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Figure 1: Homology-preserving dimensionality reduction using manifold landmarking (row 1 to 3, for Octa, Fishing Net and 4elt
datasets, respectively) and manifold tearing (row 4 for Cylinder-3 dataset). Rows 1, 2 and 3, from left to right: original point clouds,
Isomap embeddings, random landmark Isomap embeddings, and homological landmark Isomap embeddings. Row 4, from left to
right: original point cloud, Isomap embeddings without tearing, with partial tearing and with the optimal tearing, respectively.

ABSTRACT

Dimensionality reduction is an integral part of data visualization. It
is a process that obtains a structure preserving low-dimensional rep-
resentation of the high-dimensional data. Two common criteria can
be used to achieve a dimensionality reduction: distance preservation
and topology preservation. Inspired by recent work in topological
data analysis, we are on the quest for a dimensionality reduction
technique that achieves the criterion of homology preservation, a
specific version of topology preservation. Specifically, we are inter-
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ested in using topology-inspired manifold landmarking and manifold
tearing to aid such a process and evaluate their effectiveness.

Index Terms: Topological data analysis, dimensionality reduction,
manifold landmarking, manifold learning, high-dimensional data
visualization

1 INTRODUCTION

Dimensionality reduction (DR) plays an important role in high-
dimensional data visualization in both static and interactive settings.
DR techniques could be classified based on structure preservation,
namely, distance preservation and topology preservation. The preser-
vation of pairwise distances ensures that the low-dimensional em-
bedding inherits the geometric properties of the original data, while
the notion of topology preservation refers to the preservation of
neighborhood relations between subregions.

We focus on a special version of topology preservation, namely,
homology preservation, where we are interested in the preserva-
tion of both O-dimensional (a.k.a. connected components) and 1-



dimensional (a.k.a. loops) homological features. Particularly in this
paper, we develop DR techniques that preserve as much as possible
of the 1-dimensional homological features of the data.

Motivations. Our first motivation to study homology-preserving
DR is from the perspective of visualization. As technologies ad-
vance, we are collecting and generating a wide variety of large, com-
plex, and high-dimensional datasets that demand insight-generating
analysis and visualization. However, limitations on our visual sys-
tems as well as display devices have prevented us from the rapid
recognition of structures beyond three dimensions. Visualization
approaches therefore play an essentially role in visually conveying
and interpreting high-dimensional structural information by utiliz-
ing low-dimensional embeddings and abstractions: from DR to
visual encoding, and from quantitative analysis to interactive explo-
ration [29]. We believe homology-preserving DR helps to expand
the existing DR toolset and encodes additional structural information
of high-dimensional data for visual exploration.

Our work is also inspired by the study of interesting datasets with
nontrivial homology, in particular, from imaging and signal process-
ing. In studying the space of images, Lee et al. [24] have found
that the majority of high-contrast 3 by 3 patches are concentrated
near a circle. Follow-up work by Carlsson et al. [3] and Xia [49]
has shown that a subspace of the space of natural image patches
either exhibits circular behavior or is topologically equivalent to
a Klein bottle, depending on the patch size. In signal processing,
using delayed window embedding, a 1-dimensional signal can be
encoded into a high-dimensional point cloud for topological data
analysis. Specifically, 1-dimensional homology (i.e. loop) of such a
point cloud captures the periodicity of the signal [34]. For modeling
processes such as Cahn-Hilliard equation [14], our work may cap-
ture O-dimensional homology of time series data, where each time
series corresponds to a trajectory in the feature space.

Contributions. The goal of this paper is to generalize topol-
ogy preservation from the perspective of 0-dimensional connec-
tivity (0-dimensional homology) to 1-dimensional connectivity (1-
dimensional homology). We present examples in the paper illustrat-
ing that we can achieve homology preservation while at the same
time maintaining (and sometimes even improving) the preservation
of distances. Our contributions are:

* We introduce a new class of homology-preserving DR tech-
niques that combine the strengths of landmark Isomap (L-
Isomap) with the power of homology-preserving landmarks.

* For complex data such as circular manifolds, we provide a
simple and fast procedure that tears those manifolds, while at
the same time preserves as much homology as possible.

* We conduct experiments for homology-preserving manifold
landmarking and manifold tearing to evaluate their effective-
ness.

2 RELATED WORK

Dimensionality reduction. Dimensionality reduction (DR) is the
process of finding a lower dimensional representation of a high-
dimensional random variable that captures its content according to
some criterion [17]. DR techniques can be studied following vari-
ous taxonomies. For instance, they are considered as linear (resp.
nonlinear) methods if they produce low-dimensional linear (resp.
nonlinear) mapping of the input high-dimensional data that preserve
certain features of interest. They can be thought of as conducting
convex or nonconvex optimizations, full or sparse spectral eigen-
decompositions, global or local structure preservation. Commonly
used DR techniques include PCA [33], Isomap [43], Laplacian eigen-
maps [1], LLE [36], etc., see [8] for a thorough review. We largely
follow the classification from [26] in terms of distance or topology
preservation (see Section 1).

Quality assessment and visualization. To assess the perfor-
mance of DR techniques, different quality measures have been
proposed that can be roughly classified as global- or local-based
approaches. The former quantifies the preservation of local neighbor-
hoods/subregions, and the latter studies the preservation of global
shape of data. Global measures include Shepard diagram [38],
stress [23], and residual variance [43] (as described in Section 3),
and local measures consist of rank-based criteria such as co-ranking
matrix [27], normalization independent embedding quality assess-
ment [51], and many more [22].

Manifold landmarking. Our proposed strategy takes advantage of
manifold landmarking, that is, finding a subset of points along the
manifold that captures its structural characteristics [28]. Manifold
landmarking is useful for DR, for example, in the case of landmark
MDS and landmark Isomap [9, 10]. It can also be employed to
generate sparse manifolds for machine learning tasks [31] or sparse
matrices for semidefinite programming [47], as well as supervised
learning [44].

Topology-inspired data skeletonization. Compared to existing
landmarking approaches, our strategy is one that is topological in
nature. Our work utilizes advances in topology-inspired data skele-
tonization, that is, the process of extracting the topological structure
of data using a low-dimensional (e.g., 1-dimensional) representa-
tion, in order to better interpret complex, noisy, nonlinear, and
high-dimensional data.

Topology-inspired data skeletonization from [19, 32] are most
relevant to our framework. Ge et al. [19] give a framework to extract
and simplify a 1-dimensional skeleton using the Reeb graph. Natali
et al. [32] introduce a Point Cloud Graph as a data abstraction that
is a generalization of the Reeb graph to arbitrary high-dimensional
point clouds. Reeb graphs play a fundamental role in computational
topological, topological data analysis and shape analysis; see [2] for
a survey.

In this paper, we extract a 1-dimensional skeleton (referred to as
skeleton for the remaining of the paper) from the input space based
on an approximation of the Reeb graph. Compared to previous work,
our work is novel in the sense that it utilizes such a skeleton for the
purpose of landmark selection and DR.

Manifold tearing and loop detection. Most classic DR techniques
do not perform well when the data manifolds contain essential
(i.e., non-contractable) loops, such as cylinders, tori or spheres. The
so-called loopy manifolds [30] are in fact manifolds with nontrivial
homology. Such manifolds typically cannot be embedded into the
target space without introducing significant distortions.

Some recent efforts have been made to detect and cut essential
loops in such manifolds. Lee and Verleysen [25] introduce a two-
stage tearing procedure: first, a k-nearest neighbor (kNN) graph
among the point cloud sample is used to represent the underlying
space; second, a minimum spanning tree (MST) or a shortest path
tree (SPT) that contains no cycles is computed on the kNN graph;
Finally, edges that do not generate non-contractible cycles with more
than 4 edges are reintroduced to form the torn graph for downstream
DR.

Our work differs from [25] significantly in the following sense.
We use a topology-inspired data skeleton that consists of landmarks
and landmark connections to describe all candidate essential loops,
and employ a homological criterion to choose the proper loop to tear
while preserving as much as possible the homological characteristics
of the data. Whereas other techniques cut all or a large number
of loops, we try to cut, roughly, as few loops as possible while
preserving the remaining ones.

3 HOMOLOGY-BASED QUALITY ASSESSMENT

We employ a homology-based and a distance-based quality measure
to assess the quality of our proposed DR techniques.



Background on homology and persistent homology. Homology
was originally defined so that it can be used to tell two things (a.k.a.
topological spaces) apart by examining their holes. It is a process
that associates a topological space with a sequence of abelian groups
called homology groups, which, roughly speaking, count and collate
holes in a space [21]. In a nutshell, homology groups generalize
a common-sense notion of connectivity. They detect and describe
the connected components (0-dimensional holes), tunnels/loops (1-
dimensional holes), voids (2-dimensional holes), and holes of higher
dimensions in the space. Betti numbers b; count the number of
i-dimensional holes, and are used to distinguish spaces based on the
connectivity across all dimensions. Formally, b; is defined as the
rank of the i-dimensional homology groups. For a torus, by =1, b =
2 and by = 1; this means that a torus has 1 connected component, 2
holes/loops and 1 void.

Simply put, persistent homology studies homology at multiple
scales. As illustrated in Fig. 2, we begin with a point cloud X
equipped with a distance metric Dy (i.e. Euclidean distance). We
study the homology of a sequence of spaces formed by a union
of balls of increasing radius ¢ centered at the points. Using persis-
tent homology, we investigate the homological changes within this
growing sequence of spaces indexed by time (this is referred to as a
filtration).
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Figure 2: Computing persistent homology of a point cloud (image
courtesy of [48]).

[om——

In Fig. 2(a), at time ¢ = 0, each colored point is born (appears)
as its own (connected) component. As ¢ increases, we focus on the
important events when components merge with one another to form
larger components or tunnels. We begin by tracking the birth and
death times of each component or tunnel as well as its lifetime in
the filtration. At ¢ = 2.5, the green component merges into the red
component and dies (disappears); therefore the green component
has a lifetime (i.e., persistence) of 2.5. Att = 3, the orange com-
ponent merges into the pink component and dies; therefore it has a
persistence of 3. Similarly, the blue component dies at ¢ = 3.2 while
the pink component dies at t = 3.7. At time t = 4.2, the collection
of components forms a tunnel; and the tunnel disappears at = 5.6.
The red component born at time 0 never dies, therefore it has a
persistence of co. We record and visualize the appearance (birth), the
disappearance (death), and the persistence of homological features
in the filtration via persistence diagrams [6] (Fig. 3), or equivalently,
persistence barcodes [20] (Fig. 2(b)). A point p = (a,b) in the per-
sistent diagram of X records a homological feature that is born at
time a and dies at time b. 0- and 1-dimensional persistence diagrams,
denoted as PD((Dyx) and PD{(Dy), captures the births and deaths
of components and tunnels, respectively. Equivalently in the barcode
of Fig. 2(b), such a feature is summarized by a horizontal bar that
begins at a and ends at b.

Computationally, the above nested sequence of spaces can be
combinatorially represented by a nested sequence of simplicial com-
plexes (i.e. collections of vertices, edges and triangles) with a much
smaller footprint, as illustrated in Fig. 2(c), see [13] for computa-
tional details.
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Figure 3: 0-dimensional (left) and 1-dimensional (right) persistence
diagrams.The Betti Numbers are by = 5, and b; = 1.

Homology-based quality measure: persistent Betti numbers.
Betti numbers count the number of homological features and can
be used as summary statistics to differentiate topological spaces.
However, Betti numbers alone do not differentiate between signif-
icant and noisy homological features. We use the persistent Betti
numbers (PB) as a way to quantify how much homological infor-
mation is preserved during the DR. Let PB; denote the number of
significant i-dimensional homological features, that is, the number
of points in the i-dimensional persistence diagram that is above a
certain threshold that separates features from noise.

Finding a suitable threshold requires checking the separation of
points in the persistence diagram (e.g., [35]). Significant features
can be extracted from the persistence diagram if it has an empty band
(of a certain width) parallel to the diagonal that does not contain
any points [5]. More sophisticated methods from statistics based
on bootstrapping can be used to improve the threshold estimation
that separate signals from noise, based on the notion of a confidence
band [16] (see Section 7 for a discussion). In this paper, we use
PB; as a rule of thumb to assess the quality of DR in terms of its
preservation of significant 1-dimensional features.

Distance-based quality measure: residual variance. To evaluate
the fits of various DR techniques on comparable grounds, Tenen-
baum et al. [43] introduce the residual variance (RV):

RV(X,Y) = 1 —R*(Dx,Dy).

Dy is the matrix of Euclidean distances in the low-dimensional
embedding produced by a DR technique, and Dy is a best estimate
of the intrinsic manifold distance for a given technique. In the
case of Isomap, Dx corresponds to the geodesic distance matrix
approximated by the graph distance matrix D¢ (see Section 4.1).
R is the standard Pearson correlation coefficient that measures the
linear correlation between all entries of Dy and Dy (that are reshaped
into vectors).

4 HOMOLOGY-PRESERVING MANIFOLD LANDMARKING

We begin this section with a review of the nonlinear DR techniques
known as the Isomap [43] and landmark Isomap (L-Isomap) [9].
We then discuss homology-preserving landmark selection based on
the Reeb graph and its discrete approximation. We summarize the
pipeline for a new class of techniques by combining the utilities of
homology-preserving landmarks with the efficiency of landmark-
based DR.

4.1 Isomap and L-lsomap

Isomap. Suppose the original input data contains N samples in D
dimensions, X € RPN Tsomap embeds the points onto a lower
dimensional space Y € RN (d < D) while preserving geodesic
distances between all input points [43]:

1. Construct a neighborhood graph. A weighted, undirected k-
nearest neighbor (kNN) graph G is constructed over all data
points, where an edge between a point x; € X and its neighbor



xj € X is assigned a weight that represents the Euclidean dis-
tance between them. An appropriate k can be chosen based on
the residual variance [43].

2. Compute shortest paths. All pairwise shortest paths between
points in the KNN graph G are computed to approximate the
geodesic distances between them, which leads to an N x N
graph distance matrix Dg.

3. Construct a d-dimensional embedding. Classical MDS is ap-
plied to the above graph distance matrix D¢ to obtain a low-
dimensional embedding.

Isomap suffers from two computational inefficiencies: calculating
the shortest-paths distance matrix and eigenvalues within MDS. The
former has a complexity of O(kN?logN) using Dijkstra’s algorithm
with Fibonacci heaps, while the latter takes O(N3) [9].

L-Isomap. L-Isomap [9] addresses the two inefficiencies of Isomap
at once. It is based on the landmark MDS (L-MDS) [10]:

1. Construct a neighborhood graph (same as in Isomap).

2. Select landmarks. n-points (n < N) from X are randomly
selected to be landmark points.

3. Compute shortest paths. Compute the shortest paths from
each data point to the landmarks, resulting in a n X N geodesic
distance matrix.

4. Apply L-MDS to obtain d-dimensional embedding. First, apply
classical MDS to the landmarks only, embedding them in R?
using as input the n X n distance matrix between pairs of land-
marks. Second, the embedding coordinates for the remaining
data points are computed based on a fixed linear transformation
of their geodesic distances to the landmarks [39].

5. PCA normalization (optional). This normalization is to re-
orient the axes of the embedding to reflect the overall distri-
bution, rather than the distribution of the set of landmarks;
see [9, 10] for details.

L-Isomap leads to enormous savings when n << N: Computing
the shortest paths in step 3 takes O(knNlogN) using Dijkstra’s
algorithm and L-MDS in step 4 runs in O(n>N) [9].

Here, to differentiate different versions of L-Isomap based on
various landmark selection schemes, L-Isomap using randomly se-
lected landmarks is referred to as the random L-Isomap, while the
one using homology-preserving landmarks in the next section is
called the homological L-Isomap.

4.2 Homology-Preserving Landmark Selection

Our work uses the idea of a data skeleton based on the Reeb graph for
the purpose of landmark selection in DR. Although Reeb graphs have
been used in the context of shape abstraction and comparison [19,32],
to the best of our knowledge, this is the first time they are used in
the context of landmark selection and DR.

In this section, we first review relevant topological notions and
computations for Reeb graphs. We then describe our landmark
selection algorithm using a skeleton based on the Reeb graph.

Reeb graph. Let f : X — R be a continuous function defined on a
topological space X. The level set of f at a value a € R is defined
as f~'(a) = {x € X | f(x) = a}. The Reeb graph [40] of f is
constructed by identifying every connected component in a level set
to a single point [19]. Fig. 4 gives an example of a Reeb graph of a
height function on the torus.

Extracting homological skeleton. Given point cloud data, the do-
main can be approximated by a neighborhood graph (such as the
kNN graph or the e-neighborhood graph) among the data points,
and efficient algorithms exist [19,32] to approximate the Reeb graph
in such a discrete setting.

Figure 4: Reeb graph of a height function on the torus.

In this paper, we employ a mapper-based implementation to ap-
proximate the Reeb graph [37] as our homology-preserving data
skeleton, referred to as the homological skeleton (or simply skeleton).
The mapper algorithm [41] approximates the Reeb graph by consid-
ering the connected components of interval regions (i.e. f~!(a,b))
instead of the connected components of level sets (i.e., ! (a)).

Figure 5: A mapper construction of a height function on a point cloud
sampled from the torus. (a) The original point cloud X colored by the
height function f (red means high, blue means low function values).
(b) The cover of % of f(X) using open intervals with n =4 and p =0.25.
Light blue highlights overlapping regions between the intervals. (c)
The cover ¥ of X using clusters of points that arise from f~!(a;, b;) for
each i. (d) The mapper construction as the nerve of ¥.

A mapper construction is illustrated in Fig. 5. We start with a
function f : X — R defined on a point cloud X, and a cover % of
f(X) consisting of finitely many open intervals % = {(a;,b;)}1_,.
To specify such as cover, we pick two resolution parameters n and
p, where n is the number of intervals and p is the percentage of
overlap between a pair of adjacent intervals. Pulling back the cover
% through f, that is, observing the points in £~ !(a;, b;) for each
i, gives an open cover of the point cloud X, which is then refined
into a connected cover by splitting each cover element into various
clusters using a user-defined clustering algorithm [4]. Such a cover
of X is denoted as ¥ := f*(% ), where we write f*(% ) as the cover
of X by considering the clusters of points in £~ (a;, b;) for each i.
In this paper, we use DBSCAN [15] for clustering. It is a widely
used density-based clustering algorithm that groups together points
that are closely packed together; however the choice of clustering
algorithm is not essential to our experiments.

The 1-dimensional skeleton of the nerve of ¥ is considered a
discrete approximation of the Reeb graph of f on X it is referred
to as the (1-dimensional) homological skeleton or mapper for the
remainder of the paper. Such a skeleton is a graph with nodes
representing the elements of ¥, and edges representing the pairs of
cover elements in 7" with nonempty intersections.

In the original mapper algorithm, the node of a skeleton represents
abstractly a cover element of the point cloud, that is, a cluster of
points in X. However, in our setting, we choose the centroid of each
cluster as its representative; and all such representatives are selected
as the landmarks for L-Isomap.

Filter function. The key idea behind the Reeb graph is that it
explores the topology of a space by analyzing the behavior of a
real-valued function defined on it [2] (referred to as a filter func-
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Figure 6: Generating a 2-dimensional embedding of a swiss roll with a
hole. (a) The original point cloud is colored by the distance to a base
point function (blue means low and red means high values). The base
point is marked by a red star. (b) Isomap embedding. (c) Homological
L-Isomap embedding. The homological skeleton together with the
landmarks is highlighted in black.

tion). Reeb graphs encode topological information on data in a
1-dimensional structure, disregarding the dimension of the data in
the ambient space [2]. The data can be regarded as being parame-
terized with respect to the filter function being used, in other words,
the filter function “plays the role of the lens” through which we look
at the properties of the data [2].

Different filter functions lead to different insights into the point
cloud. It remains an open question as how to choose an appropriate
filter function beyond a best practice or a guesstimation. Commonly
used options include height functions, distances from the barycenter
of a space, surface curvature, integral or average geodesic distances
and geodesic distances from a source point in the space [2].

In this paper, we use mainly the geodesic distance from a source
point as the filter function, referred to as the distance-to-the-base-
point or simply the DTB function. Such a filter function has shown
desirable properties in capturing the 1-dimensional homological
information of the space [2, 19]. We demonstrate via experiments in
Section 6 that a skeleton induced by DTB is homology-preserving
for landmark-based DR; it also serves as a compact and informative
summary for guiding the manifold tearing process.

Homological L-Isomap pipeline. Given a point cloud X in RP,
we now summarize our homology-preserving landmark selection
pipeline and its combination with L-Isomap (referred to as the ho-
mological L-Isomap):

1. Construct a neighborhood graph (same as Isomap). Let G
denote the resulting KNN graph.

2. Compute a filter function f on X. f captures certain desirable
structural information of X suitable for DR. In our experiments,
we use DTB as the filter function and a base point is chosen
from extreme points or the barycenter. DTB can be computed
based on G from a given base point.

3. Compute a skeleton and the landmarks. Compute a discrete ap-
proximation of the Reeb graph of f as a homological skeleton,
using the mapper algorithm. The cover % of f(X) is given
by user-specified resolution parameters n and p. The nodes of
the skeleton correspond to clusters of points in X; the cluster
centroids are chosen as the landmarks for L-Isomap, denoted
as Xy C X.

4. Apply L-Isomap. Replace randomly generated landmarks
(step 2 of L-Isomap) with the homology-preserving landmarks
(a.k.a. homological landmarks) X; and apply the rest of L-
Isomap algorithm.

The above pipeline is not restricted to L-Isomap. It can be easily
extended to other graph-based DR techniques [50].

Extracting homological skeleton only slightly increases the
asymptotic complexity of L-Isomap. Computing DTB in step 2
and the shortest paths in step 4 takes O(kNlogN) + O(knNlogN)
= O(k(n+ 1)NlogN) using Dijkstra’s algorithm, and the running

time of L-MDS in step 4 remains O(n>N). The running time of
these two computational inefficiencies dominates the complexity of
mapper algorithm and the computation of cluster centroids in step
3. In our experiments, the running time of homological L-Isomap is
comparable with that of random L-Isomap.

In order to get a reasonable approximation of the Reeb graph of
f as a homological skeleton, we explore parameters associated with
the mapper algorithm (z and p) and the DBSCAN algorithm (see
Section 6 for a discussion).

A simple example. Our pipeline is illustrated with a simple example
in Fig. 6. We begin with a noisy point cloud with 1983 points
sampled from a swiss roll with an irregular, hard-to-spot hole in the
middle. First, a DTB filter function is computed with respect to an
extremal base point. Second, a homological skeleton connecting a
set of 22 landmarks is obtained using the mapper algorithm. We
choose parameters n = 10 and p = 0.2 for the mapper algorithm,
and apply DBSCAN with € = 0.8 and a minimum sample size
of 5 (i.e, minPts = 5). Finally, we apply L-Isomap using these
homological landmarks in the skeleton (black stars). In Fig. 6, the
black homological skeleton is highlighted in the input space, as well
as in the Isomap and homological L-Isomap embeddings, which
clearly captures the location of the significant hole in the data.

This simple example demonstrates that the homological L-Isomap
has the potential to preserve as much as possible the 1-dimensional
homological feature even with a smaller number of landmarks than
the random L-Isomap algorithm (roughly n = O(v/N)). However,
homological L-Isomap, in this case, does introduce distance distor-
tion away from the single loop in the data. Surprisingly, homological
L-Isomap is shown to outperform both Isomap and random L-Isomap
in certain datasets using the widely accepted residual variance (see
Section 6).

5 HOMOLOGY-PRESERVING MANIFOLD TEARING

Complex data that contain essential loops may or may not be embed-
ded into low-dimensional space without introducing significant dis-
tortions. An alternative and complementary approach for homology-
preserving DR is through manifold tearing. In this section, we
give a simple and fast manifold tearing procedure guided by the
homology-preserving skeleton of the point cloud data. Different
from prior work, our procedure tries to cut as few loops as possible,
using homology-based quality assessment (described in Section 3)
while at the same time preserves as much as possible the remaining
homological features.

Suppose we have a point cloud equipped with a pre-computed
homology-preserving skeleton (see Section 4). Our homology pre-
serving tearing process is as follows:

1. Construct a neighborhood graph (same as Isomap). The neigh-
borhood graph is denoted as G. A slightly larger k may be
chosen to account for the tearing process (optional).

2. Tear the neighborhood graph. A cut plane is specified based
on the skeleton. Specifically, a cut location is chosen on an
edge of the skeleton, which then defines a cut plane that is
orthogonal to the edge to be cut. An edge that spans a pair of
nodes on the opposite side of the cut plane is removed from G,
resulting a new graph G’.

3. Compute shortest paths. Compute shortest paths between all
nodes in G’ and obtain a geodesic distance matrix D .

4. Apply Isomap to D¢ .

The above process is exploratory in nature, that is, we can use
different evaluation criteria of the resulting embeddings to rank the
potential cut locations. In this paper, we use the number of significant
homology classes as the criterion. In addition, we envision such a
process to be embedded into an interactive visualization framework
for DR that involves human-in-the-loop.



6 RESULTS

We present examples in this section illustrating that we can achieve
homology preservation while at the same time maintaining (and
sometimes improving) distance preservation.

6.1 Data

For manifold landmarking, we demonstrate our technique with
datasets that contain nontrivial homology.

Octa is a point cloud sampled from a mesh of octahedron han-
dles. The original mesh contains up to 41K vertices. Fishing Net
is a synthetic, noisy point cloud sampled from a “S”-shaped sur-
face that contains 3 x 11 irregular holes. 4elt is derived from a
3-dimensional embedding of the 4elt graph used in [18]. The origi-
nal graph from [46] contains 15606 nodes and 45878 edges, and is
a mesh created to study fluid flow around a 4-element airfoil.

Moreover, we use two high-dimensional datasets to test the per-
formance of homological L-Isomap. Mice dataset contains a 300-
dimensional point cloud derived from time-varying temperature
measurements of pregnant mice [42]. The point cloud is generated
by a standard delayed window embedding from signal processing
with a window size of 300. Our technique detects and preserves
1-dimensional homological features in the input space that capture
periodicity in the signal. Portraits dataset contains 82 human images.
The size of each image is 700 x 700 pixels, with 256 gray levels
per pixel. All images are taken from one subject from different
directions.

For manifold tearing, we use datasets that contain essential loops
for demonstration. Cylinder-3 is a point cloud sampled from a cylin-
der with 3 holes carved out, and Cylinder-5 is created similarly.
Airfoill comes from a 2-dimensional finite element problem under
the AG-Monien Matrix group from the SuiteSparse Matrix Collec-
tion [11]. Besstk31 is derived from a 3-dimensional embedding of a
stiffness matrix for automobile component [12].

Table 1: The number of landmarks (|Xz|) and other parameters for
each dataset of size |X|. EP means extremal point. BC means
barycenter.

£ . ¢ § § % 3

S S s = < 9 S < ]

[X| 2994 6188 7870 674 82 2000 2000 8034 8030
Dim 3 3 3 300 4900 3 3 3 3
no 20 30 10 12 4 25 25 20 30

p 0.2 0.5 0.1 0.2 0.4 0.4 0.4 0.2 0.2

€ 150 0.4 2 5 035 035 1.5 1.5
minPts 5 5 5 10 2 15 15 3 3
BP BC EP EP EP EP BC BC EP EP

XL| 76 63 18 18 6 54 82 60 53
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6.2 Parameter Selection

In order to get a reasonable approximation of the Reeb graph using
1-dimensional mapper as a homological skeleton, there are 5 param-
eters to explore: n, p for mapper algorithm; minPts, € for DBSCAN;
and BP as the base point in the DTB function computation. Theoret-
ically, Carriére et al. [4] have shown that the 1-dimensional mapper
is an optimal estimator of the Reeb graph, which gives a method to
automatically tune its parameters and compute confidence regions
on its topological features [4]. For datasets presented in this paper,
we instead follow common practices and heuristics [41] in explor-
ing the parameter space. All parameters used in our experiments
are reported in Table 1. As a rule of thumb, 7 is typically chosen
between 5 and 20; and it is set to be 30 for datasets with a large num-
ber of 1-dimensional homological features (such as the Fishing Net
dataset). p is typically set to be between 0.2 for dense and 0.5 for

sparse point clouds; its variation does not show visible differences
in our experiments. The mapper algorithm is very flexible with any
domain-specific clustering algorithms [41]. For DBSCAN used in
our experiments, Zhou et al. have given an adaptive framework for
its parameter selection of minPts and € [52]. We typically choose
an extremal point as the base point BP in the computation of DBP
function; although barycenters also work well for certain datasets
such as Octa.

6.3 DR with Manifold Landmarking

Results and evaluation with persistence diagrams. For each
dataset, 2-dimensional embeddings obtained using homological L-
Isomap are compared with Isomap and random L-Isomap in Fig. 1.

Evaluation using persistent Betti numbers are illustrated by the
1-dimensional persistence diagrams in Fig. 7. We determine the
number of persistent (significant) features by looking at the separa-
tion between points in the diagram. Suppose each dataset contains
m persistent features in the original point cloud, then top m features
with the highest persistence are marked in red within the persistence
diagram associated with each embedding.

Figure 7: Homology-based quality assessment of DR for Octa (row
1), Fishing Net (row 2) and 4elt (row 3). For each row, from left to
right: persistence diagrams for the original data, Isomap embedding,
random L-Isomap embedding and homological L-Isomap embedding.

For Octa, as shown in Fig. 7 (row 1), the original data contains
8 significant features (loops), 4 of which (colored red) correspond
to the visible loops via embeddings (4 other features are the interior
tunnels within each handle that are not captured by the Reeb graph).
All 4 of the significant features in red are shown to be preserved
using homological L-Isomap; that is, they remain well-separated
from the diagonal of the persistence diagram. On the other hand,
Isomap preserves 3 significant features while random L-Isomap
preserves only 2. For a more detailed analysis, it is remarkable to
see that using only 21 landmarks, the homological skeleton is able
to summarize the homological features reasonably well (Fig. 8, left).

For Fishing Net, as shown in Fig. 7 (row 2), the original data
has 33 significant features in the persistence diagram. Isomap and
homological L-Isomap perform comparatively in terms of preserving
the shape of each feature in the embeddings. However, homological
L-Isomap uses only 66 points as landmarks (roughly 1% of the size
of the point cloud), and is therefore more computationally efficient.
Furthermore, its homological skeleton in Fig. 8 (middle) captures
the underlying homological features pretty well.

For 4elt, as shown in Fig. 7 (row 3), the original data con-
tains 4 significant features; 3 of which are readily visible in the



Figure 8: Homological skeletons for Octa (left), Fishing Net (middle)
and 4elt (right) using a small number of landmarks.

3-dimensional embedding of its homological skeleton in Fig. 8
(right). Both Isomap and homological L-Isomap preserve these fea-
tures reasonably well, while random L-Isomap preserves only 2 of
them. In addition, homological L-Isomap does slightly better in
preserving the shape of a couple of features.

For Mice, we combine the results of DR with 1-dimensional
persistence diagrams in Fig. 9(a)-(d). There are 2 significant features
in the original 300-dimensional input space. Such features likely
correspond to periodicity in the temperature profile of a mice relevant
to circadian and ultradian rhythms respectively. Both Isomap and
homological L-Isomap perform comparatively in terms of preserving
the most dominant feature, while homological L-Isomap only uses
a small fraction of the points as landmarks. Random L-Isomap is
able to detect the significant feature but does not preserve its shape
as well as the homological L-Isomap.

. @) " ()

Figure 9: For Mice, (a) persistence diagrams for original data, (b)
Isomap embedding, (c) random L-Isomap embedding and (d) homo-
logical L-Isomap embedding are combined with DR results.

For Portraits, as shown in Fig. 10(a)-(c), both Isomap and ho-
mological L-Isomap perform comparatively in terms of preserving
the single significant loop, while homological L-Isomap only uses 6
landmark points. On the other hand, random L-Isomap fails to detect
the loop using equivalent number of landmarks (see Fig. 10(b)).

Quality assessment with residual variance. We also assess the
quality of DR using RV quality measure introduced in Section 3.

For Octa, we evaluate the quality of each embedding using the
RV measure by varying the number of landmarks, see Fig. 11. As
the number of chosen landmarks increases, we are interested in how
well homological L-Isomap preserves distances, when compared
with Isomap and random L-Isomap. For a fixed landmark size, the
blue box plot corresponds to the RV measures for 20 instances of
random L-Isomap, each drawing landmarks randomly from a fixed
point cloud.

A surprising observation is that homological L-Isomap outper-
forms Isomap and random L-Isomap in terms of distance preser-
vation, when the number of landmarks is small (below 100). In
fact, homological L-Isomap beats random L-Isomap with just 21

Figure 10: For Portraits: (a) homological L-Isomap embedding shown
with sampled landmarks, (b) random L-Isomap embedding and (c)
Isomap embedding.

Evaluation of Octa
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Figure 11: Quality assessment of embeddings using residual variance
for Octa. Solid blue line in the box plot is the median, dotted blue line
is the mean, the boundary of the box is the standard deviation, and
black hollow circles are outliers. Solid red circles are RV measures
for homological L-Isomap, while solid green circles are for Isomap.

landmarks and it outperforms Isomap with 42 landmarks. The opti-
mal landmark size that achieves both computational efficiency and
quality is at around 76 landmarks. When the number of landmarks
goes beyond 150, homological L-Isomap does not seem to have an
obvious advantage over other methods. In fact, at 203 landmarks,
homological L-Isomap performs comparably with Isomap. This is
not surprising, with a large number of landmarks, both L-Isomap
and Isomap preserve the geometry of the data almost equally well.
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Figure 12: Quality assessment of embeddings using residual variance
for Swiss roll with a hole, Fishing Net and Octa.

We also compare several datasets, the swiss roll with a hole,
Fishing Net and Octa, using their respective optimal landmark sizes,
in Fig. 12. Notice that homological L-Isomap outperforms the
others for both Fishing Net and Octa, while it does not do well
with Swiss roll with a hole. Intuitively, homological L-Isomap per-
forms best when the data is complex, and has (possibly many) non-
trivial homological features. In this case, both Fishing Net and
Octa are a lot more complex and homologically interesting than the
Swiss roll with a hole.



6.4 Dimensionality Reduction with Manifold Tearing

Manifold tearing results are shown in Fig. 13 for Cylinder-5 and
Fig. 14 for Airfoill and Bcsstk31 respectively. See Fig. 15 and
Fig. 16 for quality assessment using persistence diagrams.
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Figure 13: Results without and with manifold tearing for Cylinder-5. (a)
Original point cloud. (b) Homological skeleton with 3 cutting options
colored red, purple and green. (c) Isomap embedding without tearing.
(d) Partial tearing with the red option. (e) Non-optimal tearing with
purple option. (f) Optimal tearing with the green option.

A

Besstk31

Figure 14: Results without and with manifold tearing for Airfoil1 (top)
and Bcsstk31 (bottom). (a)-(b) original point clouds with marked
cutting location. (c)-(d) Isomap embeddings without tearing. (e)-(f)
Isomap embedding with tearing.
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Figure 15: Homology-based quality assessment of DR for Cylinder-5.

Given a homological skeleton for Cylinder-5, we apply multiple
cutting options to the skeleton and rank the resulting embeddings

by the number of preserved homology classes. As shown in Fig. 13,
without manifold tearing, the Isomap embedding destroys 5 out of
6 homological features, while optimal tearing preserves 5 out of 6
persistent homological features.

While Isomap preserves reasonably well the 3 persistent features
for Airfoill, manifold tearing further preserves 2 of the 3 homolog-
ical features if we are willing to destroy one of them (Fig. 14 top,
and Fig. 16).

For Besstk31, we focus on manifold tearing by cutting a short
edge in the homological skeleton of Besstk31 as shown in Fig.17,
therefore “open up” the space further to reveal more geometric
structures of the data.

Figure 16: Homology based quality assessment of DR for Airfoil1.

Figure 17: Using homological skeleton to aid manifold tearing for
Besstk31. The location marked by the red arrow is where skeleton
cutting takes place.

7 DiscussION

We demonstrate in this paper that we can achieve 1-dimensional
homology preservation while maintaining and possibly improving
distance preservation using homology-based manifold landmarking
and tearing. There are many research questions for future study.
First, although we have provided a guideline for parameter selection
and performed sensitivity analysis on many datasets, auto-tuning
of parameters remains a challenge. Second, we need to find better
and quantitative evaluation methods to locate the optimal locations
for manifold tearing. Variations of Wasserstein distance [7] may
be explored. Third, we have experimented with bootstrapping to
calculate confidence intervals [16] to enhance our homology-based
quality assessment, which aims to better separate topological sig-
nals from noise. Bootstrapping does well in estimating confidence
intervals for datasets with simple homological structures, such as
Octa, Mice, Portraits, and Cylinder-3; however it performs rather
poorly for datasets containing a large number of homological fea-
tures with varying sizes, such as Fishing Net, and 4elt. Further study
is needed in this direction. Finally, we are interested in exploring
higher-dimensional homological skeletons [45] for DR to preserve
homological features beyond 1-dimensions.
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