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Abstract

In topological data analysis and visualization, topological descriptors such as persistence diagrams, merge trees, contour
trees, Reeb graphs, and Morse—Smale complexes play an essential role in capturing the shape of scalar field data. We present a
state-of-the-art report on scalar field comparison using topological descriptors. We provide a taxonomy of existing approaches
based on visualization tasks associated with three categories of data: single fields, time-varying fields, and ensembles. These
tasks include symmetry detection, periodicity detection, key event/feature detection, feature tracking, clustering, and structure
statistics. Our main contributions include the formulation of a set of desirable mathematical and computational properties of
comparative measures, and the classification of visualization tasks and applications that are enabled by these measures.

1. Introduction

Topological data analysis (TDA) provides fundamental tools for
scientific visualization in terms of abstraction and summarization.
These tools have great potential for data comparison, feature track-
ing, and ensemble analysis. For these purposes, a large variety of
comparative measures have been proposed targeting different topo-
logical descriptors and employed in a variety of visualization ap-
plications, which are the focus of this survey. This state-of-the-
art report aims to categorize, summarize, and analyze existing ap-
proaches that utilize comparative measures and identify open prob-
lems and opportunities for future work. We thus are interested in
both the mathematical foundations and properties of comparative
measures and their use in real-world visualization applications.

Popular topological descriptors for scalar field data, consid-
ered in this survey, can be classified into three categories: set-
based such as persistence diagrams [ELZ02] and barcodes [Ghr08,
CZCG04]; graph-based such as merge trees [BYM™14], contour
trees [CSA03], and Reeb graphs [Ree46]; and complex-based such
as Morse and Morse-Smale complexes [GP12, EHZ01, EHNPO3],
respectively. Our work is especially motivated by the following
questions:

e Which role do topological methods in comparative analysis and
visualization play and what are the typical applications?

e What comparative measures have been proposed and where are
they applied?

e What are the desirable properties of a comparative measure for
topological descriptors?

Our contributions include:

e We provide a classification of approaches in TDA and visualiza-
tion relevant to the comparative study of scalar fields.

e We collect a set of desirable properties of a comparative mea-
sure concerning metricity, stability, discriminativity, and compu-
tational complexity;

e We analyze existing approaches with respect to these properties.

e We derive a list of opportunities and challenges for future work.

We provide three navigation aids that help the reader. Two tables
provide an overview of different visualization tasks that are sup-
ported by comparative measures over topological descriptors (Ta-
ble 1) and desirable properties for the various published compara-
tive measures (Table 2). Further, we complement our survey with
a visual literature browser (https://git.io/Jt2Hqg) devel-
oped with the SurVis [BKW15] framework for an interactive navi-
gation of the state of the art.

Existing surveys. An organized classification of the literature re-
lated to scalar field comparison is a valuable addition that comple-
ments existing state of the art on topology-based tool sets. The sur-
vey by Heine et al. [HLH*16] provides an overview of topology-
based visualization, including a classification of such models for
scalar fields, vector fields, tensor fields, and multi-fields. Specifi-
cally for scalar fields, the survey discusses topological descriptors,
including their computation, simplification, visualization, and ap-
plication. Our paper is different from the above survey because
it focuses on comparative measures of topological descriptors for
scalar fields, a topic not covered by previous surveys.

Review methodology. To complete the survey, we first gathered
papers from a number of visualization, computational topology,
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and TDA venues whose title and/or abstract contain keywords rel-
evant to topological descriptors and their comparative measures,
such as “persistent homology”, “merge trees”, “scalar field com-
parison”, etc. The list of venues includes but is not limited to:
journals such as IEEE Transactions on Visualization and Com-
puter Graphics (TVCG), Computer Graphics Forum (CGF), Jour-
nal of Applied and Computational Topology, Journal of Compu-
tational Geometry (JoCG), as well as conferences/workshops such
as IEEE Visualization Conference (VIS) and its associated events
(e.g. IEEE Large Scale Data Analysis and Visualization or LDAV),
EG/VGTC Conference on Visualization (EuroVis), IEEE Pacific
Visualization Symposium (PacificVis), International Symposium
on Computational Geometry (SoCG), etc. Since our primary fo-
cus is on topological descriptors and their applications in visualiza-
tion, we did not survey papers from machine learning venues. We
created a virtual index card summarizing each paper under topics
such as “summary”, “contributions”, “topological descriptions pro-
posed/used”, “comparative measures proposed/used/parameters”,
“applications”, “properties”, “future directions mentioned in the
paper”, and additional “tags” and “notes”. These index cards were
then used during the categorization process and each card was
checked by two authors. In total, this process resulted in approxi-
mately 200 papers that passed the initial screening, ~100 of which
were deemed most relevant and included in this survey.

Overview. This report is organized as follows: after introducing the
basic classification categories and the desired properties in Sect. 2,
some technical background on scalar field topology is summarized
in Sect. 3. Comparative measures developed for topological de-
scriptors with mathematical definition (if applicable) are summa-
rized in Sect. 4. Sect. 5 serves as a reminder of the structure of the
survey and provides navigation for the following sections, which
focus on visualization application structured by visualization tasks
for single fields (Sect. 6), time-dependent fields (Sect. 7), and en-
sembles (Sect. 8), respectively. A detailed discussion of desirable
mathematical and computational properties and a systematic anal-
ysis of the surveyed comparative measures can be found in Sect. 9.
The report ends with an outlook on future work and opportunities
in Sect. 10 and a conclusion in Sect. 11.

2. Literature Research Procedure and Classification

We review representative papers in the field of computational topol-
ogy, TDA, and visualization that develop or utilize topological de-
scriptors for the comparative analysis and visualization of scalar
fields. The annotation of each paper is guided primarily by a set of
visualization tasks that are associated with three categories of data,
and secondarily by a set of desirable mathematical and computa-
tional properties. Our primary categories are loosely inspired by an
existing survey [HLH™16] that classifies papers based on the com-
plexity of data types; and our secondary categorization is untreated
in previous works.

2.1. Primary Categories Based on Visualization Tasks

During our literature review, we observed that comparative mea-
sures were developed with a focus either on a specific topological

descriptor or a specific visualization task and application. We there-
fore identified three categories of data where topological compari-
son was applied: single fields, time-varying fields, and ensembles.

A single field f is a scalar-valued field defined on a 2D, 3D, or
higher-dimensional domain X, f : X — R. A time-varying field F'
is a dynamically changing field, and is defined over the Cartesian
product of a spatial domain X and a time axis R, F : X xR —
R. Time-dependent data is typically available as a discrete set of
temporal snapshots. An ensemble refers to a collection F of fields
that are indexed by a collection of parameters, F = {f;j : i € I}
(where [ is an index set).

Single fields. Comparative measures help extract, visualize, and
highlight similar structures within a single field — broadly referred
to as the symmetry detection problem in scalar fields. These mea-
sures also enable the comparison of two or more single fields for
shape matching and retrieval (e.g., [TN11,TN13,SSW14]).

Time-varying fields. For time-varying fields, comparative mea-
sures between successive time steps have been used to detect pe-
riodic behavior, key events, or outliers [NTN15, SW17,LWM™*17,
SMKN20]. Comparative measures also drive explicit feature track-
ing in time-varying data.

Ensembles. For ensembles, comparative measures help identify
similar or dissimilar behavior between members. They help iden-
tify clusters of members, outliers, or unique members of the en-
semble. More recently, they have been used to compute structure
statistics that describe the distribution of the ensemble members in
the parameter space [SPCT18, YWM*20, AMY *20].

2.2. Secondary Categories Based on Desirable Properties

We discuss desirable properties of a comparative measure d =
d(Ay, Ay) between a pair of topological descriptors (of the same
type), A; and A;. We focus on four types of properties surrounding
metricity, stability, discriminativity, and computational complexity.
These properties have been studied across scattered literature in
TDA and visualization. We systematically investigate these prop-
erties and their relations to existing approaches in Sect. 9.

Metricity and Pseudometricity. Requiring d to be a metric is de-
sirable. That is, d satisfies the following metric properties:

1. Non-negativity: d(A;,.Az) > 0;

2. Identity: d( Ay, Ay) = 0iff A; = Ajy;

3. Symmetry: d( Ay, Ay) =d( Az, Ay);

4. Triangle inequality: d (A, Ay) < d(A;, A3)+d(Az, A3).

If the triangle inequality (item 4) above is not required, d becomes
a dissimilarity measure instead. If the identity is not required, d
becomes a pseudometric, replacing item 2 above by:

e d(A;1, A1) =0 (but possibly d(A;,.Az) = 0 for some distinct
Ar # Ay).

Stability. Many definitions of stability for a distance metric d with
respect to the underlying scalar field have been proposed. Stability
can refer to whether d is stable with respect to simplification or
perturbation of the underlying function. For example, given two
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scalar fields fj and f> : X — R that give rise to a pair of topological
descriptors A; and Ay, d is L°-stable if for some constant C > 0,

d(A1, A7) <C-[|fi = falloo-

Discriminativity. Discriminativity also has various definitions. For
instance, using a comparative measure dg as a baseline, d is consid-
ered to be more discriminative than d if for some constant ¢ > 0,

do(A1,Ay) <c-d(A1,Ay)

and there exists no constant ¢/ > 0 such that do = cd (thatis, d is
not a scaled version of d).

Computational complexity. We investigate the computational
complexity of d in terms of the time and space complexity, scal-
ability, and parallel computing. We investigate whether d is eas-
ily implementable, referring to whether an algorithmic solution has
been proposed which affects its practicality.

The above properties are particularly desirable for analysis and
visualization tasks that are supported by a comparative measure.
They lead to theoretically sound, interpretable, robust, reliable, and
practical methods for comparative visualization.

3. Technical Foundations on Scalar Field Topology

In this section, we review the technical foundations for scalar field
topology, including the definitions of Morse functions and topolog-
ical descriptors; see [Zom05, EH10] for computation-oriented and
[Tiel7] for visualization-oriented introduction to scalar field topol-
ogy. We review set-based (persistence diagrams, barcodes), graph-
based (merge trees, contour trees, Reeb graphs), and complex-
based (Morse and Morse-Smale complexes) topological descriptors
and their variants. The graph-based descriptors are largely based on
contours of a function, whereas complex-based ones are primarily
based on its gradient. We also briefly mention relevant topologi-
cal descriptors for multivariate functions (Jacobi sets, Reeb spaces,
joint contour nets), as they are natural extensions of their univariate
counterparts.

3.1. Morse Functions and Morse Theory

Most of the topological descriptors described in this section are
rooted in Morse theory [Mil63]. We give a high-level review here;
see [Mat02] for a friendly introduction and [Mil63] for the original
treatment.

Morse functions. Let M be a smooth manifold and f: M — R a
smooth function on M. A point x € M is a critical point of f if
and only if the partial derivatives at x are zero; otherwise, it is a
regular point. The image of a critical point is a critical value of
f. A critical point x is non-degenerate if the Hessian (the matrix
of second derivatives) at x is non-singular. f is a Morse function
if all its critical points are non-degenerate and have distinct func-
tion values. Fig. 1 gives two examples of Morse functions with a
1- and a 2-dimensional domain, respectively. Critical points are al-
ways displayed as red (for local maxima), blue (for local minima),
and white (for saddles) circles or spheres.

Morse theory. For a Morse function f: M — R, let M, :=

@ (®)

Figure 1: Morse functions with (a) a 1-dimensional and (b) a 2-
dimensional domain, respectively.

f N (—00,1] = {x € M| f(x) <t} denote sublevel sets of f. A ba-
sic result of Morse theory states that almost all functions are Morse
functions. Technically speaking, the set of Morse functions forms
an open dense subset of the space of smooth functions. In practice,
anon-Morse function can be made into a Morse function by resolv-
ing degenerate conditions via the simulation of simplicity [EM90].
We assume all functions discussed in this paper to be Morse.

The Morse lemma states that a function looks extremely simple
near a non-degenerate critical point. Two fundamental theorems of
Morse theory study how sublevel sets of a function changes topo-
logically w.rt. its critical points. A number of theoretical properties
relevant to topological descriptors described in this section can be
traced back to these two fundamental theorems. We refer interested
readers to [Mil63, Theorems 3.1 and 3.2] in their original forms.
In a nutshell, these theorems describe if and when the topology of
sublevel sets M; change as ¢ varies, in particular, when 7 passes a
critical value. Topological descriptors such as persistent diagrams
and merge trees are related with one another via theorems of Morse
theory as both are defined over the sublevel sets of a function.

In practice, we rarely find smooth functions. Instead, we are
given samples of such functions, represented as a function on a
point cloud sample of M. Oftentimes, we impose a combinatorial
structure (i.e., a simplicial complex K) on the sample as an approx-
imation of M. Let K be a simplicial complex with real values spec-
ified on its vertices; |K| represents its underlying space. We obtain
a piecewise linear (PL) function f : |K| — R using linear exten-
sion over the simplices, where f(x) =Y ; b;(x) f(u;) (u; are vertices
of K and b;(x) are the barycentric coordinates of x) [EHI0, page
135]. We can then apply Morse-theoretical ideas to this PL approx-
imation. This application is justifiable according to the Simplicial
Approximation Theorem [EH10, page 56], which states that every
continuous function on a triangulable topological space can be ap-
proximated by a PL function.

As described in subsequent sections, in some instances, features
that form parts of topological descriptors are used in the compara-
tive measures, in particular, critical points and their attributes, level
sets (contours, or isosurfaces) defined as f ! (t) for some ¢ € R.

3.2. Persistence Diagrams and Barcodes

Persistent homology is a widely used tool for TDA and visu-
alization. Algebraically, it takes the form of a persistence mod-
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ule [CDSGO16]. In this paper, we are mostly concerned with per-
sistence homology that arises from sublevel set filtrations of Morse
functions. We refer the reader to [EH10, CdS10, BEMP13] for dif-
ferent ways to study persistent homology.

Persistence diagrams. Let f : M — R be Morse and M; :=
f -1 (00,1] its sublevel sets. Assuming M is also compact, then a
Morse function f on a compact manifold contains finitely many
critical points (as a consequence of the Morse lemma). Let n be
the (finite) number of critical values of f. Let ag < --- < a, be a
sequence of regular values of f such that each interval (a;,a;41)
contains exactly one critical value of f. A sublevel set filtration of
f is a sequence of sublevel sets connected by inclusions,

Mgy = Mg — -+ = Mg,

Persistent homology studies the topological changes of sublevel
sets by applying k-dimensional homology (k > 0) to this sequence,

Hi (Mg, ) — Hi(Mlg,) — -+ — Hp (Mg, ).

Given a topological space X, the 0-, 1-, and 2-dimensional ho-
mology groups, denoted as Hy(X), H;(X), and H,(X), respec-
tively, capture the connected components, tunnels, and voids of X.
We give an example of O-dimensional persistence homology based
on the sublevel set filtration of a 1-dimensional Morse function

in Fig. 2.
Death
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Figure 2: (a) The graph of f : Ml — R, where each point p; =
(xi,ci) for ¢ = f(xi); together with (b) the 0-dimensional barcode
and (c) 0-dimensional persistence diagram of f based on its sub-
level set filtration.

Formally, a k-dimensional persistence diagram D is the disjoint
union of a multi-set of off-diagonal points {(b,d) | b # d,b,d €
Rso} on the Euclidean plane R? (where R = R U {—00,+00})
and the diagonal A = {(b,b) | b € R>(} counted with infinite mul-
tiplicity. As illustrated in Fig. 2a, let ¢; denote the critical values of
a Morse function f restricted to an interval M C R, f: M — R,
where ¢y < ¢ < --- < ¢g. Let x; denote the critical points of f.
Assume f is Morse, then ¢; = f(x;). For simplicity, we set ¢y = 0,
c1=1,and ¢; =i, etc. Letag < a; < --- < a7 be a sequence of reg-
ular values of f such that each interval (a;,a;+) contains exactly
one critical value c;. The 0-dimensional persistent homology cap-
tures how connected components in the sublevel sets M; changes
as t varies from ag to a7. At =ayp <0, M; = (. Att =0, a sin-
gle (connected) component appears in the sublevel set M; contain-
ing the global minimum xg, we call this a birth event at M. At
t = 1,2, and 3, a 2nd, 3rd, and 4th component appears in M con-
taining local minima x|, x3, and x3, respectively. At r = 4, the com-
ponent containing x3 merges with the component containing x, as

per the Elder Rule [EH10, Page. 150], referred to as a death event:
the component containing x3 disappears (dies) while the compo-
nent containing x; remains. At ¢t = 5, the component containing x,
merges with the component containing x| and dies. At r = 6, the
component containing x; merges with the component containing
xo and dies. Persistent homology pairs the birth and death events
either as a set of intervals (called barcode), or a multi-set of points
in the plane (called persistence diagram).

Barcodes. A barcode is shown in Fig. 2b. The component contain-
ing xo never dies, giving rise to a bar [0,00) in the barcode that
begins at 0 and goes to co. The component containing x; is born at
t = 1 and dies at t = 6, which corresponds to a bar [1,6). Similarly,
the birth and death events of components containing x, and x3 give
rise to two additional bars [2,5) and [3,4), respectively. The per-
sistence of a bar [b,d) in a barcode is defined to be |d — b|, which
captures the life span of a component in the filtration. A persistence
diagram is shown in Fig. 2¢, where each bar [b,d) is mapped to a
point (b,d) on the plane.

Other variants exist, mostly derived from persistence diagrams or
barcodes. The persistence landscape [Bubl5] is a function-based
representation of a persistence diagram. It maps a persistence dia-
gram into a function space, which allows it to be easily integrated
with tools from statistics and machine learning [BD17, Bub20].
Formally, for a birth-death pair (b,d) in a persistence diagram, as-
suming b and d are finite, we define a piecewise-linear function
fba) : R —[0,00] as

0, ifx ¢ (b,d)
fway=13x—b, ifxe (2.
—x+d, ifxe [ d)

The persistence landscape of the birth-death pairs {(b;,d;)}; in
a persistence diagram is the sequence of functions A : R — [0, c0],
where Ay (x) is the k-th largest value of {f(;, 4)(x)}i=; (for k =
0,1,2,...). A (x) = 0 if the k-th largest value does not exist. In other
words, the persistence landscape is a function A : N X R — [0, o0],
where A(k,1) = A (¢) [BD17]. Intuitively, consider the points with
finite birth and death times in a persistence diagram (Fig. 3a). We
construct a persistence landscape in Fig. 3b by rotating the points
by 45° and building three linear functions, A; (blue), A, (red), and
A3 (green), with these points.

s (@ (b)

Figure 3: Rotating a persistence diagram in (a) to create a func-
tional representation — a persistence landscape in (b).

Another descriptor widely used in machine learning is the per-
sistence image [AEK*17]. It is a vector-based representation of a
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persistence diagram. It can be informally considered as a heat map,
which is generated from a weighted sum of Gaussian centered at
each point (b, p), where b is the birth and p = d — b is the persis-
tence of a point in the persistence diagram.

Betti curves also summarize the information of persistent ho-
mology (e.g., [Rob02, GMKO04, RSL20b, CL20]). Recall the k-th
Betti number is informally the number of k-dimensional holes (ho-
mology) of a topological space. For a filtration parameter #, the
Betti curves at ¢ are the Betti numbers of the associated com-
plex. Betti curves are arguably the simplest function-based repre-
sentation of a persistence diagram (cf., the persistence landscape).
Turner et al. [TMB14] introduced a summary statistic from per-
sistence diagram, called the persistent homology transform (PHT),
to model surfaces in R® and shapes in RZ. Li ef al. [LWA*17]
proposed another persistence-based feature vectorization of a per-
sistence diagram using a 1-dimensional density function to com-
pare neuronal trees; their feature vectorizations can be considered
as a l-dimensional version of the persistent images [AEK*17].
Rieck et al. [RSL17] developed an inter-level set persistence hi-
erarchy (ISPH) to capture the spatial relationship between features
in persistence diagram.

3.3. Merge Trees, Contour Trees, and Reeb Graphs

Topological descriptors such as merge trees, contour trees, and
Reeb graphs capture topological changes of (sub)level sets of scalar
fields, which are real-valued smooth functions.

Merge trees. Given a Morse function f : Ml — R defined on a con-
nected domain M, a merge tree records the connectivity of its sub-
level sets. Two points x,y € M are equivalent (w.r.t. f), x ~ y, if they
have the same function value, that is, f(x) = f(y) =, and if they
belong to the same connected component of the sublevel set M, for
some ¢ € R. A merge tree is the quotient space M|/~ obtained by
gluing together points in M that are equivalent under the relation
~. It keeps track of the evolution of connected components in M
as ¢ increases; see Fig. 4 for an example. In the abstract view of a
merge tree in Fig. 4b, each leaf corresponds to a local minimum of
S that represents the birth of a connected component; each internal
node corresponds to the merging of components; and the root repre-
sents the entire space as a single component. Fig. 4b also visualizes

Figure 4: (a) The graph of a 1-dimensional Morse function f re-
stricted to an interval, f : M — R; (b) the merge tree of f shown
abstractly, where branches are colored based on its branch decom-
position, (c) the graph of f is colored based on the branch decom-
position in (b).

the branches of the merge tree based on its branch decomposition.
The connection between a merge tree and the barcode is apparent,
cf. Fig. 2(b) and Fig. 4(b-c), where a merge tree decomposes into
a barcode following a branch decomposition process; and bars in a
barcode can be used to assemble a (non-unique) merge tree follow-
ing a gluing process. See [CCF*20, Cur18, KGH20] for references
for the relation between a merge tree and a barcode. Note that the
notions of join and split trees [CSA03] are the two forms of merge
trees; a join tree is the merge tree of f and a split tree is the merge
tree of —f.

Reeb graphs and contour trees. A Reeb graph, on the other hand,
relies on equivalence relations among points in the level sets of a
Morse function f : M — R. Two points x,y € M are equivalent,
x~y,if f(x) = f(y) =t, and if they belong to the same connected
component of the level set f -1 (¢), for some ¢ € R. The Reeb graph
Gy := M/~ is the quotient space obtained by identifying equiva-
lent points; see Fig. 5. Nodes in the Reeb graph have a one-to-one
correspondence with the critical points of f, while arcs connect the
nodes. A point on an arc represents a connected component of a
level set (i.e., a contour) in M. Intuitively, as ¢ increases within the
range of f, a Reeb graph captures the topological changes in the
level sets of f, in particular, the appearances, disappearances, split-
ting, and merging among the connected components (contours) of
f -1 (t); see [EH10, section VI.4] for a formal treatment. Bauer et
al. [BFL16] worked with the notion of a labeled Reeb graph, where
the vertices of Gy are labeled by the function /; : V(G f) — R in-
duced by restricting f : Ml — R to its critical points. Then, (Gy,1y)
is the labeled Reeb graph of the data (M, f), see Fig. 5c.

©

lfﬂ

o

Figure 5: (a) A height function f : M — R defined on a double
torus, (b) its Reeb graph embedded in the domain M, and (c) its
Reeb graph shown in an abstract view. If the Reeb graph in (c) is
further equipped with a function Ly defined on its vertices, where l¢
is the restriction of f to V, then we obtain a labeled Reeb graph.

A contour tree is a special type of Reeb graph when the domain
M is simply connected. Then, M/~ gives rise to a tree; see Fig. 6
for an example involving a “deformed” spherical domain. The main
difference between a contour tree and a merge tree is that the former
captures the connectivity among level sets, while the latter encodes
the connectivity among sublevel sets of a Morse function.

Mapper constructions and mapper graphs. Given a point cloud
X c RY, we construct the nerve of a covering. Let I be an index set.
A cover of X is defined as a set of open sets in RY, U = {Ui}ier
such that X C U;ejU;. The nerve complex of U is a simplicial com-
plex, N(U) :={J CI|Nje;U;j # 0}. The 1-dimensional nerve of
U, denoted as N (U), is a graph. Each node i € I in N (U) rep-
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O

Figure 6: (a) A height function f : M — R defined on the surface
of two (solid) balls glued together; (b) its contour tree embedded in
the domain M; and (c) its contour tree shown in an abstract view.

resents a cover element U;, and there is an edge between i, j € [ if
unNnu fi 79 0.

Given a real-valued function f : X — R, we start with a finite
cover of f(X) C R using intervals, that is, a cover V = {V;} such
that f(X) C UiV We obtain a cover U of X by considering the
clusters induced by points in f _I(Vk) for each V; as cover ele-
ments. The nerve of I/ is a simplicial complex, and is referred to
as the mapper (or mapper construction) of f. The 1-dimensional
nerve of U, N1(U), is the mapper graph of (X, f).
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Figure 7: (a) A height function f : X — R defined on a point cloud
sampled from a double annulus together with a cover, (b) the cover
of f(X) with intervals, and (c) its mapper graph.

Take as an example a 2-dimensional point cloud X sampled from
a double annulus that is equipped with a height function in Fig. 7a.
Six intervals form a cover V = {V,V,,---,Vs} of the image of f,
that is, £(X) C Uy Vi (1 < k < 6) in Fig. 7b. For each k, f~!(V})
induces some clusters of points that are subsets of X; each cluster
forms cover elements of X. For instance, f -1 (V1) induces two clus-
ters of points that are enclosed by the orange cover elements U; and
Uy, and f~'(V3) induces two clusters enclosed by the blue cover
elements, one of which is Us. The mapper graph shows that there
is an edge between node 1 and node 2 in Fig. 7¢ since U; NU3 # 0.

Other contour-based topological descriptors have been studied
in recent years. Zhang et al. introduced the dual contour tree, which
is constructed from the contour tree of a volume by dividing its
functional range into segments such that the connected contour tree
edges within a segment become a node in the dual tree [ZBB04].
The dual contour tree shares many resemblances with the mapper
graph; see Sect. 6 and Sect. 8 for its applications in visualization.

A branch decomposition tree (BDT) is derived from a con-

tour tree [PCMS04] or a merge tree [SSW14]. A BDT represents
the branch decomposition of a tree, with the nodes representing
the branches and the edges representing their hierarchy. Saikia et
al. [SSW14] further introduced an extended branch decomposition
graph (eBDG), which represents a forest of BDTs, where each of
the BDTs is computed from a subtree of the merge tree.

In addition to mapper graphs, Reeb graphs have several variants,
many of which have not been utilized in scientific visualization.
The o-Reeb graph [CHS15] defines the equivalence relation be-
tween points using open intervals of length at most o. The extended
Reeb graph [BB14] uses cover elements from a partition of the do-
main without overlaps. The enhanced mapper graph [BBMW21]
considers inverse images of intersections among the cover elements
and encodes function values on its vertices and edges. Several vari-
ants of mapper constructions exist, as discussed in Sect. 3.5.

3.4. Morse and Morse-Smale Complexes

Let f : M — R be a Morse function, V f its gradient. At a regular
point x, an integral line is a maximal path whose tangent vectors
agree with the gradient [EHZ01]. An integral line begins and ends
at critical points. The stable manifold surrounding a critical point
p includes p itself and all regular points whose integral lines end
at p. This is also referred to as the descending manifold of p since
f(p) > f(x) for all points x in the stable manifold of p [EH10, Page
131]. For instance, the stable manifold of the local maximum p
in Fig. 8a corresponds to the red “bump”. The unstable manifold
(ascending manifold) of a critical point p is the point itself together
with all regular points whose integral lines originate at p [EH10,
Chap. VI, page 131], see Fig. 8b. Symmetrically, an unstable man-
ifold (ascending manifold) of p in f is a stable manifold of p in
—f. A Morse function f is a Morse-Smale function if the stable
and unstable manifolds intersect transversally.

@ (®)

Figure 8: Given the 2-dimensional function f from Fig. 1, (a)
shows the Morse complex of f (with stable manifolds), (b) shows
the Morse complex of — f (with unstable manifolds), and (c) is the
Morse-Smale complex of f.

Given a Morse-Smale function f defined on a 2-dimensional do-
main, its stable manifolds surrounding local maxima decompose
the domain into 2-cells (colored regions in Fig. 8a), whereas inte-
gral lines connecting the critical points are the 1-cells, and critical
points are the O-cells. These cells form a complex called a Morse
complex of f. Intersecting the stable and unstable manifolds of f
(equivalently, intersecting the Morse complex of f and —f) gives
rise to a refinement of the two complexes called the Morse-Smale
complex (MSC) of f, see Fig. 8c. Its O-cells are the critical points,
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and its 1- and 2-cells are the components of the unions of inte-
gral lines with a common origin and a common destination [EH10,
Chap. VI, page 134]. 3D Morse and Morse-Smale complexes of
f:MC R* — R are defined similarly based on the gradient be-
havior of points in its domain [EHNPO3]. These complexes can
be approximated in high dimensions for data analysis and regres-
sion [GBPW10, GP12]. Persistent homology can be used to sim-
plify a MSC [EHZO01]; see [GRSW14] for a discussion.

Subsets of Morse-Smale Complexes. An extremum graph, intro-
duced by Correa et al. [CLB11], is a sparse subset of the MSC. It
connects critical points along steepest ascending (or descending)
lines, which join adjacent extrema [CLB11]. It is designed to re-
tain (some) important structural information of a MSC without vi-
sual clutter from the entire complex. A maximum graph contains
maximum-saddle connections, whereas a minimum graph contains
minimum-saddle connections. Thomas and Natarajan [TN13] aug-
mented the extremum graph with topological and geometric infor-
mation to facilitate the efficient detection of geometric symmetry
in the electron microscopy data.

Feng et al. [FHIB13] introduced feature graphs to represent non-
rigidly deformed surfaces. A feature graph is derived from the MSC
of the Auto Diffusion Function (ADF), a solution to the heat equa-
tion. Nodes in a feature graph are critical points of a persistence-
simplified MSC, which are connected by integral lines. Thus, a fea-
ture graph is the 1-dimensional skeleton of a simplified MSC.

3.5. Topological Descriptors of Multivariate Functions

We briefly describe topological descriptors of multivariate func-
tions, although they are not the focus of this paper. We specifically
focus on these multivariate descriptors as many of them are the
direct extensions of their univariate counterparts. Given a multi-
variate function F = (f1, 2, , fx) : M — RF (k > 2), we have
three types of descriptors, those based on (a) the gradient behaviors
of components f; (Jacobi sets), (b) the contours of F (Reeb spaces,
multivariate mapper constructions), and (c) multi-parameter persis-
tent homology.

Reeb spaces, multivariate mapper constructions, joint contour
nets. Reeb spaces [EHPO08] are high-dimensional analogs of Reeb
graphs. Given a multivariate function F : M — R, the Reeb space
is the quotient space obtained by identifying equivalent points, that
is, M[/~, where x ~ y if F(x) = F(y) = € RF and x and y belong
to the same connected component of the pre-image of ¢.

Following the mapper construction for a scalar field (Fig. 7), the
filter function f may be generalized to be a multivariate function,
that is, F : M — R¥ (k > 2). For instance, when k = 2, the cor-
responding cover elements of F(M) C RR? become rectangles. We
call this the multivariate mapper construction in this paper to dif-
ferentiate it from its univariate (scalar field) version.

Since a mapper graph is considered as a discrete approxima-
tions of a Reeb graph, the mapper construction for multivariate data
F : X — RFis adiscrete approximation of the Reeb space [MW16].
There are other variants of such approximations, noticeably the
Jjoint contour nets (JCNs) [CD13]. The JCN applies quantizations

to the cover elements by rounding the function values. The multi-
scale mapper [DMW16] is a sequence of mapper constructions
connected by linear maps by varying the granularity of the cover
elements. The multi-nerve mapper [CO18] computes the multi-
nerve [ECAVGG12] of a cover. For comparing time-varying and
multi-fields (see Sect. 7), Agarwal et al. [ARC20] introduced a
multi-resolution Reeb Space (MRS), which is approximated as a
series of JCNis at various levels of discretization.

Jacobi sets. The relation between two Morse functions f,g : M —
R can be studied in terms of their Jacobi set [EH04], J(f,g). The
Jacobi set is the collection of points in M where the gradients of
the functions align, that is, for some A € R,

J(f,8) ={xeM| Vf(x)+AVg(x) =0 or AV f(x)+ Vg(x) =0}.

The Jacobi set has been used to derive local and global com-
parison measures of multiple scalar functions [EHNPO4]. Sev-
eral techniques have been developed for its topological simplifica-
tion [NN11,BWN™15]. A relevant concept is Pareto sets [HG15].

Multi-parameter persistence is an active area of research,
where previous results surrounding the indecomposables of multi-
parameter persistence modules have been largely theoretical
(see [CZ09, Les12] for relevant readings). Multi-parameter ver-
sions of barcodes and their variants are actively researched, see
recent results on multi-parameter persistence landscapes [Vip20]
and persistence images [CB20] respectively. Noticeably, the soft-
ware RIVET [The20] computes barcodes from “slices" from 2-
dimensional persistence modules.

4. Comparative Measures for Topological Descriptors

Comparing scalar fields using their topological descriptors is an
important tool in the study of scientific data. Defining and comput-
ing these comparative measures give rise to interesting problems
both in theory and in practice. In this section, we review various
definitions of comparative measures for topological descriptors be-
fore discussing their applications in visualization in Sect. 6, Sect. 7,
and Sect. 8. We defer the discussion on their mathematical and
computational properties to Sect. 9. We give formal definitions in
the forms of equations for some of the well-known comparative
measures. We give informal descriptions for their variants. We de-
fer detailed discussions to later sections for comparative measures
designed specifically for visualization tasks, which oftentimes are
coupled with heuristics and/or data-dependent modifications.

Before diving into the technical descriptions of these compara-
tive measures, we would like to discuss the different origins and
motivations behind these developments. For instance, compara-
tive measures for persistence diagrams, such as the bottleneck
and Wasserstein distances, are related to optimal transport [Vil03].
Functional distortion distances for Reeb graphs are the continu-
ous version and a constant factor approximation of the extended
Gromov-Hausdorff distances, a classic tool from the study of met-
ric spaces; while interleaving distances originate from the algebraic
study of persistence modules. Kernels for persistence diagrams in-
terface with kernel methods for machine learning. The persistence
scale-space kernel takes inspirations from the scale-space theory in
signal processing, while persistence Fisher kernel is derived from
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information theory. Each comparative measure enjoys a set of de-
sirable properties (Sect. 9) and is suited for a specific collection
of analysis and visualization tasks (Sect. 6, Sect. 7, and Sect. 8),
which motivated its development in the first place.

In the following sections, D represents a persistence diagram and
its variants (persistence landscape and persistence image), 7 rep-
resents a tree-based descriptor, G represents a graph-based descrip-
tor, and M represent complex-based descriptors, including Morse
and Morse-Smale complexes. We emphasize the function as labels
when a comparative measure explicitly encodes information from
the function (e.g., 7y, Tg), and we use numeric labels (e.g., D1, D3)
otherwise.

4.1. Comparing Persistence Diagrams and Their Variants

We review classic distances between persistence diagrams, namely,
bottleneck and p-Wasserstein distances, as well as distances be-
tween their variants, such as p-landscape distances. We also include
kernels defined on persistence diagrams that interface with machine
learning.

Bottleneck and Wasserstein distances. To compare persistence
diagrams, the bottleneck distance [CSEH07,EH08] and the Wasser-
stein distance [CSEHM10] are well established and widely used,
for instance, in similarity estimation [HZLR20] and machine learn-
ing tasks [Bub15,ZW19].

Definition 1 [EHOS, Bottleneck distance] Given two persistence
diagrams D;, D, and a bijection 1 : D — D;, the bottleneck dis-
tance between D and D, is defined as

doo(D1,Dy) = inf  sup |[x—1(x)]|cc- (1)
n: D1 —D1rxeDy

Definition 2 [CSEHMI10, p-Wasserstein distance] The p-
Wasserstein distance is defined as
1
]
dp(D1, D)= | inf Y [x-m@)ll& 2

N:D1—DyrxeD)

While Eq. 2 is a typical notion in the literature, Turner et
al. [TMMH14] discuss a more general formulation by introducing
a second parameter (i.e., ¢) to Eq. 2 that specifies the degree of the
point-wise norm,; that is, by replacing L norm in Eq. 2 with a LY
norm; where ¢ =2 in [TMMH14].

Kernels for persistence diagrams. Since persistence diagrams do
not have the structure of an inner product space (i.e. Hilbert space),
various kernels have been introduced to interface persistence dia-
grams with kernel-based machine learning models such as kernel
support vector machines (SVMs). An intuitive way to think about
kernels for SVMs is that kernels are similarity functions for a pair
of objects. A number of kernels exist for persistence diagrams,
such as the persistence scale-space kernel [RHBK15], the persis-
tence weighted Gaussian kernel [KFH17], the sliced Wasserstein
kernel [CCO17], and the persistence Fisher kernel [LY 18], denoted
as Ks, Kg, Ky and Kf, respectively.

Let Dy and D, denote two k-dimensional persistence diagrams.

The persistence scale-space kernel [RHBK15] Ky is defined as

1 llp—4ll llp—7ll
e % —e % (3)

Ks(D1,D;,0) = —
8nc pPED1,q€D;

where V g = (b,d) € D,, we define § = (d,b), that is, G is a re-
flection of g along the diagonal A; ¢ is bandwidth of the Gaussian
kernel.

The persistence weighted Gaussian kernel (PWGK) [KFH17]
K¢ is defined as
_ lp=qli®
KG(D17D27G) = W(P)W(q)e 202 ) (4)
PED,9€D;

where w(p) is the weight assigned to the point p. Kusano er
al. [KFH17] suggest w(p) = arctan(C(d — b)") as the weight for
p = (b,d), where C is a positive constant for practical purposes,
and 7 is assumed to be greater than the dimension of the underlying
space.

Given a unit vector 6 in R, let L(8) = {A68 | A € R} denote the
line and (6, p) denote the orthogonal projection of point p on the
line L(8). To compute the sliced Wasserstein kernel [CCO17], we
first augment persistence diagram D; with the orthogonal projec-
tion of points in D; onto the diagonal (denoted as ”DlA) and vice
versa (denoted as Df) to obtain two new sets D} and D5 . That is,
D =D;UD5 and D = D,UD,. The sliced Wasserstein distance
between these two sets is approximated as

1 M
SW(DJ, D5, M) = _ ) V(D] .6) ~V(D3.6)l1.  (5)
J=1

where M is the number of directions, 8; = jn/M — n/2 and
V(D7,6;) is the vector of dot products < p,0; > of all points
p € Dy. The sliced Wasserstein kernel is then computed as

—SW(Df D5 M)

Kw(D{,D3,M)=e = | (6)

Given an k-dimensional persistence diagram D and a bandwidth
6 > 0, we can define a smooth, normalized measure

@)

1
=|= N(x;u,cl
PD [ 7 uez'b ( ) .
over a given set ®, where [ is the identity matrix, N is a Gaussian
function, and Z = [g ¥.,ca N(x;u,6I)dx. Note that if © is the entire
Euclidean space R, then pp is a probability distribution similar to
the case of persistence images [AEK* 17]. Given two k-dimensional
persistence diagrams D; and D,, we obtain two new sets D} and
D5 by augmenting D with the orthogonal projection of points of
D, on the diagonal and vice versa. For these two sets, the persis-
tence Fisher kernel [LY 18] is defined as

Kp(Dy,Dy) = (P P3) ®)

where ¢ > 0 is a scalar parameter and dF is the Fisher information
metric defined as follows:

ar (07 D3) —areeos ([ \foor () pos () )

Comparing variants of persistence diagrams. Both persistence
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landscapes and persistence images (as well as the persistence-based
feature vectorizations [LWA™17]) can be used in machine learning
algorithms such as SVMs under a Euclidean metric (e.g., L*orL? ).

Definition 3 [Bubl5, p-landscape distance] If A; and A, are the
persistence landscapes corresponding to persistence diagrams Dy
and D,, the p-landscape distance is

Ap(D1,D2) = [ = Mallp- (10)

Rieck et al. [RSL20b] defined a family of distances for Betti
curves (also called the persistence indicator functions), as well as
corresponding kernels in order to use Betti curve in machine learn-
ing algorithms. Zhao and Wang [ZW19] introduced a weighted-
kernel for persistence images (WKPI), its induced distance, and a
metric-learning framework to learn the weights (and kernel) from
labeled data. The persistent homology transform (PHT) introduced
by Turner et al. [TMB14] comes with a distance measure, re-
ferred to as the PHT distance, which captures similarity between
shapes in shape classification. The inter-level set persistence hier-
archies (ISPHs) [RSL17,RSL20b] are directed trees, whose simi-
larity can be measured by the edit distance (see Sect. 4.2).

4.2. Comparing Reeb Graphs and Their Variants

A number of metrics have been proposed for Reeb graphs and
their variants such as merge trees, including functional distor-
tion distance [BGW14, BMW15], edit distance [BFL16, BLM20,
SMKN20], interleaving distance [CCSG*09, MBW13, DSMP16,
MS19], distances based on branch decompositions and match-
ing [BYM*14, SSW14], and metrics for phylogenetic trees
[CMR*13].

Functional distortion distances. Inspired by the Gromov-
Hausdorff (GH) distance for measuring metric distortions, Bauer et
al. [BGW14] introduced the function distortion distance for Reeb
graphs. Let f and g be two real-valued functions on topological
spaces X and Y (the technical requirements are tame functions), to-
gether withmaps @ : X — Yand y: Y — X. Let G and G, be the
two Reeb graphs. Define

Clov) ={(x,0(x) [xe Gy U{(W(y),y) [y €Ge}, (1)

1
Sldp(x,x") = dg(v,))]. (12)

D(¢,y) = W o2

(), y" ) €C(o, ¥
C(9, V) captures the set of correspondences between Gy and Gg
induced by maps ¢ and .

Definition 4 [BGW 14, Functional distortion distance] The func-
tional distortion distance between two Reeb graphs, drp(Gy,Gs)
is defined to be

drp(Gy,Gg) = (ip{l\lf,max{D(<p,\|f)7 [1f —g00lloc,llg— fowlloo}
(13)

Here, ¢ and y are all continuous maps between G and Gg.

Edit distances. We begin with edit distances for trees, since con-
tour trees and merge trees are inherently tree-based representa-
tions. Inspired by the edit distance from computational linguis-
tics [RY98] that quantifies dissimilarities between strings, Zhang
and Shasha [ZS89] introduced edit distance for ordered labeled

trees by computing the minimum-cost of node operations (i.e. “re-
label", “delete", and “insert") that transform one tree into an-
other. Zhang et al. [ZSS92] extended edit distance to unordered
labeled trees. Tree edit distances have been used in many appli-
cations [ZS89, RR92, KTSKO00], including comparing topological
structures such as merge trees. Rieck et al. [RSL17] proposed per-
sistence hierarchies to related points in persistence diagrams, where
tree edit distance-based dissimilarity is used to compare these hi-
erarchies. Sridharamurthy er al. [SMKN20] extended constrained
tree edit distance [Zha96] based on dynamic programming with
suitable modifications applicable to merge trees and showed its im-
plementation in a feature-driven analysis of scalar fields.

Definition 5 [SMKN20, Edit distance between merge trees] The
edit distance between merge trees 77 and 75 is defined as

dg (Ti, T3) = min{¥(5)}. (14)

where S is a tree edit operation sequence from 7; to 7, that in-
clude edit operations such as “relabel", “delete", and “insert"; and
Yis a cost function that assigns a non-negative real number to each
operation.

Recently, Lohfink et al. [LWL*20] adapted the graph-theoretic
notion of the tree alignment, which is similar to the edit distance
mapping and is used to jointly visualize the contour trees from
members of an ensemble.

Bauer et al. [BFL16, BLM20] introduced an edit distance be-
tween labeled graphs, and applied it to Reeb graphs.

Definition 6 [BFL16, Edit distance between labeled Reeb graphs,
Definition 3.8] The edit distance between labeled Reeb graphs
(Gy,lr) and (Gg, g ) is defined as

deG((Grs1y), (G2,1g)) = inf{¥(S) }, (15)

where S varies in a set of arbitrarily long sequences of edit oper-
ations necessary to transform (Gy,lr) into (Gg,lg), and ¥(S) is the
cost of an edit sequence.

Interleaving distances. Algebraically, the interleaving distance
arises from €-interleavings of persistence modules; see [CCSG*09]
for technical details. For topological descriptors, Morozov et
al. [MBW13] defined an analog as the interleaving distance be-
tween merge trees. Inspired by L°°-cophenetic metric introduced
by Cardona et al. [CMR*13], Munch et al. [MS19] introduced
an interleaving distance between labeled merge trees, which is the
L™ -distance between their induced matrices. Gasparovic et al. fur-
ther studied interleaving distance intrinsic properties for the space
of labeled and unlabeled merge trees, and used it to construct
metric 1-centers for collections of labeled merge trees [GMO™ 19,
YWM*20]. We describe the interleaving distance between merge
trees as defined in [GMO™19], which was shown to be equivalent
to the original in [TW19].

Given two merge trees 77 and 7, that arise from functions
f:X—>Rand g:Y — R, ad-good map o: (Ty, f) = (Tg.8)
is a continuous map on the metric trees such that the following
properties hold:

L Vx € [Tz, g(a(x)) — f(x) = 8, where |Ty| denote the support
(i.e. underlying space) of the tree;
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1L Yw € Im(ar) with x" := LCA(o™ Y (w)), £(x') — f(u) < 23 for all
ue o (w);
L. Vw ¢ Im(at), depth(w) < 28.

LCA(v,w) denotes the lowest common ancestor of v and w in a tree.
Intuitively, the 3-goodness means that the points that are mapped
from 7T to Tg via 0o do not change their function values much.

Definition 7 [GMO* 19, Interleaving distance between merge trees]
The interleaving distance between merge trees 7 and 7y is defined
as

di(Ts,Tg) = inf{8 | 36-good o0 : Ty — T¢} (16)

Definition 8 [MS19, Interleaving distance between labeled merge
trees] Given two labeled merge trees (77,7) and (7g,m’), where
maps 7 : [n] = V(Ty) and 7' : [n] — V(T;) assign labels [n] :=
[1,2,...,n] to the nodes of Ty and Tg, their interleaving distance is

di(Ty,m), (Tg,m') = |IM(Tp,m) = M(Tg, 7 )loo. (A7)

We use M(T¢,n) to denote the induced matrix of a labeled merge
tree (7, ™), which is the symmetric matrix M € R"*", and M;; =
F(LCA(x(i), 7(/)))-

Additionally, Silva et al. [DSMP16] defined a sheaf-theoretic in-
terleaving distance between a pair of Reeb graphs as the interleav-
ing distance between their cosheaves, and proved that this distance
is stable under perturbations of the input data; see [DSMP16] for
technical details.

Distances based on branch decompositions or subtrees. Beke-
tayev et al. [BYM™ 14] defined a distance dpg between merge trees
based on branch decompositions. They considered all branch de-
compositions of merge trees and found a minimum cost matching
between them.

Definition 9 [BYM™ 14, Distance between merge trees based on
branch decomposition] Given two merge trees 77 and 7, and all

of their possible branch decompositions By, = {R{ yee ,R{} and

B7. ={R{,...,R}}, the distance between 7 and T can be defined
as

dBR(7}77§) = min

~ min (ena(R/,RS),  (18)
R/ €B7, Ri€BT, ’

where £min(le 7Rﬁ) is the lower bound for non-negative matching

and removal costs of branch decompositions R{ “and R;’f.

Saikia et al. [SSW14] defined a comparative measure for the ex-
tended branch decomposition graph (eBDG) based on minimiz-
ing the cost of matching between sequences of trees formed by
branch decomposition of merge trees. In other words, they com-
pared all subtrees of a merge tree. Both the descriptor (eBDG) and
the comparative measure are computed by dynamic programming.
The authors also extended their work on eBDG to define a simple,
histogram-based comparative measure for merge trees [SSW15].
Instead of overlaying branch decomposition trees obtained from
the subtrees, they described every subtree with a feature vector, re-
ferred to as a histogram [SSW15]. To compare two histograms, they
used the L2-norm of the log-scaled bin values [SSW15]. Subse-
quently, Saikia and Weinkauf [SW17] proposed a global similarity
measure for feature tracking in time-varying fields. Their similarity

measure is an extension of [SSW14] that involves a combination of
spatial overlaps and histogram comparisons.

Thomas and Natarajan [TN11] defined a comparison measure
based on constructing and comparing hierarchical descriptors of
the subtrees of contour trees, and claimed that such a descriptor is
stable in the presence of noise.

Comparative measures for variants of Reeb graphs. A number
of comparative measures are based on features or attributes derived
from Reeb graphs and their variants.

Saggar et al. [SSGC™ 18] used the mapper graph to study similar-
ities among time-varying fMRI data. Each time frame of the fMRI
data is interpreted as a point in a high-dimensional space; and two
time frames are considered similar if they are connected in the map-
per graph. Hilaga et al. [HSKKO1] constructed a multi-resolutional
Reeb graph (MRG) based on geodesic distance, and designed a
coarse-to-fine strategy to measure similarity between MRGs us-
ing the attributes of nodes in the MRGs. Biasotti e al. [BMM™*03]
defined a similarity measure based on error tolerant graph iso-
morphism on extended Reeb graph (ERG). Later, Barra and Bi-
asotti [BB13] developed a similarity measure for ERGs by ap-
plying a Gaussian kernel to vertex and edge attributes. Wu and
Zhang [WZ13] attached measures of similarities to contour tree
branches for comparative analysis; such a measure is quantified
based on contour overlaps.

Graph-based or tree-based comparative measures. Finally,
comparative measures developed in biology or graph theory may
be applicable for topological descriptors. Cardona et al. [CMR*13]
defined a family of cophenetic metrics for comparing phylogenetic
trees, which can be adopted as comparative measures for merge
trees (e.g., [MS19, GMO*19]). Tools developed for pairwise com-
parisons of graphs may be used for Reeb graphs and their variants;
see surveys on graph distances [TITP19, WM20] and references
therein. On the other hand, comparative measures for topological
descriptors can be extended for general graphs as well. Dey et
al. [DSW15] compared graphs via the persistence distortion dis-
tance. They compared a set of persistence diagrams constructed by
defining scalar fields from various base points from the graphs. The
sets are compared by Hausdorff distance, and individual persistence
diagrams are compared by bottleneck distance.

4.3. Comparing Morse and Morse-Smale Complexes

A few papers have focused on comparative measures for Morse
complexes and Morse-Smale complexes, most of which compare
graphs derived from these complexes. This focus is not too surpris-
ing as a general form of stability for these complexes appears to be
elusive.

Comparing graphs derived from complexes. Feng et
al. [FHIJB13] studied the problem of computing feature cor-
respondences between two non-rigidly deformed surfaces using
feature graphs, which are 1D skeletons of simplified Morse-Smale
complexes. Feature graphs are compared using a minimum-cost
graph matching algorithm. The authors observed (without proof)
that such a feature graph is stable for surfaces differing by topology
or by significant deformation.
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Thomas and Natarajan [TN13] focused on detecting symmetry
in scalar fields using augmented extremum graphs. They used the
geodesic distances between extrema, and the earth mover’s dis-
tance between histograms of selected seed regions.

In order to compare a pair of extremum graphs that may differ in
the number of extrema and their adjunct relationships, Narayanan et
al. [NTN15] introduced the notion of a complete extremum graph,
which allows edges between all pairs of extrema in the graph. They
then defined a distance between extremum graphs based on com-
puting the maximum distortion of the vertex sets and edge sets be-
tween the graphs. Specifically, Narayanan et al. represented a com-
plete extremum graph as an attributed graph. Each vertex v € V of
the graph — identical to a vertex from an extremum graph — is as-
signed its persistence p(v). Each edge (u,v) € E of the graph is
assigned a cost ¢(u,v) such that c(u,v) < min(p(u), p(v)). The per-
sistence of the global maximum is set to 1. A scalar function is nor-
malized to have a range of [0, 1] to ensure that 0 < p(v),c(u,v) < 1.
The distance between extrema graphs is defined based on these ver-
tex and edge attributes [NTN15]. Let Gy = (V,Ey) denote a com-
plete extremum graph of f with vertex set V and edge set Ey . Given
two complete extremum graphs Gy = (V,Ey) and G; = (U,Ey), a
map h:V — U is called p-valid for p € [0, 1] if it is bijective and
the edge distortion of corresponding edges is bounded by p. For a
map h, let D;(Gr,Gg) denote the maximal distortion between the
vertex set and edge set, that is,

Di(G,Ge) = maxp(v) = p(A()| + max_Je(u) —e(h(u,v))]
19)

Definition 10 [NTN15, Distance between extremum graphs] For a
fixed p, the distance dp between extremum graphs G and G, is the
minimum over all possible p-maps,

dp(G7.Ge) = min{Di(Gy,Ge) | his pvalid}.  (20)

5. Navigating the State of the Art in Visualization

The comparative measures introduced in Sect. 4 have enabled a
wide variety of visualization tasks. We categorize these tasks based
on whether they are applied primarily to single scalar fields, time-
varying scalar fields, or ensembles. The visualization tasks are de-
scribed in Sect. 6, Sect. 7, and Sect. 8. The definitions of sev-
eral comparative measures have been motivated for the most part
by specific tasks associated with visualization or interactive explo-
ration. We discuss these comparative measures with a focus on their
roles in enabling the visualization tasks. Table 1 presents a guide for
navigating the state-of-the-art described in these sections. We have
also released the list of all references covered in this survey via
SurVis [BKW15], the visual literature browser, which is available
athttps://git.io/Jt2Haq.

6. Visualization Tasks for Single Fields

We begin by considering comparative measures between single
scalar fields. The comparison of single fields has many applica-
tions in scientific visualization, and in many cases serves as a build-
ing block in comparing time-varying scalar fields and ensembles. It

plays an important role in tasks such as symmetry detection and
shape matching. The former finds applications in the visual anal-
ysis of biomolecules, and the latter is essential for comparative
visualization and computer vision. In the context of single fields,
comparative measures may support the comparison between two
different fields or between sub-structures within a single field (i.e.,
self-comparison).

An important application of self-comparison is symmetry detec-
tion, discussed in Sect. 6.1. Applications of comparisons between
two fields include shape matching and retrieval, followed by match-
ing shapes that are not represented by meshes, such as neuronal
trees, see Sect. 6.2. We also discuss other visualization applica-
tions with single field comparisons in Sect. 6.3, such as parameter
tuning for ray casting algorithms, graphs, and social networks. For
comparative measures already summarized in Sect. 4, we focus on
their applications in specific visualization tasks. For other compar-
ative measures designed mainly for visualization, we introduce the
measures on a high-level before discussing their associated tasks.

6.1. Symmetry Detection

Symmetry detection refers to the identification of repeating struc-
tures within a single scalar field f. The repeats are identified based
on a comparative measure, which is applied to compare a scalar
field with itself. A typical pipeline would first construct a topolog-
ical descriptor A from f, simplify A to remove noise, explicitly
or implicitly enumerate sub-structures of .4, and compare pairs of
these sub-structures. A refinement step may be incorporated to re-
duce the number of such comparisons, by selecting a specific sub-
structure as a query or by applying spatial overlap criteria. Sym-
metry detection is a first step in many visualization tasks such
as query-based exploration, transfer function design, and linked
volume editing, to name a few [TN14, MTN13]. Applications in
molecular biology and allied fields have been demonstrated, where
detecting repeating sub-structures in biomolecules is crucial to un-
derstand their shape and function. In Fig. 9, we see various symme-
tries identified within the Buckyball and vortex simulation datasets.
In some cases, such as the vortex simulation data, the symmetries
are not perceivable using a casual visual inspection.

6.1.1. Merge Trees

A rich set of techniques is available to detect symmetry by compar-
ing merge trees and their variants, some of which are successful in
discovering visually hidden symmetries. All papers described be-
low showcase the utility of the method on CryoEM datasets, which
consist of electron microscopy density maps of biomolecules.

Saikia et al. [SSW14] computed the extended branch decompo-
sition graph (eBDG) using a (simplified) merge tree 7 as input.
An eBDG contains a union of all branch decomposition trees (sub-
trees) of 7. To construct an eBDG, similarity scores are precom-
puted for all sub-trees against all other sub-trees using a combi-
nation of (normalized) volume and function differences. To detect
self-similarity in a dataset, the eBDG is compared with itself. Since
similarity scores are precomputed for all comparisons among sub-
trees, given a region of interest, the method can report all similar
sub-structures and hence support real-time exploration of the data.
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Single scalar field

Time-varying scalar fields

Scalar field ensemble

Topological Symmetry Shape retrieval Other tasks Feature tracking Global Space-time Clustering Summarization Uncertainty Interactive
structure detection structure structures and classifi- visualiza- exploration
changes cation tion
Critical [SWC*08] [SBS02] [WTGP10] [FFST18] [FFST18] [MW14a]
points/ [TN14] [KRHH11] [RKG*11] [GST14]
contours [KHNHI2] [KZHH12]
[RKWH12] [DNN13]
[LWM*17] [SPCT18]
[VMN*19] [EMB*20]
[NEFH20]
Persistence [TMB14] [LWA*17] [RSL17] [KVTI19]
diagram [ZW19] [HZLR20] [SPCT18] [VBT20]
[SPD*19]
Merge tree [SSW14] [SMKN20] [BYM*14]  [SW17] [SSW14] [YWM*20]  [GST14] [PDT*15]
[SSW15] [SMKN20] [YWM*20]  [YWM*20]
[SMKN20] [LPYW21]
Contour [TN11] [HSKKO1] [BMM*03] [EHMP04] [SB06] [BWP*10] [HSKKO1]  [LWL*20] [WZ13]
tree/ [ZBB04] [BB13] [WBD*11]  [ZBB04]
Reeb graph
Morse- [TN13] [FHJB13] [KRHHI1] [RKWHI12]  [NTNI5] [AMY*20]
smale [NTNI15] [KEF*17]
complex/ [SHC*19] [SHD*20]
Extremum [RSL20a]
graph
Other meth- [ACO7] [DSW15] [HHC*13] [ARC20] [EHO4] [SSGC*18]
ods [RL16a] [EHNP04]
[SNNI11]
[SSGC*18]

Table 1: Navigating surveyed papers based on topological descriptors vs. visualization tasks.

(h)

(m)

Figure 9: Symmetric regions identified within two datasets: Buck-
yball (top row) and vortex simulation (middle and bottom row). (a)
and (f) are full volume renderings, whereas the rest correspond to
symmetric regions. Image reproduced from Thomas and Natara-
jan [TN11], cropped to show two datasets.

This approach also addresses the problem of seed selection [TN13]
and supports slicing the 3D field and isolating symmetries that are
not visually evident in 3D.

In a follow-up work, Saikia ef al. [SSW15] provided an alternate
method for symmetry detection. Each sub-tree is augmented with
a feature vector, namely the histogram given by intensity distribu-
tion among voxels of the sub-tree. This augmentation is computed
together with the merge tree, and the resulting histograms (bin size

100) are compared using an L? norm. The similarity scores are
computed by comparing all pairs of sub-trees and a distance ma-
trix is then constructed. A user can pick a voxel and then select
the corresponding feature as the region of interest. Entries from the
corresponding row in the distance matrix are picked, with an option
to vary the distance threshold to refine the matches based on how
close they are to the query.

Sridharamurthy et al. [SMKN20] used tree edit distance (Defini-
tion 5) to detect symmetric structures. After computing the merge
tree of the scalar field, a set of sub-trees is selected based on per-
sistence rank, and the edit distance is calculated by comparing all
pairs of sub-trees to construct a distance matrix. The method has
limited utility as it does not support query-based similarity search,
but can be used to detect symmetric structures by explicitly extract-
ing sub-trees and comparing them. However, the method achieves
results similar to those of Thomas and Natarajan [TN11], who used
the entire contour tree.

All three methods suffer from instabilities. Saikia et al. [SSW14]
provided examples for false negatives and performed a perturba-
tion analysis. The authors suggested a combination of volume and
function differences as edge weights to alleviate the instability is-
sue. Although histogram-based approaches [SSW15] are robust for
small perturbations, they cannot be a substitute for complicated
branching. A case for which two trees with identical histograms
was provided in the discussion. The number of bins used for the his-
togram can affect the final results. The authors suggested the pos-
sible use of non-linear binning in future work. Sridharamurthy et
al. [SMKN20] achieved stability by merging saddle points into a
multi-saddle based on an approach proposed earlier [TN11]. The
merging is directed by a stabilization threshold that determines
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which critical points are merged. This approach works in practice,
but with no theoretical guarantees.

6.1.2. Contour Trees and Reeb graphs

Thomas and Natarajan [TN11] defined a similarity measure for
symmetry detection based on constructing and comparing hierar-
chical descriptors constructed from sub-trees of contour trees. The
comparison is based on the max-weight matching of the hierar-
chical descriptors. The algorithm computes groups of symmetric
regions and refines them in a post-processing step. The measure
can be used to detect many kinds of symmetries that are not ap-
parent via visual inspection. A stabilization parameter is used to
handle instabilities. The method does not consider geometric in-
formation and thus cannot capture symmetries based on geometry.
The method is used in applications such as symmetry-aware trans-
fer function design and isosurface extraction.

In a subsequent work, Thomas et al. [TN14] exclusively used
geometric information to extract symmetric structures in multiple
scales. Schneider et al. [SWC*08] presented a similarity browser
for comparing scalar fields, where similarity is defined as the rel-
ative overlap of the largest contours, and relevant contours are ex-
tracted by querying edges of a contour tree.

6.1.3. Extremum Graphs and Morse Complexes

Thomas and Natarajan [TN13] augmented a simplified extremum
graph with edges that directly connect saddles, providing a good
approximation of geodesic distance between pairs of extrema. Seed
points are chosen from which the symmetric regions are grown
using geodesic distance between extrema. Iteratively, the seeds
are combined to form super-seeds, and symmetric regions are ex-
tracted via a region growing process. The method avoids comput-
ing matches between sub-trees or sub-structures and instead re-
lies on geodesic distance; thus, it is robust in handling noise when
compared to [TN11]. The method is used in applications such as
proximity-aware volume visualization, linked volume editing and
multi-mode volume rendering. Seed selection is a critical step, and
symmetry detection depends on selection of a meaningful set of
seeds. Seed selection and simplification depend on user-defined
thresholds.

6.2. Shape Matching and Retrieval

Shape matching and retrieval is another important problem studied
within the fields of computer graphics, computer vision, and visual-
ization that can be addressed by comparative analysis of topological
descriptors. Shape matching deals with comparing 3D shapes that
are stored in the form of meshes. The solutions should be able to
detect similarity/dissimilarity between shapes irrespective of view
direction, scale, orientation, pose variation, and other transforma-
tions. The models often contain multiple attributes in addition to
geometry and topology. Quantifying similarity is necessary to ex-
plore large databases of shapes. Biasotti et al. [BCBB14] surveyed
existing methods from the perspective of maps between spaces. We
restrict the discussion here to methods for which the comparative
measure is based on topological descriptors. Although recent ad-
vances in learning-based methods do provide better results, topo-
logical descriptors provide scope for improvement as additional

feature vectors. Shape matching applications depend crucially on
the choice of the scalar field/Morse function defined on the shapes.
For example, the average geodesic distance from a randomly cho-
sen set of vertices of the mesh is often used in the literature. Once
the scalar field is computed, the rest of the pipeline is similar to
symmetry detection. For each shape, a suitable topological descrip-
tor is constructed, and the descriptors are compared to get a simi-
larity score. The scores are used in a query-based system to match
and retrieve shapes. Fig. 10 shows one application of shape match-
ing where correspondences of various parts of the shape mesh are
found.

Figure 10: Shape-matching application: Point-and-patch corre-
spondences followed by the texture transfer results of the hand and
head data in different poses are shown. Image reproduced from
Feng et al. [FHJBI13] with different alignment.

6.2.1. Critical Points and Persistence diagrams

To study mesh similarity, Hajij et al. [HZLR20] used persistence di-
agrams computed on the lower star filtration of the eigenfunctions
of the Laplacian that store important geometric information. They
alleviated the need for higher-dimensional persistence diagrams
and showed that using a single eigenfunction itself has more dis-
criminatory power than metric-based approaches. They used only
the O-dimensional persistence diagrams, which are easy to com-
pute. They compared the diagrams using bottleneck distance fol-
lowed by 2D t-SNE projection of the distance matrix. They show-
cased their results on 60 meshes divided into 6 categories, available
from Sumner and Popovié [SP04, SP21]. The results were shown
for Fielder’s vectors. They planned to combine signatures from
multiple eigenfunctions and extend their method from triangulated
meshes to point clouds and graphs.

Li et al. [LWA*17] compared neuronal tree shapes by vectoriz-
ing neuron structures based on topological persistence, unlike tra-
ditional shape matching where the shapes are meshes. They proved
that such a persistence-based signature is more effective in cap-
turing the global and local structure than simple statistical sum-
maries. They also proved, using a certain descriptor function, that
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a persistence-based signature contains more information than the
classical Sholl analysis. The persistence diagram of the trees is
computed with the descriptor function as the scalar field. The points
in the diagram are then converted to a 1D density function by first
assigning appropriate weights followed by converting the set of 1D
points using a kernel estimate. The density function is then vector-
ized, which can be compared using standard norms like L' or 2.
Li et al. performed experiments on neuronal trees, used geodesic
descriptor as the scalar field, showcased various tasks such as com-
parison and clustering, and analyzed results using classification ac-
curacy. The space of the neurons was visualized. Future work in-
volves building a database of descriptors and experiments using
multiple descriptor functions.

Zhao and Wang [ZW19] further used the Weighted Persistence
Image Kernel (WKPI) to compare neuronal trees and classify them
in a similar fashion as Li et al. [LWA™17]. They contrasted the clas-
sification accuracy using existing learning approaches and provided
additional results for other graph data.

Persistence homology transform (PHT) was introduced by
Turner et al. [TMB14] as a topological descriptor of surfaces in
3D or curves in 2D. A unit vector induces a height field on the
surface, for which a set of d persistence diagrams can be com-
puted. PHT is then defined as a map from all possible direction
vectors (points on a unit sphere) to space of persistence diagrams.
The authors proved that this transform is injective, and thus a met-
ric defined on the space of persistence diagrams can be used to
define a metric on the set of shapes. In practice, Wasserstein dis-
tance is used for comparing individual persistence diagrams. The
distance is approximated by sampling the unit sphere to get a finite
number of directions. The technique is demonstrated by applying
it for classification and clustering of a set of shapes from MPEG-7
shape silhouette database [SikO1]. Seven class of objects with 20
examples each totaling 1400 objects are chosen, and O-th PHT is
computed using 64 evenly spaced directions. Then, distance com-
putation considers various rotations and takes the minimum. The
objects are then projected into 2D or 3D using multi-dimensional
scaling. Turner et al. reported that the classes are well separated.

6.2.2. Merge Trees

Sridharamurthy et al. [SMKN20] used tree edit distance (Defini-
tion 5) to showcase shape matching using TOSCA non-rigid world
dataset [BBK21]. The shapes are in different poses and consist of
both humanoid and non-humanoid shapes. Average geodesic dis-
tance field is calculated on the meshes, followed by a persistence
simplification using a threshold of 1% of the scalar field range. A
distance matrix (DM) is computed by comparing all pairs of shapes.
Each collection appears within a block of the DM, comprising low
distance values irrespective of the pose. Some similarity across the
blocks is also observed for humanoid shapes.

6.2.3. Contour Trees and Reeb Graphs

Hilaga et al. [HSKKO1] defined multi-resolution Reeb graphs
(MRG) and a similarity measure to compare them. An approxima-
tion of geodesic distance based on Dijkstra’s algorithm on the edge
lengths is used as the scalar function upon which MRG is built. The
similarity is computed by matching attributes defined on the MRGs.

The MRGs are constructed on the shapes using a continuous scalar
function, and a coarse-to-fine strategy is used to compare the graphs
and compute the similarity. The similarity is used to find the best
matches for a given query shape. The experimental setup of Hi-
laga et al. used 230 models collected from three sources: Viewpoint
Models, 3DCAFE, and Stanford University models. They chose an
object as the key and reported similar objects as retrieved by the
method. The method depends on the resolution and two other pa-
rameters, range (u,) and weight (w), which are typically set to 0.5.
They reported running times and mentioned that incorporating geo-
metric information, extension to handle morphing, and application
to pose estimation as potential future work.

Inspired by the work of Hilaga er al. [HSKKO1], Zhang et
al. [ZBB04] presented an algorithm to match volumetric functions
based on multi-resolution dual contour trees. The matching is again
based on weighted sum of attributes, normalized volume, function
range, and Betti numbers of bounded contours. Electrostatic poten-
tial and electron density distributions within biomolecules (PDB
data repository) are represented as scalar fields and compared. The
method is robust with respect to both rigid body transformations
and small perturbations to the scalar field. The paper reported the
results of applying the matching algorithm on 242 protein chains
assembled from different families. A clustering extension helps dis-
tinguish between different protein families. The authors proposed
the use of sophisticated shape attributes and combined both elec-
trostatic potential and electron density to improve the classifica-
tion accuracy. They also described the scope for improving the tree
matching algorithm.

Biasotti et al. [BMM*03] defined a similarity measure based
on error-tolerant graph isomorphism on an extended Reeb graph
(ERG). An ERG is defined with respect to Euclidean distance from
a point or with respect to integral geodesic distance. The measure
depends on the choice of the function used to construct ERG and
is shown to be a metric. Barra and Biasotti [BB13] used a kernel-
based comparison of ERGs for shape retrieval. Kernels are defined
on both vertex and edge attributes and computed by comparing all
paths stemming from the two graphs being compared. Both papers
discussed various applications on shape matching and retrieval con-
test (SHREC) datasets, with detailed analysis of precision and recall.

6.2.4. Extremum Graphs and Morse Complexes

Feng et al. [FHIB13] studied the problem of computing cor-
responding features between two non-rigidly deformed surfaces,
which is a key component in any shape-matching application. They
compared their approach with other feature correspondence detec-
tion methods that involve geodesic and diffusion distances on vari-
ous shapes with different values of weighting parameter. They also
showcased the utility of their method in matching surfaces with
non-zero genus, and showed examples of cross-parameterization
and texture transfer.

6.2.5. Other Descriptors

Allili and Corriveau [ACO07] provided a method to compare shapes
by comparing the Morse shape descriptors (MSDs), which are
topological descriptors defined on smooth manifolds. The MSD
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for an n-dimensional manifold is defined as a set of (n+ 1) ma-
trices with appropriate discretization of the scalar function. The
similarity is measured as the weighted sum of distances between
collections of MSD associated with contours. The main limitation
is that the MSD is dependent on the Morse function used. No tools
are available to select appropriate Morse functions for a given class
of shapes. The descriptor allows multi-scale analysis due to dis-
cretization. The method is applied to 2D shapes only. The authors
discussed that there is room to improve precision and recall, and to
develop theoretical foundations to facilitate the choice of appropri-
ate Morse functions.

Dey et al. [DSW15] used persistence distortion distance to
compare surface meshes of different geometric models, some of
them being the same models but in different poses. They used the
geodesic distance from base points as the scalar field. The input is
a d-sparse subsample of the 1-skeleton of the meshes constructed
by randomized decimation. They proved that the error in the esti-
mation of the distance is at most 128. Although the distance can be
non-zero between a graph with itself (this depends on the choice of
base points), the distances are small, confirming the stability.

6.3. Other Visualization Tasks for Single Fields

Beketayev et al. [BYM™14] used distances between merge trees
(Definition 9) to analyze the tuning of a ray tracing algorithm on
a multi-core system as studied by Bethel et al. [BH12]. Focusing
on three parameters, work block width, height, and concurrency
level, the authors recorded the performance for two datasets with
the same parameter space but slightly different algorithms based
on a ray selection method. The similarity of the datasets implies
no significant difference is caused by the choice of ray selection
method, which they confirmed by the small distance between them.

Rieck and Leitte [RL16a] proposed a measure for comparing dif-
ferent clusterings of multivariate data and for studying the cluster-
ing quality. Given a multivariate dataset, the method first computes
the Vietoris-Rips complex and defines a suitable shape descriptor
(a scalar field) on the point cloud. For a given clustering, the global
version of the proposed measure is defined as the ratio of the total
persistence sum of all clusters to the total persistence of the scalar
field. This ratio captures the loss of features due to the clustering.
They defined a local variant as well to capture the quality of the
cluster. Although the measure is not a true comparative measure, it
does enable a comparative analysis. The local measure is visualized
as an attribute overlaid on the cluster, and the global measure for
all clusterings is visualized as a network where similar clusterings
are located close to each other.

Topological descriptors have also been used for comparative
analysis and visualization of discrete structures such as graphs and
social networks [RFLL17,RL16b].

7. Visualization Tasks for Time-Varying Fields

Time plays a fundamental role in many processes. Promi-
nent examples are physical models that simulate phenom-
ena such as clouds formations in climate or weather model-
ing [DNN13, KEF*17, EMB*20], vortex shedding in flow simula-

Figure 11: Time-dependent vortex core lines (red) and their associ-
ated vortex regions shown as transparent surfaces (blue) obtained

from tracking minima and extremum structures in the acceleration

magnitude filed of the 2D flow over a cavity. Volume rendering of
the acceleration and a few path lines provide the context. Image
reproduced from [KRHH11].

tions [KZHH12,RSL20a], the simulation of combustion and burn-
ing structures [BWP*10, SNN11], or molecular dynamics simula-
tions [SBO6]. An example from medicine is time-varying measure-
ments of the brain activity [SSGC*18]. In all these examples, ef-
ficient analysis of the resulting dynamic data plays an increasing
role. Key visualization and analysis tasks are the identification and
tracking of features to understand the evolution of structural prop-
erties, find periodicity, or detect explicit events. Comparative mea-
sures play a primary role in this process. To this end, topological
data analysis has proven to be a fundamental tool, and a large num-
ber of related publications are available, which will be discussed in
this section along with topological descriptors being used.

In our context, the underlying assumption is that time is a contin-
uous variable. However, typically, time-dependent data is available
as a set of temporal snapshots. Generally, methods analyzing such
data can be categorized depending on the treatment of the tempo-
ral dimension [Pos03]. The first possible approach is to analyze the
data per time-slice and then compare the results. One can thereby
find methods that explicitly track local features by solving an ex-
plicit correspondence problem (Sect. 7.1) and methods that con-
sider a global distance between the topological structures in one
time-slice as a whole (Sect. 7.2). The third group of methods de-
fines features as entities in the space-time domain where no ex-
plicit tracking is necessary (Sect. 7.3). In this report, we make an
explicit distinction between time-varying fields and ensembles of
scalar fields, where we consider ensembles to be a collection of
scalar fields that arise from different parameter settings. Ensembles
that are collections of time-varying fields are mainly discussed in
the current section.

7.1. Feature Tracking and Event Detection

Tracking is mostly a two-step process in which topological features
are extracted in each time slice and then matched solving a corre-
spondence problem. Therefore, feature tracking deals not only with
the evolution of features but also with the identification of struc-
tural changes (events) between time steps, which are appearance
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Figure 12: Nested tracking graph for one ensemble member of the viscous finger dataset. The graph illustrates the nesting hierarchy of
contours across levels. The x-axis represents time and the y-axis is used to minimize edge crossings. The image shows the interface of
the visual analytics framework consisting of a DVR window (left) and the interactive nested tracking graph (right). Image reproduced

from [LWM*17].

(birth), disappearance (death), merging, or splitting of features. An
optional simplification step using topological persistence is applied
before computing the matching in the case of large data.

The most frequently used topological descriptors (Sect. 3) are
critical points [RKWH12, SPCT18] or contours [LWM™17], espe-
cially when it comes to real-world applications. However, some
approaches have also been proposed for tracking the contour
trees [SB06], Reeb graphs [EHMP04], Morse cells [SHD*20], or
extremum graphs [KEF*17]. Correspondence criteria use distance
measures in the spatial domain or attribute space (Sect. 4). These
are often based on application-specific heuristics or feature over-
lap. Some methods also establish a correspondence building on an
explicit temporal interpolation or optical flow [VMN*19]. The re-
spective papers are described in the following sections.

7.1.1. Critical Point Tracking

Weinkauf et al. [WTGP10] described the dynamic behavior of
critical points as streamlines of a higher-dimensional vector field
in space-time, so-called feature flow fields. The method relies on
a continuous temporal interpolation of the field and applies nu-
merical integration to generate the tracks. Originally, the method
was applied to critical points in vector fields, but the concept is
also applicable to critical points in scalar fields. Reininghaus et
al. [RKWH12] tracked critical points in scalar fields to facilitate
a discrete feature flow field. The feature tracks are gradient lines
in the discrete field. Practically, feature tracking establishes a cor-
respondence between extremal points in consecutive time steps us-
ing a forward and backward Morse matching. This means an ex-
tremal point from time-step ¢ falls into the descending (resp. as-
cending) manifold of an extremal point in time-step ¢ + 1 and the
other way round. The method explicitly keeps track of merge and
split events. By tracking the persistence value over time, Rein-
inghaus et al. introduced a temporal importance measure for the
tracked features. The tracking itself is inherently local and fast. This
method has been successfully applied to vortex tracking by Kas-
ten er al. [KHNH12, KZHH12], thus providing an abstract track-
ing graph. Reininghaus er al. [RKG*11] also used the approach
to track critical points in the scale-space. In an extension of this
work, the descending manifolds of the tracked minima enclosed by

a subset of the extremum structures are tracked and interpreted as
vortex regions [KRHH11] (Fig. 11). The correspondence of the ex-
tremum structure is inherited from the extremal points. A similar
approach was used by Engelke et al. [EMB*20, NEFH20] to track
multi-centered cyclones defined as sets of critical points in a pres-
sure field.

Soler et al. [SPCT18] introduced an extremal point tracking al-
gorithm that solves the correspondence problem by minimizing the
sum of the distances between matched pairs. The distance between
two extrema is defined as a weighted sum of (i) the difference of the
corresponding persistence pairs as used in the Wasserstein distance
(Definition 2) and (ii) their geometric distance in the domain. The
authors call the resulting metric /ifted Wasserstein metric. For an
efficient computation of their tracking, they proposed a modifica-
tion of the Kuhn-Munkres algorithm [Mun57]. They demonstrated
the usefulness of the approach on a few analytical datasets and ex-
amples from flow visualization (vortex tracking) (Fig. 13). As a fu-
ture extension, they proposed to also include other attributes in the
distance function assigned to the topological features. In a follow-
up paper [SPD*19], the method was adapted to the analysis of the
viscous finger by describing the dynamic process observed at the
interface between fluids of different viscosity.

Valsangkar et al. [VMN™19] used optical flow to study the tem-
poral evolution of cyclones. Cyclonic centers are defined as local
minima of the mean sea level pressure field. Candidate tracks are
computed from an optical flow field, which then is clustered in a
moving time window to obtain the final tracks. The tracks are visu-
alized as a smooth curve interpolating the vertices of a track. The
method supports the identification of merge and split events.

7.1.2. Contour, Contour Trees and Merge Tree Tracking

Shamir et al. [SBS02] proposed a progressive isosurface tracing al-
gorithm that predicts the contour at time step ¢ + 1 based on the
contour at time step . In a later paper, Sohn and Bajaj [SB06]
extended this approach by proposing a contour-tree based feature
tracking method. The method has some similarities with the meth-
ods introduced in Sect. 4.2. Specific to this method, Sohn and Bajaj
keep track of the contours (points on the contour tree) for all iso-
values, which is summarized in a topology change graph (TCG).
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A temporal correspondence between contours is established in the
case of significant overlap over both their sublevel and superlevel
sets. To be able to track contours for iso-values, they facilitated the
coherence of contours when changing iso-values. Additional “criti-
cal points” are added to the contour trees where two super level sets
of the two trees “collide” and a new overlap region is created. The
same process is done for sublevel sets. The significance value is a
conceptual parameter in this approach. They demonstrated the util-
ity of their method in tracking turbulent vortex structures and the
binding of oxygen to hemoglobin molecule using time-dependent
electron density maps.

Doraiswamy et al. [DNN13] described a framework for the ex-
ploration of cloud systems at various scales in space and time based
on infrared (IR) brightness temperature images. The framework au-
tomatically extracts cloud clusters as contours for a given temper-
ature threshold. To identify the threshold, the persistence diagram
is used. The movement of the cloud system is tracked using the
optical flow between the pair of IR brightness temperature images.

Lukasczyk et al. [LWM™17] introduced nested tracking graphs
as a hierarchical representation of feature tracks highlighting tem-
poral events. Features are defined as contours and correspondence
is established by contour overlap. They applied the approach to data
from finite point set methods, computational fluid dynamics, and
cosmology. The method has been integrated into a visual analytic
approach [LAS*17] for tracking of viscous fingers (Fig. 12).

Saikia and Weinkauf [SW17] used subtrees of the merge tree for
temporal feature tracking. Subtree similarity is based on a combi-
nation of spatial overlap and xz-distance between local histograms.
The result is a directed acyclic graph with nodes that represent fea-
tures and the edges that record the similarity information. The fi-
nal feature track is then computed as the shortest path in a graph,
and thus considers not only the similarity between consecutive time
steps but also global similarity. They applied their method to track
primary and secondary vortex structures in the 3D time-dependent

Figure 13: Critical point trajectories based on optimal matchings.
The geometrical coherence of fingers allows to use a lifted ver-
sion (that gives importance to the y-coordinate of fingers) of the
Wasserstein metric to correctly track the evolution of persistence
pairs. Image reproduced from [SPD*19].

flow behind a cylinder (Fig. 14) by considering the Okubo-Weiss
criterion as the scalar field.

Time-varying Reeb graphs for the analysis of continuous space-
time scalar data were proposed by Edelsbrunner et al. [EHMP04].
The nodes of the Reeb graphs for consecutive time steps, which
correspond to the critical points of the scalar field, are connected
using Jacobi curves in space-time (Sect. 3).

7.1.3. Extremum Graph and Morse Complex Tracking

Schnorr er al. [SHD*20] presented a two-step tracking approach
for space-filling features (objects whose union covers the domain).
The work was motivated by the analysis of dissipation elements,
which are defined as Morse-Smale cells (Sect. 3.4). This problem
is especially challenging since the number of overlapping cells in
consecutive time steps can be very high. In a first step, the solu-
tion of a weighted (normalized volume overlap) bi-partite match-
ing problem generates a 1:1 assignment of cells. This mapping is
assumed to result in the most plausible matches. In a second step,
additional edges are generated to allow for merge and split events
by solving a maximum-weight independent-set problem. Since the
method is computationally expensive, the authors later published
an algorithm that approximates the tracking achieving a substantial
speed-up [SHC*19].

Tracking of extremum structures (Sect. 3.4) or skeletons is an un-
stable process since the resulting structures typically are sensitive
to small variations in the data. Kuhn et al. [KEF*17] dealt with this
challenge by proposing a space-time clustering approach for the
extremum graphs from the individual time steps. The clusters are
visualized as a distance field isosurface of the extremum graphs in
space-time. The method has been developed in an application deal-
ing with ash cloud tracking in a 2D domain. Rieck et al. [RSL20a]
analyzed the evolution of skeletons, which are extracted applying
iterative thinning to binary images. To improve the temporal coher-
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Figure 14: A primary and secondary vortex structure have been se-
lected at T =45 and tracked backwards and forwards in time. Their
tracks have been used to find spatio-temporally similar structures
in the entire dataset. Image reproduced from [SW17].
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Figure 15: Tree edit distance matrix for all time steps of the 3D
von Kdrmdn vortex street. Columns corresponding to the selected
time steps (images in the top row) are highlighted in the matrix.
Interesting patterns are highlighted using black and green boxes.
Image reproduced from [SMKN20].

ence, they introduce a novel persistence concept. They applied the
method to the viscous fingers dataset.

Narayanan et al. [NTN15] used the distance dp (Eq. 10) to com-
pare extremum graphs based on maximum common sub-graphs and
to track turbulent vortex structures.

7.2. Structural Change Detection

A global comparison of datasets derives a pair-wise distance mea-
sure between time steps, which often are displayed in a distance
matrix or similarity plots over time (Fig. 15). Typical visualiza-
tion tasks are outlier, periodicity, or event detection. Periodicity de-
tection refers to identifying structures that repeat over time. Event
detection in this context refers to finding sudden changes in the
overall structure of the data, which results in specific patterns in
the distance matrix. Principally, all distance measures introduced
in Sect. 4 can be used for this purpose. However, only a few of
those have been used in visualization applications concerned with
time-varying data.

Saikia et al. [SSW14] used eBDG, which is computed from
merge trees, and compared these trees using a dynamic program-
ming algorithm to detect periodicity in the 2D Benard-von Kér-
man vortex street dataset. A similar application is showcased by
Narayanan et al. [NTN15].

Sridharamurthy et al. [SMKN20] utilized the tree edit distance
in applications such as detecting periodicity (similar to [SSW14,
NTN15]) and computing temporal summaries. They used a dis-
tance matrix to detect key events and summarized the Benard-von
Kdérmén vortex street dataset as shown in Fig. 15.

Edelsbrunner er al. [EHNPO04] introduced a global comparison
measure for a set of k < d scalar functions defined on a common

d-dimensional manifold, and applied it to the study of time-varying
functions. The comparison measure is defined as an integral of the
norm of the wedge product of the k derivatives. For the case of
k = d = 2, the measure is related to the Jacobi set of the two scalar
functions (Sect. 3.5) and equals the integral of the persistence of
all critical points of one function restricted to the level sets of the
other. The measure can be computed in linear time. It has been ap-
plied to combustion simulation data. A time plot of the comparison
measure between the fuel and a variable representing the progress
of the combustion helps identify the key stages of ignition, burning,
and extinction. The paper also describes a local version of the mea-
sure obtained by restricting the computation to an infinitesimally
small subdomain. The measure is symmetric but does not satisty
the triangle inequality. The measure is also not scale-invariant and
is therefore not suitable to compare the similarity of pairs of func-
tions. An extension of the local measure to compare gradients of
k > d scalar functions was applied to climate science and combus-
tion studies [SNN11].

In a few applications, the comparison of persistence diagrams
was also applied for the analysis of temporal data (Sect. 4.1).
Rieck et al. [RSL17] identified periodicity in time-varying tem-
perature data from a climate application by comparing all pairs
of time steps using inter-level set persistence hierarchies (ISPHs)
and visualizing the resulting distance matrix. In an application pa-
per, Soler et al. [SPD*19] compared time-varying viscous finger
datasets from ensemble simulation runs based on time-varying per-
sistence diagrams. Hajij er al. [HWSR18] employed the distances
between persistence diagrams to visually detect structural changes
in time-varying graphs. To quantify the structural difference be-
tween two time instances of a social network, they computed the
bottleneck and Wasserstein distances between their persistence di-
agrams. The same framework is potentially applicable to the study
of time-varying scalar fields.

Agarwal et al. [ARC20] proposed a similarity measure for the
analysis of time-varying multi-fields. Each multi-field is repre-
sented as a Multi-resolution Reeb Space (MRS) that is approxi-
mated as a series of joint contour nets (JCNs) at various levels
of data-range discretization. Between the nodes of adjacent reso-
lutions, a parent-child relationship is introduced. The computation
of the similarity measure between two MRSs is a two-step pro-
cess. In the first step, a list of matching pairs from the nodes of
the respective MRSs is established, moving from the coarser to
the finer resolution Reeb spaces. Two nodes are matched if they
have the same resolution level, the parents have been matched, and
they are topologically consistent. In the second step, the similarity
of the MRSs is computed as a sum of an attribute-based similar-
ity between the nodes following ideas from Zhang et al. [ZBB04]
and Hilaga et al. [HSKKO1] (Sect. 4.2). The visualizations show
the abstract graphs and plots of the similarity measure over time.
The paper focuses on the introduction of the method. Its use is
demonstrated for time-varying multi-field data from computational
physics. The similarity measure is not specific to the analysis of
time-varying data. The correspondence principle could also be used
for explicit feature tracking.

Given a set of merge trees T = Tq,..., T, Li et al. [LPYW21]
were interested in finding a basis set S of merge trees such that
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each tree in T can be approximately reconstructed from a linear
combination of merge trees in S. A set of high-dimensional vectors
can be sketched via matrix sketching techniques such as principal
component analysis and column subset selection. Li et al. devel-
oped a framework for sketching a set of merge trees that combines
the Gromov-Wasserstein framework [CN20] with techniques from
matrix sketching. They demonstrated the applications of the frame-
work in sketching merge trees that arise from time-varying data in
scientific simulations (e.g., flow simulations, and the Red Sea eddy
simulation from the IEEE Scientific Visualization Contest 2020),
where their method is used to find good ensemble representatives
and to identify outliers w.rz. a chosen basis set. The same frame-
work is potentially applicable for the ensembles of scalar fields
discussed in Sect. 8.

7.3. Space-Time Structures

An alternative to feature tracking is to define topological structures
directly in the space-time domain, in this case, the correspondence
must not be established explicitly and no distance measures are re-
quired. Instead, one must assume an explicit temporal interpolation.

Weber et al. [WBD* 11] tracked subsets of isosurfaces using the
Reeb graph. The work was motivated by the analysis of burning
regions in simulated flames. Such regions are defined as parts of
the temperature isosurfaces, where the fuel consumption rate is
above a certain threshold. Boundary surfaces separating burning
and non-burning regions are extracted in a two-phase contouring
operation: a temperature iso-volume in 4D space-time is computed,
from which the fuel-consumption-rate isosurface is constructed.
Using time as a filter function, the Reeb graph of this boundary
surface represents the evolution of burning regions. In a follow-
up paper [BWP*10], this graph was embedded in an exploration
framework and augmented with statistical attributes (Fig. 16).
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Figure 16: Reeb-graph based tracking graph of burning cells with
corresponding segmentations. Round nodes correspond to cells ex-
plicitly segmented by the Morse complex, diamonds to topological
events between time steps. Red signifies a merge, green a split, and
turquoise a birth/death event. Image reproduced from [BWP* 10].

Edelsbrunner et al. [EH04] proposed to compare individual time
steps using Jacobi sets (see Sect. 3). Although this approach pro-
vides a solid theoretical framework, the results are often very com-
plex and hard to interpret when applied to real-world data.

Saggar et al. [SSGC* 18] proposed a pipeline for the analysis
of time-series of fMRI (functional magnetic resonance) data to ex-
plore the dynamical organization of the brain. Each timeframe is in-
terpreted as a point in a high-dimensional space (number of pixels).
After a dimension-reduction step using t-SNE [vdMHO08], mapper
construction (See Sect. 3) is applied to build a shape graph, where
the nodes represent sets of timeframes. The results are visualized as
an abstract graph augmented with aggregated node attributes linked
to special visualizations. A distance between time frames can be de-
fined via distances in the shape graph. The authors stated that future
work is needed to reduce the computational costs of the approach.

8. Visualization Tasks for Ensembles

In this section, we focus on topological descriptors applied to scalar
field comparisons for ensembles. An ensemble of scalar fields, in
the context of this report, is a collection of scalar fields indexed on
a set of parameters with no temporal relationship between them.
Such a collection of scalar fields often results from multiple simu-
lation runs obtained by varying the input parameters.

The typical overall analysis task in an ensemble is to relate the
observed features in the output scalar fields to the input parame-
ter space. Topological descriptors play an important role and thus
can reduce the task of understanding the space of scalar fields to
a more tractable task of exploring the space of their correspond-
ing topological descriptors. For example, instead of searching for
patterns in the high-dimensional space of scalar fields, the job sim-
plifies to finding patterns in the space of merge trees. Key tasks in-
clude clustering, classification, outlier detection, feature detection,
summarization, and computation of structural statistics.

8.1. Clustering and Classification

Applying and adapting techniques from pattern recognition and sta-
tistical analysis, such as clustering and classification to analyze en-
sembles, has seen active research in recent years. However, these
ideas have been around for a long time. The work by Hilaga et
al. [HSKKO1], which used Reeb graph for shape matching and re-
trieval, is an early example of how topological approaches can work
in the context of information retrieval, clustering, and classification.
Another early topology-guided comparison for classification is the

Figure 17: Persistence atlas for an ensemble of a synthetic scalar
fields. (a) The input scalar fields. (b) Persistence maps. (c) Distance
matrix for the persistence maps. (d) Projection of persistence maps
to 2D. (e) The persistence atlas. Image reproduced from [FFSTI1S].
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use of multi-resolution dual contour trees proposed by Zhang et
al. [ZBB04]. They demonstrated applications to electrostatic po-
tential and electron density fields for protein structures, resulting in
a classification of proteins into categories. In both papers, a similar-
ity matrix was used to capture distances between members of the
ensemble; refer to Sect. 6 for a more detailed discussion of these
papers.

Favelier et al. [FFST18] described a framework called persis-
tence atlas that uses a persistence map for clustering and trend
variability analysis of ensembles. The persistence map is a derived
scalar field that captures the spatial distribution and density of ex-
trema in the input field weighted by their importance. Persistence is
used as the importance measure. This derived map is then used as
a signature of the scalar field. Eigenanalysis-based dimensionality
reduction is applied to project the ensemble members to 2D where
clusters are identified. Trend and spatial variability analyses are
done per cluster by computing mandatory critical points [GST14].
The utility of the framework is demonstrated using simple synthetic
data (Fig. 17), multiple flow simulation ensembles, and ensembles
originating from climate simulations.

Figure 18: Three clusters identified in the flow data ensemble cor-
respond to different viscosity regimes. The Wasserstein persistence
diagram barycenters computed using interruptible approach are
shown on the left and the exact barycenters on the right. There
is little difference between the diagrams, and the performance
difference between these approaches is huge. Image reproduced
from [VBT20], cropped to show three of the five clusters.

Vidal et al. [VBT20] pursued a more direct approach to cluster-
ing of persistence diagrams, adapting the k-means algorithm based
on Wasserstein distance. k-means is an iterative algorithm that pro-
ceeds in two steps. First, the point assignment step assigns each
point to one cluster based on its distance to the cluster centroids.
The second step updates the centroids. The mean persistence dia-
gram of a set of persistence diagrams is computed as the Fréchet
mean under the Wasserstein distance metric d,—. This requires
repeated computation of pairwise distances between diagrams and
the computation of Fréchet mean. If done naively, the computation
is prohibitively costly and not time efficient for realistically sized
data ensembles. The authors proposed a progressive algorithm for
computing the Fréchet mean or discrete Wasserstein barycenters in
a time-interruptible manner. This approach leads to improvements

in runtime while producing similar quality results as shown via ap-
plications to ensembles studied earlier by Favelier et al. [FFST18].
Fig. 18 shows their results for a flow data ensemble.

The drawback of using k-means is the requirement of the num-
ber of expected clusters k in the ensemble. Kontak et al.. [KVT19]
addressed this issue in their recent work in which they suggested
finding the optimal number of clusters based on a minimization of
established statistical score functions such as Akaike information
criterion and Bayesian information criterion.

8.2. Summarization

Another approach for providing an overview of a scalar field en-
semble is to summarize the set of scalar fields within a single ab-
stract structure. For this task, topological structures have recently
been shown to be very useful.

Lohfink et al. [LWL*20] described a technique for combining
contour trees of multiple scalar fields of an ensemble in a single
layout called fuzzy contour tree, which provides a summary of the
ensemble. They use tree alignment, an idea similar to edit distance
mappings, to identify similarities across multiple contour trees and
to obtain a layout that can represent all trees simultaneously. A
heuristic algorithm is used for computing the tree alignments for
a given similarity measure. The approach is applied to the visu-
alization of two scalar field ensembles: 2D flow around a cylin-
der and a heated cylinder ensemble. The utility of this approach is
demonstrated well for these examples. However, the scalability of
the approach for feature-rich data is not clear.

Yan et al. [YWM™*20] proposed to use interleaving distances
(Definition 8) to study a structural average of an ensemble of la-
beled merge trees. Such a structural average, referred to as a /-
center tree, minimizes its maximum distance to any other tree
in an input ensemble. They used global and local structural con-
sistency measures between the input and the 1-center tree to en-
code uncertainty; see Fig. 19 for an example. Different heuristics
are used to compute the labeling between pairs of merge trees to
compute the 1-center tree. Their work demonstrated the applica-
tion of a nice theoretical framework to compute structural averages
of merge trees. In the supplementary material, the authors applied
their framework to study neuron morphology. Their proposed con-
sistency measure can be used to understand structural variations
among an ensemble of neuron-cell-induced merge trees with re-
spect to their 1-center, where such an ensemble arises from differ-
ent reconstructions of the same neuron cell.

Finally, we would like to mention that the persistence at-
las [FFST18] framework discussed earlier also provides a summary
of an ensemble. The mandatory critical point regions identified for
each cluster can be embedded in the spatial domain. See Fig. 17(e).
However, this approach to summarization does not scale for large
ensembles with complex features.

8.3. Interactive Exploration

Another significant aspect in the analysis of ensembles is to un-
derstand the relationship of the input parameters to the observed
features in the scalar field instances, which is often explored fully
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Figure 19: An example of a structural average of three input merge
trees and a visualization of its uncertainty. Vertex consistencies for
each ensemble member are encoded using the radius of the glyph
in (a), (b), and (c). Graduated circular glyphs encode variational
(e) and statistical (f) vertex consistencies for I-center trees by ap-
plying graduated glyphs to minimum, first quartile, median, third
quartile, and maximum across all ensemble members. A summary
plot (d) shows the interleaving distance between each input tree
and the 1-center tree. Image generated using the visualization tool
of [YWM*20].

through an interactive visualization tool. The work by Yan et
al. [YWM*20] provides some interactive exploration capabilities
but it is restricted to exploring the space of merge trees.

A more appropriate example in this context of parameter space
exploration using topological comparison methods is the work by
Poco et al. [PDT*15] exploring differences in species distribution
models. They computed a locality-aware correspondence between
similar extrema of two scalar fields that represent two species distri-
bution models. The extrema of the two scalar fields are represented
as a bipartite graph, and the correspondence is computed as a max-
imum weight matching. The weight of each edge is a product of
two terms, a functional similarity term and a spatial distance term.
After computing the above maximum topology matching between
the extrema, the topological similarity is computed as the mini-
mum amount of simplification required to obtain a perfect bipartite
matching. Additionally, a functional similarity is computed from
the perfect bipartite matching as the maximum function difference
between the matched extrema pairs. Species distribution models
are high-dimensional scalar functions, where the dimensions of the
domain correspond to predictor variables of the model algorithm.
The topological and functional similarity measures are integrated
into a visual exploration tool with typical statistical plots and other
domain-specific charts. The tool facilitates detailed inspection of
selected ensemble members with a focus on identifying the regions
of similarity and differences between the high dimensional scalar
functions.

8.4. Multi-field Data Comparison

Scalar field ensembles can also be considered as a single multi-
field. Thus, they may be analyzed using topological techniques for
multi-field analysis. Here, we discuss a few results in this direction.
Additionally, we also mention initial work on pairwise comparison
of two multi-fields, which in turn can be used for the analysis of
time-varying multi-field ensembles.

Huettenberger et al. [HHC*13] extended the notion of extremal
points to multi-fields based on Pareto optimality and Pareto dom-
inance. The regions of consensus and disagreement among the as-
cending and descending manifolds of the extrema of the constituent
scalar fields are identified. Pareto-extremal regions represent barri-
ers across which all the constituent scalar fields cannot be jointly
increased or decreased. These regions are joined by ascending and
descending sets where the gradients of the scalar fields agree. Huet-
tenberger et al.compared this approach against other topological
methods for multi-field analysis like Jacobi sets and joint contour
nets. The utility of the method is demonstrated on a simulated 2D
flow with randomly perturbed input parameters, specifically to vi-
sualize the joint extremal structures of multiple realizations of the
A, field for vortex identification.

Liebmann and Scheuermann [LS16] introduced a topological de-
scription that represents a set of Gaussian-distributed scalar fields
as a whole. A set of singular patches serves as a counterpart to
critical points. These patches are assigned a probability as an at-
tribute. The patches are defined by a classification of the local scalar
value configuration in a point’s neighborhood. Also, an adjacency
relation between these patches is established, resulting in an ab-
stract graph representation. In the proposed pipeline, the correla-
tion matrix plays an important role in a first dimension reduction
step (PCA). The analysis takes place in a high-dimensional space
spanned by the largest eigenvectors of the correlation matrix. The
graph is visualized using a force-directed layout to provide a first
overview. Edge properties are encoded using lengths, thickness,
and color. Furthermore, node properties, like patch probability and
the topological type, are represented using glyphs. The spatial re-
gions of the patches are shown with transparency, indicating the
accumulated probability of all patches involved.

Both approaches discussed above are interesting ideas seeking
to extend the well-established approaches of topological analysis
for scalar fields to the largely unexplored domain of multi-field
analysis. The wide popularity of contour trees and Reeb graphs in
the visualization community resulted in a study of their general-
ization to multi-fields. The joint contour net (JCN) proposed by
Carr and Duke [CD13] captures changes in specific subsets, called
slabs, of the domain when varying multiple scalar fields simultane-
ously. They can be interpreted as a discrete approximation of the
Reeb space [EHPO8]. The main idea is to apply a quantization of
the values in the range of the multi-field resulting in a structure
that is amenable to computation. JCNs are also closely related to
Mapper [SMCO7].

Comparison of multi-fields. An approach proposed by Agar-
wal et al. [ACN21] for comparing multi-fields suggested using
fiber component distributions. First, the JCN is computed for the
given multi-field. Next, the frequency distribution is approximated
by partitioning the range space into bins and counting the number
of fiber components within each bin. A similarity score between
two multi-fields is then simply computed as the L” distance be-
tween their corresponding fiber component frequency distributions.
The comparison measure finds application to computational chem-
istry, where it is used for identification of stable Pt-CO bonds using
electron density multi-field data. The comparison measure is also
used for identifying nuclear scission events.
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In a follow-up work, Agarwal et al. [ARC20] extended the idea
of comparison using multi-resolution Reeb graphs [HSKKO01] and
contour trees [ZBB04] to multi-fields as well. They proposed multi-
resolution Reeb space of a multi-field and computed a similar-
ity score as a weighted average of the scores comparing node at-
tributes, such as volume, range, number of connected components,
and degree. Refer to Sect. 7.2 for a more detailed discussion. This
approach was also applied on the Pt-CO and the nuclear scission
case studies with better results.

8.5. Uncertainty Visualization

In the context of ensemble data analysis, the study and visualiza-
tion of uncertainty [BHJ* 14] or variability in a set of scalar fields
or their corresponding topological structures are crucial for draw-
ing any meaningful conclusions from the data. We describe some
selected approaches in this direction below.

Wu and Zhang [WZ13] proposed an exploration framework for
uncertain scalar fields. Their main goal was to show the variance in
contours and topology. The core of the visualization and analysis is
the contour tree of the field average considered as a pivot tree. In
the visualization, this tree is augmented with uncertainty-variability
glyphs. For every contour of the mean tree, an average data-level
uncertainty is attached to the tree branches in a ribbon-like fashion.
For the contour comparison, they also introduced a branch corre-
spondence concept, considering the branch with the largest overlap
as most similar and computed an average difference of the con-
tours. The abstract mean tree is overlaid with different variability
measures and used to interact with the 3D spatial visualization. In
2D, the uncertainty glyphs are also visualized in the spatial repre-
sentation. Two trees can be compared side-by-side or as an overlay.
They showcase the framework via applications to uncertainty vi-
sualization for weather simulation and brain data. In the work of
Yan et al. [YWM*20], a different notion of average merge tree is
computed together with visual encodings of uncertainty informa-
tion.

Mihai and Westermann [MW14a] described an approach for
finding a feature distribution across ensemble instances. The fea-
tures they considered were defined by level sets and critical points.
They proposed methods for classification of critical points with re-
spect to different notions of stability. Two indicator functions, the
gradient and Hessian, are computed at all vertices of the data. The
first indicates the likelihood of the existence of a critical point, the
second reveals the tendency of its type. Both indicator functions are
interpreted as independent multivariate random variables at each
grid point. Confidence intervals of the gradient are computed at
each vertex and if it contains zero, then a glyph is rendered at the
vertex for visualization. They demonstrated their approach using
climate simulation data.

Gunther et al. [GST14] introduced the notion of mandatory crit-
ical points that can be interpreted as the common topological de-
nominator of uncertain scalar fields. These are regions and intervals
where there is at least one critical point in any realization of the
ensemble. Based on this concept, they also introduced the notion
of mandatory merge trees. A simplification strategy enables multi-
scale visualizations. This approach was effectively demonstrated

on two flow datasets, Karmédn vortex street and heated cylinder,
and two more ensemble datasets from astronomy and climate sci-
ence. Athawale et al. [AMY *20] utilized mediatory critical points
of [GST14] within their pipeline to explore uncertainty visualiza-
tion of an ensemble of Morse complexes. They introduced three
types of statistical summary maps — the probabilistic map, the sig-
nificance map, and the survival map — to characterize the uncertain
behaviors of gradient flows of Morse complexes.

9. Desirable Properties of Comparative Measures

We now survey desirable properties of a comparative measure, de-
noted as d(\Aj,.A;), between a pair of topological descriptors .4;
and Aj,. For each comparative measure d reviewed in Sect. 4, we
study its properties surrounding metricity, stability, discriminativ-
ity, and computational complexity. We give a systematic classifica-
tion of surveyed comparative measures based on these properties,
see Table 2. There are a number of other properties that remain
under-explored. For example, Bauer et al. [BLM20] considered a
distance for Reeb graphs to be universal if it provides an upper
bound to any other stable distance. Carri¢re and Oudot [CO17] con-
sidered a distance for Reeb graphs to be intrinsic if it can be real-
ized by a geodesic. Gasparovic et al. [GMO*19] considered this
property for distance between merge trees. It will be interesting to
investigate these additional properties for a number of comparative
measures in future works.

In this section, for discussions on computational complexity: n
and m are the numbers of critical points in each topological descrip-
tor (w.l.o.g., assume m < n); N is the number of pixels in a persis-
tence image; M denotes the number of vertices in the domain; [ is
density vectorization parameter; Ymqax is the length of the maximal
shortest path; ¢ is the search range for €,,,; B is the number of
bins in a histogram; and ¢ is the number of branches in a branch
decomposition.

9.1. Comparative Measures for Persistence Diagrams

We describe properties associated with the bottleneck distance doo,
the p-Wasserstein distance dp, and the p-landscape distance Ap.
We also discuss properties associated with a few other comparative
measures for persistence diagrams.

Bottleneck distance. The space of persistence diagrams can be
equipped with the bottleneck distance do [CSEH07]. Recall a per-
sistence diagram is a multi-set of points in the extended plane ﬁz.
In the most general case, d is an extended pseudometric [Oud17,
Page 51]. d is a metric when the persistence diagrams are locally
finite multi-sets in @2; see [Oud17, Page 51] and [CDSGO16, The-
orem 4.10]. dso is proven to be stable [CSEHO7] w.r.t. small per-
turbations of the input function.

Theorem 1 (Stability of do [CSEHO07]) Let X be a triangulable
space with continuous tame functions, f,g : X — R. Then the per-
sistence diagrams satisfy

doo(Dy,Dg) < || = 8loo- @1
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Measures Citation Notation

Metric Stability Discriminative Complexity

Comparing persistence diagrams and their variants

Bottleneck distance [CSEHO07] doo
p-Wasserstein distance [CSEHM10] dp
p-landscape distance [Bubl15] Ap
Persistence scale-space kernel [RHBK15] Ks
Persistence weighted Gaussian kernel [KFH17] K¢
sliced Wasserstein distance [CCO17] SwW
Persistence Fisher kernel [LY18] Kr
Lifted Wasserstein [SPCT18]

WKPI distance [ZW19] —
PHT distance [TMB14] —
L” distance between persistence vectors [LWA*17] —

extended peudometric Yes baseline n/a 0(n'log(n))
extended peudometric Yes Yes on®)
metric Yes No o(n?)
n/a Yes unknown o(n?)
n/a Yes unknown o(n?)
extended peudometric Yes Yes O(n*log(n))
n/a Yes unknown o(n?)
conj. Metric unknown unknown on®)
pseudometric Yes unknown ON)
metric Yes unknown on®)
metric unknown unknown O(max(n,1))

Comparing Reeb graphs and their variants

Functional distortion distance [BGW14] drp extended pseudometric Yes Yes NP-hard
Edit distance between merge trees [SMKN20] dg metric We conj. No conj. Yes 0(;12)
Edit distance between labeled Reeb graphs [BFL16] dgc extended pseudometric Yes unknown ‘We conj. NP-hard
Interleaving distance between merge trees [MBW13] dr metric Yes Yes NP-hard
Interleaving distance for labeled merge trees [GMO*19] dir metric Yes We conj. Yes 0(112)
Interleaving distance between Reeb graphs [DSMP16] dig extended pseudometric Yes unknown NP-hard
Distance based on branch decompositions [BYM*14] dpr We conj. Yes We conj. No ~ We conj. Yes o(n’log(I:))
Distance based on histograms for merge trees [SSW15] metric unknown unknown 0(nzB)
Distance based on tree alignment [LWL*20] unknown unknown unknown 0(n2)
Distance based on subtrees of contour trees [TN11] — unknown unknown unknown 0(t5 logt)
Distance between extended Reeb graphs [BMM™*03] — metric unknown unknown unknown
Kernel between extended Reeb graphs [BB13] — unknown unknown unknown O(Yhar + 22 log(n))
Comparing Morse complexes, Morse-Smale complexes and their variants
Distance between extremum graphs [NTN15] dp metric unknown unknown NP-hard
Similarity between Morse-Smale complexes [FHIB13] — n/a unknown unknown unknown
Similarity between Morse-Smale cells [SHD*20] — n/a unknown unknown NP-hard
Other comparative measures
Distance between Morse shape descriptor [ACO7] unknown unknown unknown 0(112)
Distance between persistence maps [FEST18] metric unknown unknown O(nzM )
Distance between fiber component distributions [ACN21] — metric unknown unknown unknown

Table 2: Desirable properties for comparative measures surveyed in this paper. Citation indicates when a measure is first introduced.
Notation: not all comparative measures are given a mathematical notation in this survey. Complexity: n is the number of critical points in
a topological descriptor; N in the number of pixels in a persistence image; M denotes the number of vertices in the domain; | is density
vectorization parameter; Ymax is the length of the maximal shortest path; I¢ is the search range for €yin; B is the number of bins in a
histogram; and t is the number of branches in a branch decomposition. Colors encode yes (green), no (pink), conjecture (purple, abbreviated

as conj.), n/a (not applicable, white), and unknown (blue).

A topological space is triangulable if there is a (finite) simpli-
cial complex with homeomorphic underlying space [CSEHO07]; and
tameness is a technical condition that ensures f and g to be well
behaved. Many existing works use doc as a baseline comparative
measure to determine the discriminativity of a newly introduced
measure.

The main challenge of computing doo between persistence dia-
grams is to find an optimal bijection 1 between them. Such a task
can be viewed as a bipartite graph matching problem, which has
been studied for decades [HK73, Ber79, Mun57]. Inspired by an
auction algorithm [Ber79] and Hopcroft-Karp algorithm [HK73],
Kerber et al. [KMN17] utilized the geometric structure of data into
bijection matching and significantly improved the computation of
both doo and dp in both runtime and memory consumption, where
doo can be computed in O(n' logn) time.

p-Wasserstein distance. dp is an extended pseudometric; it

is a metric [EH10, Page 184] when the persistence diagrams
are locally finite. Furthermore, the set of persistence diagrams
equipped with d) is shown to be a complete and separable met-
ric space [CSEHM10]. dp, is also stable for a reasonably large class
of functions [CSEHM10].

Theorem 2 ( [CSEHM10]) Let f,g: X — R be tame Lipschitz
functions on a metric space whose triangulations grow polynomi-
ally with constant exponent j. Then, there are constants C and k > j
no smaller than 1 such that, for every p > k,

1—k
dp(Dy,Dg) <C-||f —glloo " (22)

As p goes to 0o, dp approaches doo by defining the minimum
of the maximum edge weight over all perfect matchings [KMN17].
Therefore, d) is more discriminative than deo,

doo(Dy, Df) < dp(Dy, Dy). (23)
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The exact computation of dj, needs minimum bipartite matching,
which requires 0(n3) effort. However, faster approximation algo-
rithms are available for computing dp using the geometric tech-
niques of Kerber et al. [KMN17].

p-landscape distance. A, is a metric [BD17]. It enjoys a form
of stability under the same condition as for the stability of d
in [CSEHM10]. Specifically, the persistence diagram is stable w.rt.
the p-landscape distance if p > k and X has bounded degree-k total
persistence.

Theorem 3 ([Bub15], Theorem 16) Let X be a triangulable, com-
pact metric space that implies bounded degree-k total persistence
for some real number k£ > 1, and let f and g be two tame Lipschitz
functions. Then, for all p > &,

Ap(Dy,Dg)” < C-[|f —g|l5*. (24)

Here, the constant C is related to the Lipschitz constants of f and
g. Aoo is also shown to be stable w.zt. to the L norm.

Theorem 4 ( [Bub15], Theorem 12) Given real-valued functions
f,g : X — R on a topological space,

Aoo(Df, Dg) < [If = &lloo- (25)
doo 1s shown to be more discriminative than A for p = oo [Bub15].
Theorem 5 ( [Bub15], Theorem 13)

Aco(Dy, Dg) < doo(Dy, Dg) (26)

Ap also contributes as a lower bound on the p-Wasserstein distance
dp [Bubl5, Corollary15]. The above theorems suggest that A is
not discriminative w.rt. the baseline doo.

Bubenik and Diotko [BD17] developed algorithms to compute
persistence landscapes and the landscape distance Ap. The former
takes O(n?), where n is the number of birth-death pairs, and the
latter requires O(P), where P is the maximum number of critical
points of two input persistence landscapes. Since P = O(n), we
conclude the complexity is O(n?) + O(P) = O(n?).

‘We now discuss properties associated with kernels on persistence
diagrams.

Persistence scale-space kernel. Kg is 1-Wasserstein sta-
ble [RHBKI15], that is, it is upper bounded by p-Wasserstein
distance when p = 1 (denoted as d,—1). Given two persistence
diagrams (including points on the diagonal) D; and D;, we have

Theorem 6 ([RHBK15], Theorem 2)

[|[®6(D1) — Po(D2)||1,(0) dp=1(D1,D2),  (27)

1
< -
~ 24/
where the Ly-valued feature map ®g : D — Lp(Q) at scale 6 >
0 of a persistence diagram D is defined as ®g(D), with Q C R?
denoting the closed half plane above the diagonal.

Ks can be computed in O(m - n) time, where m and n denote the
cardinality of the multi-sets D; and D, (not counting the diago-
nal), respectively; w.l.0.g. assuming m < n, the complexity can be
simplified as O(n?).

Persistence weighted Gaussian kernel. The distance defined by

the reproducing kernel Hilbert spaces (RKHS) norm for the per-
sistence weighted Gaussian kernel (PWGK) K¢ satisfies a form of
stability [KFH17] w.r.z. the bottleneck distance.

Theorem 7 ([KFH17], Theorem 9) Let M be a triangulable com-
pact subspace in R?, X ,Y C M be finite subsets, and p > d + 1.
A persistence diagram D can be vectorized via the map, Ej,, :
wp — w(x)kg(-,x), where w is a weight defined in Eq. 4 and
up = Ycpw(x)d; for the Dirac delta measure at x. Now, given
persistence diagrams Dx and Dy, and their vectorized representa-
tions Ey, (1p, ) and Ey, (up, ) of the RKHS,

|| Exg (Dy ) — Eig (1D, )l |34, < L(k,w)doo(Dx, Dy),  (28)

where [|- |3,  represents the norm in RKHS, and L(k,w) is a con-
stant independent of X and Y.

Given two persistence diagrams, the computation of K involves

_ llp=qll® . o
O(n?) evaluations of e~ 2 _, where n is the number of points in

the larger persistence diagram [KFH17]. Kusano ef al. also inves-
tigated faster approximation algorithms using the random Fourier
features [RRO7].

Sliced Wasserstein kernel and sliced Wasserstein distance. The
sliced Wasserstein distance SW (Eq. 5), which is designed for the
sliced Wasserstein kernel Ky , is stable and discriminative as it pre-
serves the metric between persistence diagrams [CCO17]. In par-
ticular, SW is proved to be equivalent to d,,—; (the p-Wasserstein
distance for p = 1), which implies that SW is as discriminative as
dp=1.

Theorem 8 ( [CCO17], Theorem 3.3) Let persistence diagrams
D1, D, have cardinalities bounded by N, then

d,—1(D1,D7)
Ix (12NN 1))

< SW(Dy,D2,M) < 2v2d,— (D1, D).
(29)
The time required to compute Ky is O(n*log(n)).

Persistence Fisher kernel. The persistence Fisher kernel K is
proven to be stable [LY 18], because its induced squared distance
d,zq_ is bounded by the Hilbert norm of the difference between two
corresponding mappings dr .

Theorem 9 ([LY18], Lemma 4.1) Let D;, D, be two bounded and
finite persistent diagrams, then

di, (D1,Ds) < 21dp (D, D), (30)
where ¢ is a parameter of K and d12<F is defined as
dg, (D1,D3) = K¢ (D1, Dy) + Kp (D2, D) — 2Kp (D1, D3) (31)

The time required to compute Ky between a pair of persistence di-
agrams is O(nz), An accelerated version with fast Gauss transform
can compute it in O(n) time [LY18].

Other comparative measures using persistence diagrams.
Soler et al. [SPCT18] proposed a lifted Wasserstein comparative
measure for time-varying persistence diagrams. It is used to com-
pare time-varying viscous finger datasets from ensemble simulation
runs [SPD*19]. The lifted Wasserstein measure is computed by a
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sparse persistence matching by augmenting points in the diagram
with geometrical considerations, and the authors claimed (without
proof) that the distance is a metric. They also claimed that it en-
hances geometrical stability of the feature tracking application in
comparison to the Wasserstein distance. Its implementation uses an
unbalanced Kuhn-Munkres algorithm for solving assignment prob-
lem, which takes O(min(m,n)* max(m,n)), where m and n are the
number of points in the persistence diagrams (which is roughly the
number of critical points from the corresponding scalar fields). As-
suming m and n are roughly the same, we simplify this to be 0(n3),
which is the running time of the Hungarian algorithm.

The WKPI (weighted-kernel for persistence images) distance
do [ZW19] is a pseudometric induced by the inner product on a
Hilbert space. It is proven to be stable w.r¢. small perturbation in
persistence diagrams as measured by the p-th Wasserstein distance
for p =1 [ZW19, Theorem 3.4]. The runtime to compute the dis-
tance is O(N), for N being the number of pixels in each persistence
image.

The persistent homology transform (PHT) defines a distance
metric between shapes or surfaces [TMB14]. Computing the PHT
of an object needs the persistence diagrams of the height function
from various directions. The PHT distance averages the distance
between diagrams of two input objects. Turner et al. proved that
the map from a space of well-behaved shapes into the space of
PHTs is an injective map [TMB14]. This map comes with a sense
of stability as PHT of a finite simplicial complex is proved to be
continuous [TMB14, Lemma 2.1]. Turner et al. [TMB14] used the
Hungarian algorithm to compute the distances between two per-
sistence diagrams in each of the directions. It takes O((n+ m)3),
where n + m is the number of off-diagonal points in the two dia-
grams combined; assuming m = n, we simplify this to be 0(n3).
The L? distance between persistence vectors [LWA*17] is by def-
inition a metric (on the space of persistence vectors). Its compu-
tation takes O(max(n,/)), where n is the number of critical points
and [ is the parameter used to vectorize the density function.

Finally, there are a number of recent developments that aim to
vectorize information from persistence diagrams to be interfaced
with machine learning in a scalable way; most of which have
not had direct applications in visualization. Noticeably, Hofer et
al. [HKNU17] computed parametrized projections of persistence
diagrams that can be learned during neural network training. Moor
et al. [MHRB20] introduced a “topological loss term” for autoen-
coders that relate the topology of the data space with that of the
latent space. The PersLay [CCI*20] framework learns vectoriza-
tions of persistence diagrams by developing a differentiable layer
for neural networks that processes information encoded persistence
diagrams.

9.2. Comparing Reeb graphs and their variants

We discuss properties of functional distortion distance drp, edit
distance dE, interleaving distance dj, as well as other measures for
graph-based topological descriptors.

Functional distortion distance. drp between a pair of Reeb
graphs is an extended pseudometric [ BGW14]. It is stable against

perturbations of the input function [BGW14]. Let G i and G, denote
the Reeb graphs for (X, f) and (X, g), respectively.

Theorem 10 ([BGW14], Theorem 4.1) Let f,g : X — R be tame
functions whose Reeb quotient maps ¢ : X — G and g : X — G,
have continuous sections. Then,

drp(Gf,Gs) < |If — &lloo- (32)

The tameness is a technical condition requiring the functions to
be well behaved. drp between a pair of Reeb graphs is more dis-
criminative than the bottleneck distance d~ between persistence
diagrams of the Reeb graphs [BGW14].

Theorem 11 ([BGW14], Theorem 4.2)

doo (Do(gf)apo(gg)) S dFD(gf,gg)~ (33)
doo(Do(G—1), Do(G—g)) < drp(Gr.Gs)- (34)

Here, G_r and G_, correspond to the Reeb graphs obtained by
sweeping the range in the reverse direction.

The main cost of calculating drp is to calculate the Gromov-
Hausdorff (GH) distance dgy of input spaces. Schmiedl [Sch17]
showed that dgy cannot be approximated within any reasonable
bound in polynomial time.

Edit distance. dr was proven to be a metric by Sridharamurthy
et al. [SMKN20]. The stability of dg is unknown. We conjecture
that dg is not L®-stable, that is, small changes in function val-
ues may cause pairing switches in the merge tree, resulting in a
large increase in distance. dg is more discriminative than the bot-
tleneck distance doo and the Wasserstein distance d), as conjectured
by Sridharamurthy e al.. The computation of d takes O(n?) time
for trees with bounded degree [SMKN20].

Edit distance between labeled Reeb graphs. drg is shown to be
an extended pseudometric [BFL16, BLM20]. It is also proven to be
stable.

Theorem 12 ( [BFL16], Corollary 4.2.) Let M be a connected,
closed, orientable, smooth manifold of dimension 1 or 2. For every
simple Morse functions f,g: M — R, we have

dec((G7.17).(Ge.l) < I1f sl G5)
We conjecture that computing dgg is NP-hard since it is at least
graph-isomorphism hard [BLM20].

Interleaving distance between merge trees. d; is proven to be a
metric [MBW13, Lemma 1]. dj is stable w.rt. the largest difference
between the two scalar functions [MBW13].

Theorem 13 ( [MBW13], Theorem 2) Given two merge trees
Ty, Tg defined by two scalar functions f, g : X — R, then

di(Ty, Tg) < |1 — glloo- (36)
dy is more discriminative than distances between persistence dia-
grams, such as the bottleneck distance do.

Theorem 14 ( [MBW13], Theorem 3) Given two tame functions
f,g: X =R, then
doo(Dy,Dg) < di(Ty, Tg)- (37)

Here, Dy and Dy are the 0-dimensional persistence diagram of f
and g, respectively.
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Computing d; on pairs of merge trees or Reeb graphs is NP-
hard [AFN™18]. Later Touli and Wang [TW19] gave an FPT (fixed-
parameter tractable) algorithm for computing d; for a pair of merge
trees.

Interleaving distance between labeled merge trees. dj; was
shown to be a metric by Gasparovic et al. [GMO*19]. We con-
jecture that djy is not L°°-stable w.r.t. perturbations of the scalar
field, since small changes in function values may cause changes in
node correspondences between a pair of merge tree. But it has its
own notion of stability [GMO*19].

Theorem 15 [GMO* 19, Lemma 3.2] Given any pair of valid ma-
trices M, M>, and their associated merge trees 71 and 75,

diL(T1, T2) < ||My — M3 ||co.- (38)

We conjecture that dj, is more discriminative that doc. Comput-
ing dj; between a pair of (leaf) labeled merge trees is polynomial
in the number of leaves [MS19]. Considering leaf labeling strate-
gies in [YWM™20], the labeling step for dj;, with tree mapping and
Euclidean mapping takes 0(n3) due to the use of the Hungarian
algorithm. The distance computation for d; takes O(n?).

Interleaving distance between Reeb graphs. dj; is an extended
pseudometric [DSMP16, Proposition 4.5]. It has L°-stability.

Theorem 16 [DSMP16, Theorem 4.6 with simplified notations]
Let (X, f) and (X, g) be the space that gives rise to the Reeb graphs
Gy and Gg, then

dig(Gr.9) < |If = 8lloos (39)

where G represents the Reeb graph using a sheaf-theoretical lan-
guage.

The calculation of d;¢ is NP-hard [DSMP16].

Distance based on branch decompositions. For the distance dgg
between merge trees based on branch decompositions [BYM*14],
whether dpr is a metric is unknown. We conjecture that it
is a metric. Its stability was not investigated in the original
work [BYM*14]. On the other hand, binary decisions made dur-
ing the branch decomposition create instabilities w.x.¢. the result-
ing branches [SSW14]. The work in [BYM™14] is believed (by
Saikia et al. [SSW14]) to alleviate such an issue by considering
all possible branch decompositions. However, we still conjecture
that dpp, is likely unstable. Although no theoretical proof is offered,
Beketayev et al. [BYM™ 14] used doo between persistence diagrams
during their experiments as a baseline for the dp between merge
trees, and observed that dgg is more discriminative than doc. The
computational complexity of dpr depends on two quantities: first,
the time complexity of a function, which for a predefined €, de-
termines whether two branch decompositions match; and second,
the number of iterations of binary search for g, — the smallest
€ for two branch decompositions to be €-similar. The former takes
O(n*m?*(n+m)), where n and m are the numbers of extrema in each
merge tree respectively; assuming n ~ m, this is roughly O(n°).
Beketayev et al. claimed the latter to be “moderate”; which we de-
note as O(log(Ie)), Ie being the search range.

For comparative measures involving histograms derived from
merge trees, both xz—distance [SW17] and L2 distance [SSW15]

between histograms give rise to a metric. The running time includ-
ing the construction of a distance matrix is O(nzB), B being the
number of bins. Saikia et al. [SSW15] claimed that the merging of
histograms works well under small perturbations in the data. The
computation of the distance using L? distance of the log-scaled bin
values [SSW15] takes O(n*B). The y>-histogram distance [SW17]
can also be computed in polynomial time.

The distance between a pair of extended Reeb graphs
(ERGs) [BMM™03] is proven to be a metric. A kernel between
extended Reeb graphs [BB13] has a worst case running time of
O(Yhax + 2n°log(n)), where Yumax is the length of the maximal
shortest path.

Other graph-based or tree-based comparative measures.
Some comparative measures are not well investigated regard-
ing their mathematical properties, such as tree alignment dis-
tance [LWL*20], and similarity measure between subtrees of con-
tour trees [TN11]. For two contour trees with bounded degree, the
former can be calculated in O(|T} |- |T3|) (the cost of the alignment),
which can be simplified to be O(n”) assuming the larger tree con-
tains n critical points. For the latter, a polynomial time algorithm
is available with a worst case running time O(t5 logr), where ¢ is
the number of branches. The eBDG [SSW14] can be calculated
in O(Ndlogd), where N is the number of nodes in eBDG and d
is average branching factor. The comparison measure can be calcu-
lated in O(N1Nylog; | (N1 +1)log, . | (N2 +1)), where N1, N, are
number of nodes, and /;,/, are average levels in the two trees.

Some comparative measures proposed for visualization have no
analysis of mathematical properties or computational complex-
ity, such as similarity measures derived from attributes [HSKKOI,
ZBB04,SB06, SWC*08,WZ13,SSGC* 18, ARC20].

9.3. Comparing Morse and Morse-Smale Complexes

Distance between extremum graphs. dp is proven to be a met-
ric [NTN15]. Narayanan et al. mentioned studies on its stability
and discriminativity as topics for future work. Computing dp in-
volves weighted maximum clique enumeration, which has expo-
nential time complexity O(3"/3) (n being the number of vertices,
using the Bron-Kerbosch clique enumeration algorithm); hence, it
is feasible for only small graphs [NTN15].

Feature correspondences with Morse-Smale cells. The fea-
ture correspondence framework wusing Morse-Smale com-
plexes [FHIB13] contains no theoretical guarantee. Feng et
al. gave empirical evidence of stability. However, the stability
follows primarily because the Auto Diffusion Function (ADF) that
they design is smooth and noise free. Schnorr et al. [SHD*20]
introduced a feature tracking framework using dissipation
elements (DEs), which are by definition, equivalent to 3D Morse-
Smale cells [GBG™ 14]. They determined features correspondences
by solving a maximum-weight independent set problem, which
is NP-hard in general. However, with certain assumptions, the
authors reduced the problem to computing weighted, bipartite
graph matching in practice, making the computation tractable.
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9.4. Other Comparative Measures

Finally, we discuss known properties associated with other topo-
logical descriptors that arise specifically in visualization tasks. As
described in Sect. 6, given a Morse function defined on a manifold,
the Morse shape descriptor (MSD) [ACO7] uses relative homology
groups to encode the topology among pairs of sublevel sets of the
function. The ranks of relative homology groups (represented as
Betti numbers) across multiple levels encode “complete topologi-
cal information about the critical regions of the manifold as well
as the extension of the regions where no topological change is ob-
served” [ACO7]. The distance between a pair of Morse shape de-
scriptor (MSD) can be computed in O(nz) time (n is the number of
critical points in a Morse function, which is used for the discretiza-
tion of level sets).

For topological descriptors used in ensemble visualization, as
described in Sect. 8, a L distance is defined between two persis-
tence maps [FFST18]; its computation takes O(nzM ), where M de-
notes the number of vertices in the domain.

In the study of time-varying and multi-field comparison
(see Sect. 7), the L? distance between two fiber component distri-
butions is proven to be a metric [ACN21]. The mathematical prop-
erties associated with the similarity measures for multi-resolution
Reeb spaces remain unknown due to partially heuristic matchings
between nodes and attributions, in a way similar to the situation
in [HSKKO1,ZBB04].

Poco et al. [PDT*15] introduced a topology-based measure that
computes a locality-aware correspondence between similar ex-
trema of two scalar fields, to help ecologists compare species dis-
tribution models. The authors found that this similarity measure is
stable under the influence of noise in practice. The algorithm has
a complexity of 0(n3) because of the maximum weight bipartite
graph matching step.

9.5. Open Source Implementations

Efficient and robust open source software for computing topo-
logical structures and comparative measures are key to their
broad adoption within application domains. A number of tools
are available for computing persistence diagrams and/or bar-
codes, together with their bottleneck and Wasserstein dis-
tances, including GUDHI [Gud21], PHAT [BKR*21], Diony-
sus [Mor21], R-TDA [FKL*21], HERA [KMN21], persim [Per21],
Perseus [Nan21], and Ripser [Bau21]. Their utilities extend be-
yond visualization, into applications in machine learning tasks.
Many of these tools are implemented in C/C++ or Python, while
a few provide Python/R wrappers. Otter et al. [OPT*17] discussed
software for persistence homology and also provided installation
guides and use cases. Computation tools for merge trees, con-
tour trees and Reeb graphs together with support for computing
branch decomposition representations, symmetry detection, and
feature tracking are available in software such as Recon [DN21],
contour-tree [Dor21], milib [Sai21], AMT [Yan21], and Symme-
tryViewer [TN21]. These software are implemented in C/C++,
Python, or Java. Tools for computing Morse-Smale complexes
alike include mscomplex3d [SN21], MSCEER [Gyu21], CompExt-
Graph [Nar21]. Topology ToolKit (TTK) [TFL*21] is a popular

toolkit designed to work together with the visualization software
ParaView [AGLOS], that supports the computation and visualiza-
tion of persistence diagrams, merge trees, contour trees, Reeb
graphs, and Morse-Smale complexes, together with persistence
based simplifications of these descriptors. It also allows compu-
tation of bottleneck/Wasserstein distances between persistence di-
agrams and feature tracking via nested tracking graphs.

10. Future Research Opportunities

After analyzing the collection of work discussed in this survey, we
found that there are several research gaps and hence opportunities
in the study of scalar field comparison with topological descriptors.
We now discuss this topic in detail.

Looking at Table 2, we immediately observe that many compar-
ative measures are available with nice mathematical properties. Ta-
ble 1, on the other hand, shows that topological descriptors and
their associated comparative measures have been used for a wide
variety of visualization tasks, for which they seem to be especially
well suited. On a closer look, we observe that the measures appear-
ing in both tables do not match very well. Many mathematically
sound comparative measures have not found practical applications.
On the other hand, some comparison-based visualization tasks have
been developed using heuristics; the properties of the associated
measures are not investigated comprehensively nor supported by
theoretical guarantees, which leads to the question about the rea-
son for this gap between theory and practice. We attempt to provide
some answers below and point out respective research opportuni-
ties.

10.1. Computational Efficiency and Stability

The computation of metrics proposed for graph-based topological
descriptors is NP-hard (e.g., [Bil05,BB18, AFN*18]), which makes
them feasible for only small graphs. Much more work is needed to
develop concepts, algorithms, and implementations applicable to
large real-world data.

Approximation algorithms. One approach to efficiency is to de-
velop approximation algorithms for computing the comparative
measures. This approach can be achieved by reducing the complex-
ity of the input data using concepts proposed in mapper [SMCO7]
or cosheaf [DSMP16, BBMW21] w.r.t. the Reeb graph, which
are gaining popularity in computational topology. Cavanna et
al. [CJS15] studied sparse filtrations that selectively prune data
points from the input and proved that such filtrations give good
approximations to the barcodes. Touli et al. [TW19] suggested an
FPT (fixed-parameter tractable) algorithm that approximates the in-
terleaving distance between merge trees. However, for many of the
distance measures introduced in Sect. 4, no efficient algorithms are
available. Here, we see big opportunities for the development of ap-
proximation algorithms by applying controlled relaxation of hard
mathematical constraints to achieve better performance.

Heuristic matching strategies. Many approaches tackle this chal-
lenge by providing heuristic graph matching strategies. This alter-
native to the use of classic algorithms for graph isomorphism sig-
nificantly reduces the time for comparing graph-based topological
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structures [ZBB04, WZ13, YWM™*20,LWL*20]. Finding appropri-
ate heuristics while maintaining a mathematically sound frame-
work is a challenging task. Important tasks that need to be ad-
dressed in the future include a thorough evaluation of mapping
strategies by conducting computational experiments and theoreti-
cal analysis.

New topological descriptors. Some works introduced new topo-
logical descriptors that are easier to compute (e.g., [ZBB04]). How-
ever, a detailed investigation of their mathematical properties has
not been undertaken. A general need for new topological descrip-
tors remains, in particular, those that encode application-specific in-
formation for comparative analysis and visualization. Understand-
ing the mathematical and computational properties associated with
any new topological descriptor will help to increase its utilization
in applications.

Scalable computation. Scalable computations of comparative
measures rely partially on scalable computations of topological
descriptors. Some efforts have been made to develop scalable
computation of topological descriptors using careful engineer-
ing, parallel or distributed computation, for instance, for mapper
constructions [HAR20, ZCR*20], merge trees [MW13], contour
trees [MW 14b], and Morse-Smale complexes [GBP19, SPN20], to
name a few. A few recent efforts have adapted the comparative
analysis to in situ environments [FAL* 16, SPCT18], which is an
important research direction in dealing with large real-world data.

Stable measures for gradient-based descriptors. Both Table 2
and Table 1 show that few comparative measures have been devel-
oped for gradient-based topological descriptors such as Morse and
Morse-Smale complexes and their variants. These descriptors are
more sensitive to perturbations in the scalar fields, making it diffi-
cult to design effective comparative measures. Furthermore, topo-
logical descriptors for multi-fields such as the Jacobi sets, Reeb
spaces, and multivariate mappers are relatively less understood.
Computing/comparing these descriptors remains a challenge.

10.2. Application-Specific Topological Feature Descriptors

Defining features of interest in an application context is a challeng-
ing problem in itself, involving a variety of considerations. While
topological descriptors provide a good abstraction, they may not
capture all characteristics of the data. A domain-specific interpre-
tation of the comparison measure is a further challenge.

Augmentation of topological descriptors. Some attempts have
been made to define topological descriptors that can be further aug-
mented with more geometric- or attribute-related information, such
as the comparison of dual contour trees that establishes correspon-
dences based on node attributes [ZBB04]. An extension of this idea
could be beneficial in many applications.

Heuristic node mapping strategies. Heuristic strategies for node
mapping, as mentioned above, can lead to the possibility of in-
tegrating domain knowledge into the comparison process. The
heuristic strategies often lead to a violation of the metric axioms
and stability properties, and hence require a solid evaluation.

Topological descriptors for multi-fields. The design of compar-

ative measures for multi-fields also has potential for application-
specific feature comparison. However, this is also a challenging
problem. The introduction of topological descriptors for multi-
fields is still in its infancy, and the desirable properties are not well
understood. Measures for their comparison also need further explo-
ration.

Topological descriptors for ensembles. Ensemble simulations are
ubiquitous and pose a specific challenge to all analysis methods,
including topological ones. So far, most methods are based on pair-
wise comparison of ensemble members (Sect. 8.3), and often visu-
alized as similarity matrices or topological summaries (Sect. 8.2).
These methods usually assume a Gaussian distribution of the data,
which is restrictive. Few papers go beyond pairwise comparison
and support clustering and outlier detection (Sect. 8.3). Even in
these cases, new comparative measures are required to complete
the analysis. The work in [LPYW21] represents an interesting
paradigm shift in the study of ensemble data, where matrix sketch-
ing (and, in general, techniques from randomized linear algebra)
can be used to obtain ensemble representations and to detect out-
liers.

10.3. Integration in Visualization Pipelines

We see potential for the integration of topological methods into in-
teractive tools and visualization pipelines for all visualization tasks
discussed in this report. This integration will support the explo-
ration and comparison of scalar fields, and analysis of time-varying
data and ensembles.

The biggest hurdle to suc cess in applications is the avail-
ability of the methods within open-source software such as Par-
aView [AGLO5] and the Topology ToolKit [TFL* 18], which allows
visualization experts to integrate topological methods even if they
are not expert developers of TDA techniques.

11. Conclusion

This state-of-the-art report presents a taxonomy of existing ap-
proaches that develop or utilize topological descriptors for the com-
parative analysis and visualization of scalar fields. In addition, a
major contribution of this report is the collection of mathemati-
cal and computational properties for the various comparative mea-
sures of topological descriptors in the literature, which spans ap-
plied topology, computational topology, topological data analysis,
and visualization. Some of the comparative measures described in
this report have been developed and used in fields outside visual-
ization, such as machine learning, computer vision, and computer
graphics. Although the focus of this report is on visualization ap-
plications, we have included a few references to these other con-
nections when appropriate.

The development and deployment of visualization techniques
and tools based on these comparative measures have impacted var-
ious application domains. We list below a set of application areas
together with references to the description above that discusses spe-
cific visualization tasks.

e Structural Biology: Topological analysis of biomolecular struc-
tures imaged using various microscopy techniques has benefited
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from the development of symmetry detection (highlighting re-
peating substructures in biomolecules, Sect. 6.1.1), shape match-
ing (protein classification, Sect. 6.2.3), and contour-tree-based
tracking methods (bond tracking, Sect. 7.1.2).

e Climate Science: Topological descriptors have played a key role
in the development of cloud tracking methods (Sect. 7.1), identi-
fying periodicity in surface temperatures (Sect. 7.2), and uncer-
tainty visualization (Sect. 8.5).

e Combustion Studies: Pairwise comparison of physical quanti-
ties measured during a combustion simulation has resulted in an
improved understanding of the different stages of combustion
(Sect. 7.2 and Sect. 7.3).

e Neuroscience: Space-time structures built on fMRI data are
helpful in the study of the dynamic organization of the brain.
Comparing neuronal trees helps us understand how the brain
functions (Sect. 7.3 and Sect. 6.2.1).

e Computational Physics and Chemistry: Comparative mea-
sures between multi-fields are helpful in the study of stable Pt-
CO bonds and identification of nuclear scission points in simu-
lation data (Sect. 8.4).

e Ecology: Comparative measures based on TDA have been suc-
cessfully used for exploration and better understanding of the
species distribution models (Sect. 8.3).

We believe that addressing the various research gaps outlined
in Sect. 10 will enable further applications both in the above-
mentioned and other areas of science and engineering.
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