x) - f(2)).

This is well-defined since || f(z) — g(2)|lcc < ||f — glloo for any x € X. Then ¢ is a
function preserving map as ge0¢(z) = g (z, f(x) —9(z)) = g(z)+(f () —g(x)) = f ().
A similar calculation shows that 1 is also a function preserving map. In particular,
we will show that the following diagram commutes which in turn implies that R(X, f)
and R(X,g) are e-interleaved.

X — 1 s XxI.—" 5 XxI

X — 1 s XxI.—2 5 XxI

where 1 and 7. are inclusion maps. Indeed, we have

1. T.[¢] is a function preserving map,
2. Te[y]o ¢ =neom,
3. T.[¢] is a function preserving map,
4. Te[gl o =neom.

By symmetry, we only need to show the first and the second items. For the first item,

we have
g2 o T [¢] (xv t) = gQa(xv (.%') - g(x) + t)
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For the second item, we have

This completes the proof. O

With the smoothing of Reeb space, we can also define the Reeb space with local
smoothing which in turn allows us to define Reeb spaces for metric measure spaces.
Definition 14 (Reeb space with local smoothing). Let f : X — R? be a continuous
function on X. Additionally, let r : X — R be a bounded positive function on X with
M :=sup, e x r(z). The function r is viewed as a local smoothing factor. We use X,
to denote the space X, = {(z,t) € X x [-M, M]? | |t| < r(z)}. Then the function f
naturally extends to a function f. on X, by f.(x,t) = f(z) +t. We then defined the
r-smoothed Reeb space of (X, f) to be the Reeb space R(X,, f,).

As in the case of Reeb graph, for a metric measure space (X,d,u) with R?-
valued function f, we can define the distance to a measure smoothed Reeb graph
R(Xa,, . fa,.,) and the kernel distance smoothed Reeb graph R(Xp, ., fp by
using d,,m and D, i as the local smoothing factor r in Definition 14.

By considering the variable ¢ belonging to I. instead of t € [—¢, ], the exact same

proof of Lemma 7 can be extended to the Reeb space with local smoothing. That
is, the Reeb space with local smoothing is stable with respect to the local smoothing
factor r. Therefore, we have the following stability result for Reeb space with local
smoothing. The proof is identical to the proof of Lemma 7 by simply viewing the
parameter ¢ as an element in R? instead of R.
Lemma 13. Let (X,d,u) be a metric measure space and f : X — R? be a con-
tinuous function. Let r1,79 : X — R be two bounded positive functions on X with
€ := Sup,ex |ri(x) — ro(x)|. Then the Reeb spaces R(X,,, fr,) and R(X,,, fr,) are
e-interleaved.

i)

Proof. The proof is identical to the proof of Lemma 7 by simply viewing the
parameter ¢ as an element in R? instead of R. O

Likewise, we have the following stability results for Reeb space with local smoothing
with respect to functions d,, ,, and D, k.
Theorem 14. Let (X,dx,pn) and (X,dx,v) be two metric measure spaces. Let f,g :
X — R? be two continuous functions. Let m € (0,1] be a mass parameter. Then we
have

di(R(Xd, s fdpm)s B(Xdy s 9dyn) < I = glloo + Wa(p,v).

1
vm
Proof. The proof is identical to the proof of Theorem 8 except that we need to
use Lemma 13 instead of Lemma 7. O
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Theorem 15. Let (X,dx,p) and (X,dx,v) be two metric measure spaces. Let K be
an integrally strictly positive definite kernel function on X. Let f,g: X — R% be two
continuous functions. Let m € (0,1] be a mass parameter. Then we have

dI(R(XD,_L,K7fD‘u,K)7R(XDV,K7gDV,K)) < ”f _gHOO +DK(M7V)'

Proof. The proof is identical to the proof of Theorem 9 except that we need to
use Lemma 13 instead of Lemma 7. O

7 Range-Integrated Reeb Graphs

Our extension of Reeb graphs to metric measure spaces needs not to be limited to
measures defined on the domain of the function. We now extend the Reeb graph
construction so that it respects a measure p on the range of a function. For instance,
1 may capture the importance of a feature and we would like to understand how p
transforms the shape of a Reeb graph. Let X be a topological space and f : X — Rbea
continuous function. Let o be a probability measure on R. The cumulative distribution
function (CDF) of u is defined as

Fula) = pl(—oe.a) = [ dn

Therefore, a natural way to adapt the Reeb graph construction when its range comes
with a measure y is to consider the Reeb graph of the function F), o f. We assume the
function F), o f is regular so that the Reeb graph R(X, F}, o f) is a finite graph.
Definition 15 (Range-integrated Reeb graph). Let X be a topological space and f :
X — R be a continuous function. Let u be a probability measure on R whose CDF F,,
is continuous. Then the range-integrated Reeb Graph of f with respect to p is defined
to be the Reeb graph of F, o f, denoted as R(X, F, o f).

We provide in Figure 4 an example of the Reeb graph that respects a measure on
the range of the function. The intuition behind a range-integrated Reeb graph is
that a measure p on the range enables the vertical scaling (stretching/shrinking) of a
Reeb graph according to p, which subsequently emphasizes certain topological features
according to p.

In the following, we show that the above construction is stable. To this end, we
utilize the Kolmogorov-Smirnov distance between two probability measures on R.
Definition 16 (Kolmogorov-Smirnov distance). Let p and v be two probability mea-
sures on R. Then the Kolmogorov-Smirnov (KS) distance dxg between p and v is
defined as

dics(p.v) := sup | Fu(a) — B ()].

z€R
Recall that the Lipschitz constant of a function f : R — R is defined as Lip(f) :=
SUDP, yer % Then we have the following stability result.

Proposition 16. Let X be a topological space and f,g : X — R two continuous
functions. Let p,v be two probability measures on R with continuous CDF F,, F,

18



Fig. 4 Visualization of a Reeb graph R(X, f) (left) and a range-integrated Reeb Graph R(X, F, o f)
(right) respectively.

respectively. Then we have the following inequality:

di(R(X, Fy o f), R(X,F, 0g)) <min{dgs(u,v) + Lip(F.)[| f — 9llco
drs(p,v) + Lip(F)||f = glloo, 1} -

Proof. By the triangle inequality of the interleaving distance and the stability of the
Reeb graph (Theorem 3), we have

di(R(X,Fj, 0 f),R(X,F,0g)) <d(R(X,F,o f),R(X,F,0g))
+d(R(X,F,0g9),R(X,F, 0g))
< HF#Of_FuogHoo+||Fu°9_Fuog||oo
< Lip(F)||f — glloe + dres(p,v).

Alternatively, there is a similar inequality

di(R(X,F,o f),R(X,F,o0g)) <di(R(X,F,of),R(X,F,o f))
+dr(R(X,F, o f),R(X,F, 0g))
<N Fuof=Fooflloot+Fuof—F,oglx
< dgs(p,v) + Lip(F)[f — glloo-

Additionally, since the range of cumulative distribution function is [0, 1], we have the
simple bound || F}, o f — F, o g|lcc < 1. Therefore, we obtain the desired inequality by
taking the minimum of the two bounds. O

Specifically, when p approaches v and f approaches g, the above inequality implies
that the interleaving distance between R(X, F), o f) and R(X, F, o g) approaches to
Z€ero.

Let X be a manifold with a Morse function f. Then the nodes of the Reeb graph
R(X, f) are the critical points of f, i.e., the points x € X such that the gradient
V f(z) = 0. Under some mild conditions, the range-integrated Reeb graph R(X, F},0 f)
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rescales the Reeb graph R(X, f) according to the measure p on the range of f as in
the following proposition.

Proposition 17. Let X be a manifold and f : X — R be a Morse function. Let pu be
a probability measure on R. If the following conditions hold:

1. The measure p admits a continuously differentiable density function p, with respect
to the Lebesgue measure A on R, that is, u(A) = fA pudA for any Borel set A C R;

2. The image of f is contained in the interior of the support of u, that is, for any
zeX, pu(f(x)) >0.

Then the composition F, o f is Morse and the critical points of F,, o f are the same
as the critical points of f with corresponding critical values being p,(f(z)) for each
critical point x of f. Furthermore, for each critical point x of f, the Hessian of F, o f
at x© has the same number of positive and negative eigenvalues as the Hessian of f at x.

Proof. The regularity assumption on p allows us to compute the critical points of
F,, o f through the chain rule. That is, the gradient V(F}, o f) is given by

V(Fuof)=p(H)V/,

where p(f) is the density function of p at f. As p(f(z)) > 0 for any x € X, V(F, 0 f)
is zero if and only if V f is zero. Therefore, the critical points of F), o f are the same
as the critical points of f. Additionally, for each critical point = of f, the Hessian of
F, o f at x is given by

V2(Euo f)(x) = p(f(x)) V2 f(2) + 9 (f(2))Vf(2) ® V f(z) = p(f(2)) V2 f(2),

as V f(x) = 0. Therefore, the Hessian of F, o f at critical points is non-degenerate as
the Hessian of f is non-degenerate and the number of positive and negative eigenvalues
at each critical point is preserved. This implies that F}, o f is Morse. Additionally, the
critical values of F), o f are given by F,(f(z)) where z is a critical point of f. O

Since the topology of the Reeb graph R(X, f) is determined by the critical points of
f and the index of the Hessian of f at each critical point, the above proposition implies
that the range-integrated Reeb graph R(X, F), o f) maintains the same topology as
R(X, f) (under certain conditions) and only stretches/shrinks the Reeb graph R(X, f)
according to the measure p. In Figure 4, we present a visualization of a comparison
between the Reeb graph R(X, f) and the range-integrated Reeb graph R(X, F), o f)
in the setting of Proposition 17.

8 Range-Integrated Reeb Spaces

In this section, we extend the range-integrated Reeb Graph construction to Reeb
spaces. Let u be a probability measure on R%. For 1 < i < d, denote by 7; the
projection from R? to R along the i-th coordinate, where m;(x1,...,24) = x;. The
marginal distribution of ;1 along the i-th coordinate, y;, is given by p;(B) = u(m; *(B))
for any Borel set B C R.
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Definition 17 (Range-integrated Reeb space). Let X be a topological space and f :
X — R? be a continuous function. Let p be a probability measure on R such that the
CDF F,,, of p; is continuous for each 1 <i < d. We define the coordinate-wise CDF
E, of u as follows: F,, : R — R? as F,(x1,...,2q4) = (F.,(21),..., F.,(24)), where
E,, is the CDF of p;. Then, the range-integrated Reeb space of f with respect to i is
defined to be the Reeb space of F), o f, denoted as R(X, F, o f).

Following the same intuition as in the case of range-integrated Reeb graphs, the
above construction enables stretching/shrinking of a Reeb space according to a mea-
sure p on the range of a function f. We show the stability of the range-integrated
Reeb space in the following proposition.

Proposition 18. Let X be a topological space and f,g : X — R? two continuous
functions. Let p,v be two probability measures on R? such that their coordinate-wise
CDFs F,, F, are continuous. Then we have the following inequality:

(RO Fy 0 £), RO, 06) < win { (IS = ol + g {dies(s )}
Lip(F IS ol + oo (dies(s )1 |

where the Lipschitz constant of a vector valued fucntion f : RY — R? is defined with
respect to the Lo, norm, that is, Lip(f) := sup,, ,cga W@ =F (w)llee

lz—ylloo

Proof. By the triangle inequality of the interleaving distance and the stability of the
Reeb space (Theorem 12), we have
di(R(X, F o f), R(X,F,0g)) <d;(R(X,Fj o f),R(X,Fj 0g))
+ dI(R(Xa Fu OQ),R(X,FI, Og))
S|EFuof—Fuogloo+ [Fuog—Fyogle
< Lip(Fu)IIf = gllee + max [y, 09 =y, 09|
< Li _ .
< Lip(F)lf = glloo + max {dics (i, vi)}
where the last inequality follows from the definition of the KS distance. Similarly, by

utilizing the inequality d;(R(X,F, o f),R(X,F, 0g)) < d;j(R(X,F, o f),R(X,F, o
) +di(R(X,F,o f),R(X,F, 0g)), we can show that

di(R(X, Fy o f), R(X, Fy 0 g)) < Lip(Fy)[|f = glloo + max {dics (i, vi)}-

Since the range of F, and F,, are bounded in [0, 1]¢, we have ||F, o f — F, 0 gloc < 1.
Then the proposition follows. O
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9 Conclusion and Discussion

In this work, we present a novel theoretical framework for Reeb graphs and Reeb
spaces, utilizing metric measure spaces in either the domain or the range. Our findings
demonstrate the stability of both Reeb graph and Reeb space constructions against
perturbations of the function and the measure, thereby offering robust improvements
for these topological descriptors. Additionally, as one key component of our frame-
work, we define a geometric notion of interleaving distance between Reeb spaces that
generalizes that of Reeb graphs and prove the stability of Reeb spaces with respect
to this interleaving distance. Moving forward, we will explore the utility of our frame-
work in topological data analysis and visualization. We will also study the stability of
Reeb graphs using distances between their level set persistence diagrams, again in the
context of metric measure spaces.
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