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Abstract
Real-world machine learning models require rigorous evaluation before deployment, especially in safety-critical domains like
autonomous driving and surveillance. The evaluation of machine learning models often focuses on data slices, which are
subsets of the data that share a set of characteristics. Data slice finding automatically identifies conditions or data subgroups
where models underperform, aiding developers in mitigating performance issues. Despite its popularity and effectiveness, data
slicing for vision model validation faces several challenges. First, data slicing often needs additional image metadata or visual
concepts, and falls short in certain computer vision tasks, such as object detection. Second, understanding data slices is a
labor-intensive and mentally demanding process that heavily relies on the expert’s domain knowledge. Third, data slicing lacks
a human-in-the-loop solution that allows experts to form hypothesis and test them interactively. To overcome these limitations
and better support the machine learning operations lifecycle, we introduce VISLIX, a novel visual analytics framework that
employs state-of-the-art foundation models to help domain experts analyze slices in computer vision models. Our approach
does not require image metadata or visual concepts, automatically generates natural language insights, and allows users to
test data slice hypothesis interactively. We evaluate VISLIX with an expert study and three use cases, that demonstrate the
effectiveness of our tool in providing comprehensive insights for validating object detection models.

CCS Concepts
• Computing methodologies → Model verification and validation; Computer vision tasks; • Human-centered computing →
Visual analytics; Interactive systems and tools;

1. Introduction

Computer vision models are widely employed across various do-
mains, including autonomous driving, where they detect nearby ob-
jects [CBL∗20,GZL∗20], and surveillance, where they identify sus-
picious activities [ŞSAAH∗23]. Although computer vision models
often achieve high overall performance, they may underperform on
semantically coherent subsets of data, known as data slices or edge
cases [ZOS∗22, SB21]. For example, adverse weather can hinder
car detection [ZCYT23], and skin tones may affect pedestrian de-
tection across demographic groups [WHM19]. To ensure safety, ro-
bustness, and fairness, AI developers must efficiently identify, un-
derstand, and address such slices before deployment [RCO∗19].

Data slicing, a popular model validation technique, automati-
cally identifies visually consistent yet underperforming data sub-
groups. It often relies on image metadata—textual labels for image
attributes (e.g., weather = “rainy”, lighting = “dark”)—to partition
subgroups [BSI∗24, ZOS∗22], which, however, is labor-intensive

to acquire. To reduce this burden, ConceptSlicer [ZPOH∗24] auto-
matically checks the presence of predefined visual concepts (e.g.,
“bus = 1”, “car = 0”) using semantic segmentation models. How-
ever, both image metadata and segment tags can miss important
image details. More advanced methods [EVS∗22, ddWLB22] use
clustering-based techniques on image embeddings to identify error-
consistent groups. However, these approaches are designed for im-
age classifiers that consider global context and are not well-suited
to object detectors, which prioritize local context [BHM23].

After identifying slices, experts must analyze them to form hy-
pothesis about the model’s failure modes. This interpretation step is
essential for downstream tasks like model optimization [EVS∗22]
and stakeholder communication [BRYB23]. Yet, the process is de-
manding, requiring experts to examine slice images, infer fail-
ure root causes, and summarize common patterns. A recent
study [JCPT23] further highlights the complexity of this task, as
experts may hold inconsistent or biased explanations. Besides ana-
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lyzing the data slices, experts often come with their own hypothe-
sis about model failures. However, existing slice discovery methods
are meant to run only once and cannot interact with users [JCPT23].

To address these challenges, we present VISLIX (VIsual SLIce
eXplanations), an explainable artificial intelligence (XAI) frame-
work that leverages Large Language Models (LLMs) and Vision-
Language Models (VLMs) to support human-in-the-loop slice dis-
covery and analysis for vision model validation, with a focus on ob-
ject detection. VISLIX identifies slices using context-aware image
embeddings to uncover systematic errors. It then generates natu-
ral language data slice explanations, using a conversational vision-
language framework. Our visual analytics system enables experts
to efficiently explore slices, inspect and refine slice details, and test
hypothetical scenarios through direct visual manipulation and nat-
ural language queries. In summary, our framework makes the fol-
lowing contributions:

• We propose a new slice discovery method tailored for object
detector validation, which does not rely on either image meta-
data or visual concepts. Our approach is able to automatically
describe and explain problematic data slices in natural language.

• We design a visual analytics system that enables users to effi-
ciently explore data slices and interactively test new hypotheses
by creating slices via both visual and textual queries.

• We validate VISLIX with an expert study and three use cases,
which demonstrate that VISLIX efficiently finds and explains
a broad spectrum of data slices. We also show how insights
gained from VISLIX can be leveraged to enhance model robust-
ness through fine-tuning.

2. Related Work

Data slice finding. Slice-finding techniques uncover data sub-
groups where ML models underperform, exposing systematic er-
rors [CKP∗19, PBdA∗23]. Tools like DivExplorer [PDAB21],
SliceLine [SB21], and Macrobase [BGM∗17] use frequent item-
set mining (FIM) algorithms for slice discovery, such as Apri-
ori [AS∗94] and FP-growth [HPY00]. These approaches have been
adapted for image datasets by using metadata attributes to de-
fine subgroups [ZOS∗22, CGT∗24]. However, obtaining structured
metadata for images remains challenging [XOG∗25, XDLM24].

ConceptSlicer [ZPOH∗24] employs an image segmentation
model to identify predefined concepts (e.g., person, bus, car) and
treat them as metadata, analyzing performance of concept combi-
nations (e.g., bus = 1 & car = 0). Yet, its reliance on predefined
concepts limits its descriptiveness and coverage. To address this
issue, many methods encode images into latent spaces and cluster
them to find problematic slices [WAG22,EVS∗22,ddWLB22], e.g.,
GEORGE [SDA∗20] and UDIS [KPSH21] use over-clustering and
hierarchical clustering, whereas AttributionScanner [XOG∗25] ap-
plies K-means on attribution-weighted embeddings to find spurious
correlation slices. However, these methods target image classifiers
that utilize the entire image and are not well-suited for object detec-
tion, where the object and its surroundings are crucial [LOW∗20].

To capture local context, prior work has expanded the detection
window and fused their embeddings during model training to en-
hance performance [LWL∗16,ZZW∗17]. We adapt this approach to

a different setting: post hoc slice discovery, enabling more effective
validation for object detection tasks.

Data slice explainability. Prior research on interpreting data
slices follows two main approaches. The first utilizes saliency
maps [LWHC22, XDL∗24] to highlight image regions influenc-
ing model predictions. While effective for individual images, this
method requires domain expertise [BRYB23], risks confirmation
bias [AGM∗18], and lacks scalability. In contrast, natural language
explanations have gained traction for their clarity and utility in
tasks such as stakeholder communication [BRYB23], failure re-
porting [CDHP21], and model fine-tuning [ZPOH∗24]. The rise
of foundation models, including LLMs like ChatGPT [Ope22] and
LLaMA 2 [TMS∗23], and VLMs like CLIP [RKH∗21], BLIP-
2 [LLSH23], LLaVA [LLWL24,LLLL24], and GPT-4 [Ope23], has
enabled more sophisticated textual slice explanations. For exam-
ple, Domino [EVS∗22] uses CLIP to describe slices via predefined
templates, while Jain et al. [JLMM22] and Wiles et al. [WAG22]
leverage captioning models to summarize slice content. Concept-
Slicer [ZOS∗22] applies LLMs to describe general scenes based on
visual concepts, primarily for data augmentation. However, these
methods often provide high-level descriptions, overlooking nu-
anced errors. Our approach leverages generative VLMs and LLMs
to produce template-free summaries of slice errors, capturing subtle
details and significantly expanding the scope of explanations.

Interactive systems for data slice analysis. Various interac-
tive systems support slice exploration for vision model valida-
tion [ZOS∗22, KPSH21, CDHP21, CFB∗23, LWHC22, XOG∗25,
PDAB21]. Some systems first generate slices and present them
in an overview+detail format. For instance, SliceTeller [ZOS∗22]
uses DivExplorer [PDAB21] to create slices and visualizes them
with matrix encodings, with details in a separate panel. VIS-
CUIT [LWHC22] lists slices generated by UDIS [KPSH21] and en-
ables neuron activation inspection. ConceptSlicer [ZPOH∗24] sup-
ports slice viewing, concept inspection, and training data augmen-
tation, while Uni-Evaluator [CGT∗24] visualizes global perfor-
mance and slices using matrix, table, and grid-based encodings. In-
teractive slice discovery tools include AdaVision [GILR23], which
retrieves images via natural language for iterative testing, and ES-
CAPE [ALXD23], which identifies spurious associations in image
classifiers with UMAP plots. Our system combines efficient slice
inspection with interactive discovery, leveraging visual exploration
and natural language queries.

3. Background on Object Detection

TP

Ground truth bounding box  

Predicted bounding box  

FP
FN

FP

FP

IoU =
Area of Overlap

Area of Union

Figure 1: Illustrations of True Positive (TP), False Positive (FP),
and False Negative (FN) for a car detector and IoU computation.
Left: IoU > 0.5 (correct). Middle: 0 ≤ IoU < 0.5 (incorrect).

Object detection identifies object classes (e.g., car, pedestrian)
and their spatial locations (e.g., bounding boxes) in an image.
Given an object detector like a car detector, the goodness of the
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predicted car location is accessed via the Intersection over Union
(IoU), a metric computed as the ratio of the intersection area to the
union area of predicted and ground truth bounding boxes. A de-
tection is considered correct if IoU exceeds a threshold, typically
set to 0.5. With this threshold, a bounding box is labeled as one
of three types, as shown in Fig. 1: True Positive (TP), where the
detector correctly identifies a car; False Positive (FP), where the
detector erroneously identifies other objects as a car; False Neg-
ative (FN), where the ground truth car is not correctly detected.
The detection outcome is influenced by both object characteristics
like color and pose, and its surrounding context that offers valu-
able cues for model perception [LOW∗20, ZCS∗23]. For example,
the unidentified red car in Fig. 1 (middle) could be attributed to its
unusual position on top of a truck. To quantify the overall perfor-
mance of a detector, the most widely used metric is mean Average
Precision (mAP) derived from precision (i.e., T Ps

T Ps+FPs ) and recall
(i.e., T Ps

T Ps+FNs ). See [ZCS∗23] for a complete survey.

4. Domain Challenges and Design Requirements

Throughout this project, we closely collaborated with two industry
computer vision experts to understand their needs and gather in-
sights. Both experts hold PhDs in machine learning and work on
various computer vision tasks for autonomous driving and driver
assistance systems. Based on their feedback and an extensive liter-
ature review, this section outlines the key challenges (Sec. 4.1) that
domain experts face in identifying and understanding data slices,
particularly for object detector validation. These challenges moti-
vate the formulation of our design requirements (Sec. 4.2).

4.1. Domain Challenges

C1. Existing slice discovery methods fall short in object de-
tection. Prior methods often rely on expert-defined image meta-
data [IBB∗22] or visual concepts [ZPOH∗24]. However, anticipat-
ing all critical slices is impractical [CKP∗19], and such data misses
complex scenarios (e.g., “car occluded by a tree”). Recent meth-
ods [EVS∗22, ddWLB22] use image embeddings and clustering to
generate slices. While effective for image classifiers, they struggle
with object detectors, as global embeddings overlook detection lo-
cality and cannot distinguish multiple detections in the same image.

C2. Interpreting data slices is a nontrivial task. Experts interpret
slices to uncover model failure patterns, guiding refinement and de-
ployment decisions [CDHP21]. This process—examining slice im-
ages, inferring failure causes, and summarizing patterns—is time-
consuming and prone to bias or errors [JCPT23]. To simplify this
task, prior methods have used predefined templates [EVS∗22] or
sampled image captions [WAG22,JLMM22], but these approaches
lack flexibility and fail to adequately explain detection errors.

C3. A human-in-the-loop solution is needed for slice explo-
ration and hypothesis testing. In a typical data slicing work-
flow, experts run a slice discovery algorithm once and then inspect
only the output slices. Prior studies [JCPT23, BRYB23] empha-
size the need for visual analytics systems that effectively present
slices to users, while accounting for cognitive load and enabling
efficient slice navigation. Moreover, since automated methods may
not cover all scenarios of interest [GILR23], interactive workflows

could be designed to leverage the stakeholder’s domain knowledge
in order to define coherent subsets of data [JCPT23].

4.2. Design Requirements

R1. Automate slice discovery for object detectors beyond meta-
data and visual concepts. Given the limitations of prior methods
(C1), our framework should extract more discriminative features
in order to slice the data. Each slice should exhibit coherent error
patterns, and metrics should be provided to assess its significance.

R2. Provide natural language explanations for slices. Since
slice interpretation is labor-intensive and prone to errors (C2), our
framework should generate descriptive sentences that explain slice
scenarios and root causes, aiding experts in their reasoning pro-
cess. We choose free-text explanations as they can effectively de-
scribe nuanced and complex image features and are inherently in-
terpretable by humans [MBP∗20, MBDP22].

R3. Support efficient slice inspection and refinement. Consider-
ing the substantial efforts involved in reviewing data slices (C3),
our framework should effectively represent them to users. The sys-
tem should (R3-1) offer concise overviews of data slices, (R3-2)
highlight key statistics to help users identify slices of interest, (R3-
3) provide detailed slice information on demand, and (R3-4) allow
users to edit slices and explanations in case of inaccuracy.

R4. Enable interactive validation of user-defined slices. Beyond
existing slices, our framework should enable users to test hypoth-
esis (C3) by (R4-1) discovering new slices via the visual interface
and (R4-2) defining slices with natural language descriptions. Once
a hypothetical slice is created, our framework should compute slice
metrics and explanations to facilitate hypothesis validation.

5. The VISLIX Framework

Guided by the design requirements, we develop VISLIX, a frame-
work that automatically identifies data slices in object detectors, ex-
plains them in natural language, and enables expert exploration and
hypothesis testing via a visual analytic system. Our framework uses
large foundation models, such as VLMs for bridging images and
text, and LLMs for reasoning about slice errors. The VISLIX work-
flow (Fig. 2) processes TPs, FPs, and FNs from a trained object
detector (e.g., a car detector) on validation images in three phases:

Slice Finding. Each detection is converted into a context-aware
embedding, followed by dimensionality reduction and clustering
of FP and FN embeddings to identify slices. Slice importance is
then estimated using nearby TPs (Sec. 5.1, addressing R1).

Slice Explanation. Assisted by VLMs and LLMs, we generate a
free-text explanation for each slice by first producing textual expla-
nations for each FP and FN within the slice, and then summarizing
them into a slice explanation (Sec. 5.2, addressing R2).

Slice Exploration. We build a visual system that integrates slices
and their explanations, enabling users to explore slices, rectify er-
rors, test hypotheses, and enhance model performance (Sec. 5.3,
addressing R3 and R4). At the project’s inception, we utilized
VLMs like BLIP-2 [LLSH23] and LLaVA [LWZ∗24] and LLMs
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Figure 2: VISLIX workflow. Inputs: True Positives (TPs), False Positives (FPs), and False Negatives (FNs) from an object (car) detector
and validation images. Slice finding: Identifying data slice via image embeddings of FPs and FNs and estimating slice metrics via TPs. Slice
explanation: Producing free-text explanations for each slice based on individual explanations of FPs and FNs, leveraging foundational
models. Slice exploration: A visualization system that integrates all slices and explanations, enabling slice examination and validation.

like GPT 3.5 [Ope23]) for their competitive performances, but VIS-
LIX can easily integrate new models to keep up with model ad-
vancements.

Detection Region

Context Region

Im
age Encoder

AVG

Concat

Context-aware
embedding

Detection
embedding

Context
embedding

AVGPerturbed cropping

Figure 3: Context-aware embedding generation.

5.1. Slice Finding

To identify data slices, we combine the cropping strat-
egy [LOW∗20] that is widely used in computer vision to extract
objects’ local context, and embedding-based slice-finding meth-
ods [EVS∗22, ddWLB22] that excel in image classifiers.

Context-aware embeddings. For each FP, FN, and TP, we con-
struct a context-aware embedding by fusing features of the detec-
tion and its surroundings. This is achieved by enlarging the de-
tection window and concatenating embeddings, a common prac-
tice in object detection [GK15, LWL∗16, ZZW∗17]. As illustrated
in Fig. 3, for an FP detection featuring three barrels, we create a
context region twice the size of the detection window, as per Zhu
et al. [ZZW∗17]. The enlarged context reveals that the barrels are
in a motorcycle sidecar, likely causing the error. To enrich feature
diversity, we crop three patches for each region with random per-
turbations of up to 10% expansion per side. The patch embeddings,
obtained via BLIP-2’s image encoder, are averaged to create the de-
tection or context embeddings. These are concatenated to generate
the final context-aware embedding, highlighting the barrels within
the broader sidecar context to aid error reasoning.

Clustering-based slice discovery. We identify data slices as
dense regions in the context-aware embedding space of FPs and
FNs, which reveal shared features indicative of systematic er-
rors. Specifically, we reduce embeddings to 10 dimensions using
UMAP [MHM18], following prior work [MSRPC21,SDA∗20] that
demonstrates UMAP’s effectiveness in cluster detection. Next, we
apply HDBSCAN [CMS13] to identify high-density clusters (i.e.,
non-noise instances) while excluding isolated failures (i.e., noise
instances). Unlike DBSCAN, HDBSCAN can find regions with
varying densities and requires fewer parameters. We tune the clus-
tering parameters using Silhouette [Rou87], informed by prior
studies [MSRPC21, SDA∗20]. Details are offered in the supple-
ment. Fig. 9 illustrates two slices from a car detector: one in an
airport setting and another featuring motorcycles.

Slice metrics. For every data slice, we compute two performance
metrics: precision and recall. To identify the TP samples belonging
to the slice, we measure the Euclidean distance between the slice
and its nearby TPs in the context-aware embedding space. For each
slice, we compute the average nearest neighbor distance of each in-
stance within that slice. A TP is assigned to the slice if its distance
to the nearest instance in the slice is smaller than this average near-
est neighbor distance. We then calculate the precision and recall to
assess the significance of each slice, giving more attention to those
with lower values.

5.2. Slice Explanation

The slice explanation is generated in two steps: first, individual ex-
planations for FPs and FNs are computed using a VLM (LLaVA)
and an LLM (GPT 3.5, hereafter GPT). Then, the individual expla-
nations are summarized into a cohesive slice explanation.

Figure 4: Region annotations.

Individual explanations.
To generate a natural-
language explanation for an
FP or FN, we first gather
textual information about
the image that may have
caused the error. As shown in Fig. 4, we crop multiple patches to
improve analysis accuracy: the detection region (DR), representing
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Ground truth False Positive The scenario is a sunny 
day with a white Volkswagen 
Beetle parked next to a large white 
truck in a parking lot, with people 
nearby and a logo on the side of 
the truck.

The most possible reason for the 
False Positive car detection is that 
the object detection model 
mistakenly identified the white 
truck as a car due to similarities in 
size, shape, and color, and 
potentially misinterpreted the logo 
on the side of the truck as a car 
part. The presence of the white 
Volkswagen Beetle parked next to 
the truck might have also 
contributed to the confusion.

What the main object and its specific parts are 
visible in this image?  (Q1)

The main object in the image is a large white 
semi-truck with a logo on its side. The truck is 
parked in a parking lot, and the logo is visible 
on the side of the truck…

Describe this image in detail (Q2)

The image features a white Volkswagen Beetle 
parked next to a large white truck. The Beetle 
is positioned in front of the truck, and they are 
both parked on the side of a road. There are 
several people in the scene, with one person 
standing close to the Beetle and two others …

There is a section of the car in this image, 
which part of the car?  (Q6)

The image shows a section of the car's roof 
and a window.

The color of the logo on the side of the truck is green.

What is the color of the logo on the side of the truck? 

What is the position of the truck in the image?

The truck is parked next to a car in the image.

What is the size of the Volkswagen Beetle parked 
next to the truck?

The Volkswagen Beetle parked next to the truck is a 
miniature or toy-sized version of the car.

What is the distance between the truck and the 
Beetle?

The distance between the truck and the Beetle is 
quite close, as they are parked next to each other in 
a parking lot.

DR

CR

IR

A. FP Regions B. Predefined Questions C. GPT-LLaVA Conversation D. Individual Explanation

Figure 5: Explanation generation for an FP in a car detector. A: Three regions derived from the FP: detection region (DR), context region
(CR), and intersection region (IR). B: LLaVA answers predefined questions regarding different regions. C: GPT uses answers from B to chat
with LLaVA about the CR. D: GPT explains the FP based on all the acquired information.

Predefined
Questions

LLaVA

Question

Up to 10 rounds 

DR

CR

IR LLaVA

CR

Q&A Pairs

Prompt: Given the provided information, 
ask a question of  the image to maximize 
your information of reasoning about the 
[FP/FN]…

Individual Explanation

GPT
(Interpreter)

Prompt : Based on the provided information 
above, summarize the scenario in one sentence, 
then explain the most possible reason for the 
[FP/FN]  detection step by step…

GPT (Questioner)

End of Q&A

Figure 6: The process of generating an individual explanation.

the predicted region for an FP or the ground truth region for an FN;
the context region (CR), which expands the detection region by
2× following [ZZW∗17] (see Sec. 5.1); and the intersection region
(IR), the overlap between the detection and ground truth when
IoU exceeds 0.2 based on our preliminary experiments, indicating
partial detection. An example is shown in Fig. 5-A.

Fig. 6 shows the procedure for generating an individual expla-
nation. We first acquire answers from LLaVA to several predefined
questions (Tab. 1) tailored for different regions that are generally
critical for error reasoning. For instance, we prompt LLaVA to
identify objects in the detection region of an FP (Q1) that may have
caused the misclassification, describe the context region (Q2) for
scene understanding, or describe the detected portion of the target
object in the intersection region (Q6) to analyze partial detection.
Fig. 5-B illustrates LLaVA’s responses to these queries.

Since various factors can influence detection accuracy, a fixed
set of universal questions is impractical. Building upon prior
work [ZCH∗23] that demonstrates GPT’s ability to generate in-
sightful questions with appropriate prompts, we prompt GPT
(Questioner) with question-answer pairs to formulate questions
aimed at uncovering the error’s root cause. This question is then
posed to LLaVA, and its response is fed back to GPT for further
question generation. This iterative dialogue continues until GPT
outputs “STOP” or completes 10 iterations, following [ZCH∗23]
(Fig. 5-C); Finally, GPT (Interpreter) summarizes the interactions
between LLaVA, predefined questions, and GPT into a concise ex-

Regions Predefined questions
DR Q1. FP: What the main object and its specific parts are visible in this

image? FN: Describe the [obj] shown in the image and evaluate whether
the entire [obj] is clearly visible.

CR

Q2. Describe this image in detail.
Q3. What is the weather in this image?
Q4. How is the lighting condition in this image?
Q5*. Is the view of the [obj] in the image obstructed? If so, what is
obstructing it?

IR Q6*. There is a section of the [obj] in this image, which part of the
[obj]?

Table 1: Predefined questions for detection region (DR), context
region (CR), and intersection region (IR). Q5 and Q6 are used ex-
clusively for instances with IoU > 0.2.

planation of the scene and its primary cause. Fig. 5-D illustrates an
FP explanation. All explanations of FPs and FNs are precomputed.

INSTRUCTION: In a [obj] detection model, a set of False Positives and False Negatives 
occurs. For each error, you are given sentences describing the scene and the error in a 
single row. As a Computer Vision expert, you concisely summarize these errors for those 
who haven't observed these pictures. In your output, you first describe the common 
feature of these environments, then identify the most primary reason of False Positives 
and False Negatives.
INPUT: 
[Individual explanations for False Positives] 
[Individual explanations for False Negatives] 
OUTPUT:

Individual
Explanations

Sentence
Embeddings

Slice
Explanation

Sentence Encoder Noise Removal

Filtered
Explanations

GPT(Summarizer)

Figure 7: Pipeline for generating a slice explanation from individ-
ual explanations and the prompt template used for GPT.

Summarizing individual explanations. We derive slice explana-
tions by aggregating individual FP and FN explanations using GPT
(Summarizer). However, these explanations can be inconsistent or
erroneous due to hallucinations or outliers, affecting quality. To ad-
dress this, as shown in Fig. 7, we convert explanations into text
embeddings with a sentence transformer, then select those closest
to the centroid, ensuring up to 80% of the slice is represented or the
total token count stays within 2000 (input length limit). Using these
filtered explanations, GPT (Summarizer) generates a description of
the scene and identifies root causes for FPs and FNs. Fig. 9 shows
two slices from a car detector with their explanations. Full prompts
and additional examples are provided in the supplement.
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Figure 8: The VISLIX interface visualizes slices and explanations from a car detector. Slice list view (A) shows all slices as summary cards
(A1), with sorting and filtering options (A2). Slice plot view (B) includes a density plot (B1) showing slice locations in the embedding space
(with slices 1–7 annotated for reference), an editing bar (B2) for operations like brushing to create hypothetical slices (B4), and a global
search bar (B3) for hypothetical slice creation via queries. Slice detail view (C) presents details of a selected slice (slice 2), supporting
query-based refinement (E) and explanation editing (F). Toolbar (D) enables data switching, operation resets, and slice export.

The common feature of these environments is that they are all in airport settings, with 
various vehicles and people present. The most primary reason for the False Positives is the 
misclassification of parts of trucks or airplanes as cars, due to similarities in appearance, 
occlusion, and background similarity. The most primary reason for the False Negatives is the 
occlusion caused by other vehicles, such as trucks or luggage carts, obstructing the view of 
the cars, leading to limited visibility and difficulties in detection.

The common feature in these scenes is the presence of motorcycles and cars. The most 
primary reason for the False Positives is the confusion between motorcycles and cars due to 
similarities in appearance, occlusion, and proximity in the image. The most primary reason 
for the False Negatives is the occlusion and partial visibility of cars caused by motorcycles, 
people, trees, and other objects in the scene.

Slice 1

False NegativeFalse Positive

Slice 3

Figure 9: A random sample of FPs and FNs in slices 1 (top) and 3
(bottom) and their explanations in the car detector.

5.3. Slice Exploration Through an Interactive System

To enable users to analyze the generated slices and explanations
(R3) and test slice hypotheses (R4), we present a visual analytics
system (Fig. 8) with four linked views: slice list view (A), slice
plot view (B), slice detail view (C), and a toolbar (D). View A lists
all produced slices (R3-1), summarizing key information in cards
(Fig. 8-A1). To prevent overwhelming users, each card shows three
keywords that capture the slice’s scenarios and error causes, gener-
ated by GPT using the same input as the slice explanation (Fig. 7)
but with modified task descriptions. Further details are provided in
the supplement. In the following sections, we detail views B and C
and discuss our key design decisions in between.

5.3.1. Slice Plot View

The 2D density plot (Fig. 8-B1) provides a slice overview in
the embedding space using the 2D dimensionality reduction re-

sult of UMAP applied to the context-aware embeddings of FPs and
FNs. To better reflect the data distribution used in slice discovery
(Sec. 5.1), UMAP parameters are largely preserved, with the com-
ponent number reduced from 10 to 2 and the minimum distance
increased to 0.15 to mitigate visual clutter.

Next, we divide the scatterplot into a 64×64 grid by default and
calculate the densities of noise and non-noise instances, as deter-
mined by HDBSCAN (Sec. 5.1), in each cell. These densities are
then mapped to two distinct colormaps—gray for noise and blue
(or orange, its complementary color, when the slice is selected) for
non-noise—and blended together as the grid rendering. Thus, this
plot characterizes the data distribution while emphasizing slices.
We employ the density plot as the primary visualization due to its
scalability for dense scatterplots and, more importantly, its intuitive
representation of HDBSCAN’s mechanism, where clusters emerge
from high-density areas, thus enhancing user trust in the data slices.
For instance, variations in cluster area and color indicate slice size
and compactness, whereas spatial locations reflect slice similari-
ties, enabling users to quickly pinpoint slices of interest and facil-
itate a straightforward comparison among slices (R3-1 and R3-2).
We discuss alternative design in the supplement.

Editing bar (Fig. 8-B2) offers three operations on the density
plot. On the left, users can adjust the granularity (grid resolution) of
B1 to adapt to varied data scales. In the middle, three types of slice
encodings are offered based on experts’ suggestion: pie charts (de-
picting slice size and the percentage of FPs and FNs), the first slice
keyword, and one representative image. Each encoding is centered
within its respective slice. Further, the slice list view (Fig. 8-A) and
plot view (Fig. 8-B) are cross-filtered: selecting a slice in view B
highlights both its density area and the corresponding slice card in
view A in orange, and vice versa (R3-2).

With the brush tool (Fig. 8-B4), users can select an area of in-
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terest by clicking and dragging, which creates a semitransparent
overlay on the view. FP and FN instances within the selected re-
gion are displayed as red and blue circles, respectively. Hovering
over a point reveals its corresponding image. If users identify con-
sistent patterns in this area, they can click the save icon to generate
a hypothetical slice. The backend computes the slice’s statistics and
explanations, which are then displayed in the interface. Users can
choose to keep or delete it once they test their hypotheses (R4-1).

Global search bar (Fig. 8-B3) allows experts to create hypo-
thetical slices via textual queries (R4-2). As shown in Fig. 11, after
users input a scenario description, the system retrieves instances
matching the query based on cosine similarity between sentence
embeddings. Embeddings of individual explanations are precom-
puted and stored in the backend. By default, instances with a sim-
ilarity score above 0.5 are returned. A slider lets experts adjust the
similarity threshold to refine results. Filtered FPs and FNs appear
as circles on the density view, with images revealed on mouseover.
If the results align with expectations, users can save the slice.

5.3.2. Slice Detail View

The slice detail view (Fig. 8-C) provides details about the selected
slice (R3-3). C1 displays FPs and FNs with bounding boxes ren-
dered on full images, and allows users to toggle between the full
image and a magnified detection area. C2 includes a search box for
refining slices by querying specific scenarios; filtered instances are
determined by query similarity, and highlighted in the density plot
and view E. Users can save these results as a new slice or replace
the current one. C3 shows keywords, explanations, and slice met-
rics. To address potential hallucinations, users can switch to editing
mode (Fig. 8-F) by clicking “Edit,” where they can refresh key-
words and explanations via GPT or manually edit them (R3-4).

6. Expert Study

To evaluate VISLIX, we conducted a series of structured interviews
with six ML experts (E1 - E6), who were recruited by e-mail. They
are not coauthors of this paper and have not previously seen VIS-
LIX. The panel consisted of industry ML practitioners (researchers
and engineers), with an average age of 33.167± 5.707 years, and
varying STEM education backgrounds: four holding doctoral de-
grees, one master’s degree, and one bachelor’s degree in Computer
Science. All experts have worked in the field of Advanced Driver
Assistance and Autonomous Driving Systems (ADAS/AD), and
have had prior experience in developing object detection models.
Collectively, these six experts possess an average of 6.667±3.077
years of experience in the field.

Procedure. Experts were asked to analyze edge cases for four ob-
ject detection models: “car,” “person,” “chair,” and “dog”. We di-
vided the experts into two groups to evaluate both VISLIX’s effec-
tiveness and, exclusively, the explanation quality. The first group
used VISLIX to analyze “car” and “person” detectors and rated tex-
tual explanations for “chair” and “dog” on a 5-point Likert scale,
while the second group did the reverse. During the practical part of
the study, experts received a ten-minute tutorial, explored the sys-
tem for thirty minutes using the “think-aloud” protocol, and com-
pleted a post-study questionnaire.

This section is organized as follows: we first describe the model
and data used in the interviews. Then, we describe three use cases
derived from the expert study, where our system was used to inspect
the detectors. Finally, we summarize the experts’ feedback.

6.1. Model and Data Description

We use the PASCAL image dataset [EVGW∗] and select four ob-
jects from differing categories with varying sizes: person (Person),
dog (Animal), car (Vehicle), and chair (Indoor). For each object,
we first extract images containing it, and then split them into train-
ing and validation sets with a ratio of 60% to 40%, respectively.
We train a detector for each object using a popular object detection
model, Fast R-CNN [Gir15], and end the training process when the
loss falls below 0.05 or after 40 epochs. Then, we obtain detections
(TPs, FPs, and FNs) of the validation set for each detector, and ex-
ecute VISLIX once to generate data slices, slice explanations, and
integrate them into the visual analytics system. We report the statis-
tics for each detector in Tab. 2.

Object Ground truth mAP TPs FPs FNs # Slices
Dog 1227 86.71% 541 165 64 7
Car 2364 75.56% 752 186 209 13

Chair 2906 47.83% 668 481 530 15
Person 10129 75.42% 3217 2066 808 24

Table 2: Detector statistics: ground truth size, mAP, sizes of TPs,
FPs, FNs on the validation set, and the number of output slices.

6.2. Use Case 1: Slice Analysis of a Car Detector

E1, E3, and E5 would like to identify systematic errors in a car
detector in order to write a validation report. VISLIX identified 13
data slices (Tab. 2), some of which are shown in Fig. 8.

Slice understanding. When examining slice 1, all experts recog-
nize the FPs and FNs mainly occur at the airport. E3 notices that
this slice is distant from others in the density plot view. The textual
explanation (Fig. 9) further states that FPs are caused by misclassi-
fication of “trucks” or “airplanes” in airports as cars, whereas FNs
are caused by trucks or luggage carts obstructing cars. The experts
agree with the explanation but provide additional causes. For exam-
ple, E3 identified some labeling issues: “The model is identifying a
car, but the labeler did not.”

Slice refinement. E5 investigates slice 2 highlighted in Fig. 8,
and understands the primary cause is misclassification or occlu-
sion caused by buses. E5 observes several FNs incorrectly labeling
trucks as cars (Fig. 8-B4). E5 believes the mislabeling issue in the
data needs to be fixed and thus saves several truck images. To refine
this slice, the user searches for “errors caused by buses” (Fig. 8-
E), adjusts the range bar to exclude trucks and clicks the “Replace”
button to replace the original slice. After clicking the “Edit” button,
the user may change the keyword “red bus” to “bus” and modify
explanation slightly for a more accurate description (Fig. 8-F).

Slice navigation. E1 sorts slices (Fig. 8-A1) by precision and no-
tices that slice 3 has a low precision (0.12), indicating FPs are likely
to occur. The slice examples and explanations are shown in Fig. 9,
suggests that the detector often misclassified motorcycles as cars,
or that motorcycles obstructed the car.
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Through iterative analysis, E1 saves more slices of interest
(Fig. 10). For example, slice 5, with the largest number of FNs,
mainly occurs on streets with overlapping cars. The error is likely
caused by low labeling quality, as described by the explanation,
“the ground truth car is partially obstructed by other objects such
as buses, cars, buildings, fences, mirrors, windows.” Slices 6 and
7, spatially close in the plot view, mostly appear in indoor and out-
door commercial scenes such as exhibitions, typically with open
car hoods. These slices present unusual car states, and contain out-
of-distribution examples where the detector fails.

Slice 5

Slice 6

Slice 7

Figure 10: Car detector: FPs and FNs in slices 5, 6, and 7.

Hypothesis testing. While investigating the data slices, E5 finds
some images containing snow, and wants to investigate whether
snow negatively impacted the car detection. To test their hypoth-
esis, as shown in Fig. 11, E5 globally queries “Car in the snow
weather” and then adjusts the slider to include 5 FPs and 8 FNs to
form a hypothetical slice that has a precision of 0.38 and a recall
of 0.27. From the instances and explanations, E5 deduces that cars
covered by snow or tree branches, in low visibility, can impact the
model performance.

Figure 11: Hypothetical slice in snowy weather created by queries.

6.3. Use Case 2: Improving a Person Detection Model

The same experts, E1, E3 and E5, also use VISLIX to analyze a
person detection model, as shown in Fig. 12. After adjusting the
plot level of detail for a more granular inspection of the embedding
(Fig. 12-A3), E3 notices a dense cluster on the left side of the view
that the algorithm does not identify as a slice. Using the brushing
tool, E3 observes numerous images featuring horses and persons
(Fig. 12-A1) and posits it as a missing slice. Thus, he creates a new

slice for these predictions to validate his hypothesis (Fig. 12-A2).
This new slice, shown in Fig. 12-B, has a low precision of 0.32, and
the explanation suggests the failure reason to be misclassification
or occlusion caused by horse features such as heads and legs. This
slice is then saved for further analysis. E1, E3, and E5 also identify
other critical slices based on their experience, and all saved slices
(1-8) are shown in Fig. 12. These slices typically have coherent
explanations and are caused by occlusion or inaccurate detections
in diverse scenarios such as bicycle (1) and boat (2) scenes, people
inside vehicles (3, 4), infants (6), and indoor scenarios (5, 7).

Based on the feedback from the users, we fine-tune the model
with a focus on these eight slices. The strategy is to retrieve im-
ages from training data that resemble the images in these slices,
and then use them to train the model with one more epoch. Specif-
ically, we employ two approaches to extract images. The first is
embedding-based, where we export the slice images from VISLIX
and convert them into embeddings through the encoder of BLIP-
2. Then, we compute the embedding center and select the training
images whose embeddings are closest to the center. The second ap-
proach uses CLIP scores [RKH∗21], which measure the alignment
between images and text descriptions and have been widely used
in image retrieval [JCPT23]. Following Johnson et al. [JCPT23],
we use the template “A photo of [...]”, together with the slice de-
scription generated by VISLIX. Then, we extract training images
that have higher CLIP scores with the slice description. For each
approach, we curate a new training set.

The model is then trained for one more epoch using the re-
weighting technique [IAPLP22] for worst-group optimization: we
select three times the number of images for each slice, combine
the original eight slices, and replicate them to match the size of
the original training set. The retraining is done on three datasets:
the original dataset, the embedding-based augmented dataset, and
CLIP score-based training dataset. We refer to three conditions
as Original, Embedding, and CLIP Score. We then validate each
model and recalculate the slice metrics (precision and recall) and
model metrics (precision, recall, and mAP). Slice metrics are ap-
proximated by considering all objects in these images. Overall,
across all three conditions, the Embedding and CLIP Score con-
ditions demonstrate the best trade-off between slice precision and
recall, achieving comparable mAP values of 0.7878 and 0.7845,
respectively—approximately 3% higher than the baseline mAP of
0.7542 before fine-tuning. In contrast, the Original condition yields
a mAP of 0.7265, falling below the baseline. Notably, the CLIP
Score condition exhibits the best slice-level performance, with 5
slices showing the biggest improvements in precision and another
5 slices showing the biggest improvements in the recall. This might
be due to the fact that CLIP Score retrieves more diverse images
than Embedding. We offer the detailed results in the supplement.

6.4. Use Case 3: Analysis of a Dog and Chair Detector

E2, E4, and E6 analyze the detectors for the classes “dog” and
“chair”. Here, we summarize their insights regarding the model’s
edge cases. Dog detector: All experts quickly observe that the
model frequently confuses dogs with other animals. E2 notes, “The
explanations are really good: sheep and cows recognized as a dog.”
Additionally, E4 and E6 identify a recurring issue when a person is
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The common feature in these environments 
is the presence of a horse and a person or 
multiple people interacting with the horse.
Primary reason for FP: The similarity in 
appearance between certain parts of the 
horse (e.g., head, bridle, legs) and a person, 
leading to misclassification ….
Primary Reason for FN:  The occlusion 
caused by the horse's body or head, which 
obstructs the view of the person's body…

False Positive: 71

False Negative : 15

Precision: 0.28   Recall: 0.65 
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Figure 12: Illustration of the slices in the person detector used in use case 2. (A) The density plot view with a high plot detail (A3). The area
A1 is brushed to form a new slice (A2). (B) The new slice information, such as a sample of False Positives (FPs) and False Negatives (FNs),
and explanations. (C) Shows two FPs and two FNs for each of slices 1-7. The corresponding slice numbers (1-8) are annotated in (A).

playing with a dog, where occlusion by the person often causes
bounding box detection errors. Chair detector: All experts agree
that occlusion by people sitting on chairs is the primary cause of
most model failures. As E4 explains, “An obvious thing would be
people sitting on chairs.” However, other factors also affect de-
tection performance. A noteworthy observation is that chairs with
unique designs are often missed. E2 remarks, “The false negative
cases are chairs that look different and have some different kind
of design.” Furthermore, E6 identifies couches as a frequent source
of mistakes. After querying for “couches,” he suggests that many
false positives could be attributed to inconsistent labeling.

6.5. Expert Feedback

Experts have praised VISLIX, noting its user-friendliness and func-
tionality. E1 highlights the system’s ability to provide insightful
findings from edge cases, enhancing hypothesis testing: “The ini-
tial findings from various edge cases provide valuable insights into
failure scenarios. Delving into these groups has inspired me to un-
cover further reasons, enabling easy testing of my hypotheses.”
Furthermore, E2 and E5 appreciate the quick access to detailed and
organized data slices, which facilitates a deeper understanding of
the model. E2 mentions that “the slices are clustered nicely and
are visually and semantically consistent”. The system’s intuitive
user interface is praised by E3: “It is simple to use and pretty easy
to adapt to.” E4 and E6 remark on the flexibility and capabilities of
the tool for exploring the model’s mistakes. E6, in particular, high-
lights the system is a “very intuitive tool to understand the edge
cases and hone in on them based on the explanations provided”.
Overall, VISLIX has been recognized for its effective design and
functionality, aiding users in efficiently navigating and analyzing
complex data scenarios.

VISLIX has generally been well-received, but it has also drawn
some constructive criticism from experts. E1 and E5 observe that
the explanations provided by the system can be superficial and may
fail to address the specific reasons behind the edge cases. E2 and E4
raise concerns about limitations due to dataset quality, such as in-

a b

Figure 13: Examples of two slices with low-quality FP explana-
tions. (a) a dog detector. (b) a chair detector.

consistent labeling. However, they also note that the VISLIX could
be used to identify these inconsistencies and improve data label
quality. E5 and E6 suggest enhancements to the user interface, par-
ticularly for image navigation, such as zooming and panning, and
displaying ground truth and predictions separately to better support
detailed examination of the data. These insights shed light on areas
for potential refinement to enhance the system’s capabilities and
user experience. Experts have also evaluated the VISLIX tool and
explanations using a 5-point Likert scale. The results reflect a pos-
itive overall impression of VISLIX; see the supplement for details.

Explanation evaluation. We further analyze explanations with
strong disagreement or average scores below neutral. One notable
issue is model hallucinations: as shown in Fig. 13, the explanation
of slice (a - dog detector) states, “model mistaking objects or ele-
ments in the scene, such as towels, pillows, patterns, or furniture, as
part of the dog”, whereas partial detection and occlusions of towels
or pillows are more likely the reason. However, we find most indi-
vidual explanations are sound, frequently mentioning “only part of
the dog is detected” and surroundings of “towel, couch, and pil-
low”. We speculate that LLM incorrectly connects these elements.
Additionally, we notice that VISLIX struggles to interpret small de-
tection: Fig. 13 slice (b - the chair detector) is wrongly explained as
“the model mistaking objects or textures in the scene, such as fab-
ric, spheres, reflective surfaces, or wigs, as chairs”. We attempted
to refine the prompt by including the ratio of the detection region
to the image, expecting the explanation would mention size-related
challenges. However, we found that the model is often insensitive
to such a ratio, misinterpreting a tiny detection as a large portion of
the image. An alternative is to explicitly show the detection size in
the system to inform experts, which we leave for future work.
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6.6. Comparison with Other Slice Discovery Systems

The most relevant work to ours is ConceptSlicer [ZPOH∗24],
which identifies slices in object detectors using visual concepts. We
run ConceptSlicer on the car detector (Sec. 6.2) and identify 9 slices
with accuracy at least 5% below average. We then remove visually
inconsistent slices and merge highly overlapping ones caused by
concept quality issues (e.g., a single label for different object types
or multiple labels for the same object). Fig. 14 shows samples from
the resulting three slices, which align with the three slices identified
by VISLIX: airplanes (Fig. 9-1), buses (Fig. 8-2), and motorcycles
(Fig. 9-3), respectively.

Slice 3. Concept tag:
Maybe motorbike, bicycle, car

Slice 2. Concept tag: 
Maybe bus, train, platform

Slice 1. Concept tag:
Maybe airplane, track, ground

False Positive False Negative Visual concept mask Noisy example

Figure 14: Samples (FPs and FNs) of three slices in the car detec-
tor identified by ConceptSlicer. The relevant visual segments are
masked in yellow. Spurious segments that are irrelevant to the de-
tection are highlighted with dotted boxes.

We observe that VISLIX often produces finer-grained slices.
For example, ConceptSlicer groups all motorbike-present images
regardless of detection relevance (Fig. 14-3), while VISLIX iso-
lates motorbike misclassification or occlusion cases, e.g., mo-
torbike/person interactions (Fig. 9-3). Similarly, ConceptSlicer
merges distinct but visually similar scenarios like “airport run-
ways” and “race tracks” (Fig. 14-1), whereas VISLIX separates
them (Fig. 9-1). Moreover, VISLIX identifies slices missed by Con-
ceptSlicer due to its reliance on visual concepts. For instance, slice
5 (Fig. 10, “car overlap”) and slices 6 and 7 (missing concepts like
“exhibition” and “car hood”) are absent in ConceptSlicer. Abstract
factors like image quality and weather are also overlooked by Con-
ceptSlicer, missing slices for small detections and snowy condi-
tions (Fig. 11). These examples show that visual concepts alone
struggle to capture key features like image context (e.g., location,
environment) and object relationships (e.g., proximity, positions).
VISLIX bridges this gap by leveraging foundation models to ex-
plain detection mistakes.

We also compare VISLIX with AttributionScanner [XOG∗25],
a metadata-free method using attribution-weighted embeddings to
detect slices in image classifiers. Adapting VISLIX to the land-
bird/waterbird classification task, we found 7 problematic slices
for AttributionScanner and 5 for VISLIX. Our results suggest Attri-
butionScanner focuses on spurious background correlations, while
VISLIX captures and explains nuanced patterns, revealing model
vulnerabilities to bird species, scenes, spurious correlations, and
labeling issues. Further details are provided in the supplement.

7. Discussion and Future Work

Improving the slice discovery method. In VISLIX, the context re-
gion is obtained by enlarging the detection window twice. Although

this strategy aligns with the previous work [ZZW∗17], it may still
capture insufficient context, particularly for small detections, re-
sulting in inconsistent slices. A cropping strategy that prioritizes
detection while maintaining sufficient context is needed. Further-
more, enabling user control of UMAP and HDBSCAN parameters
could be a future enhancement [JCPT23], but it must carefully bal-
ance added complexity and computational cost.

Enhancing the quality of slice explanations. We break down the
slice explanation task into three steps (Sec. 5.2): individual expla-
nations, noise reduction, and explanation aggregation. We leverage
prompt engineering [CZLZ23] (e.g., chain-of-thought reasoning,
role-playing) and integrate knowledge of common detection errors.
While these improve explanation quality, model hallucinations may
still cause ungrounded explanations, such as confusing occlusion
with misclassification or misinterpreting tiny detections. To address
this, future work includes user-modifiable prompts, golden expla-
nations as few-shot examples [DLD∗22], and TPs as contrastive ex-
amples [RMP21]. Additionally, predefined questions (Tab. 1) may
not generalize; e.g., the “weather” question (Q3) is unsuitable for
indoor settings. Allowing experts to tailor core questions to appli-
cations is another way to improve explanations.

Improving the visual analytics system. The VISLIX interface
helps users extract insights that are otherwise difficult to obtain.
For example, as shown in Sec. 6.2, the density plot (Fig. 8) allows
experts to identify isolated slices (slice 1), detect noise (2), and
recognize visually similar slices (6, 7) by analyzing cluster density
and distribution, enhancing slice inspection. Hypothesis testing via
query (Fig. 11) and visual selection (Fig. 12) further aids model val-
idation by uncovering previously unnoticed slices. Inspired by ex-
pert feedback and recent research, we plan to enhance our system
by (1) displaying ground truth for incorrect detections, enabling
the identification of mislabeled data, and (2) expanding the search
space beyond the validation set (e.g., via image retrieval) to im-
prove hypothesis testing and enable model refinements with addi-
tional training data [BHM23, WAG22, ZPOH∗24].

Extending to other vision tasks. We plan to generalize VISLIX
to tasks like semantic segmentation by using segment contours for
the future. However, defining context and intersection regions for
irregularly shaped segments requires careful consideration.

8. Conclusion

We present VISLIX, an XAI framework that leverages VLMs and
LLMs to validate computer vision models in a human-in-the-loop
manner. VISLIX automatically discovers and explains data slices,
particularly in object detectors, and empowers experts to efficiently
explore slices and interactively test hypothetical slices through a
visual analytics system. Additionally, this framework is model-
agnostic and can continually benefit from the ongoing advancement
of foundation models.
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