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Figure 1: Overview+detail of the marketing research dataset. Our approach for representing multiway dependencies in multivariate data begins with (a) an overview supported by a
glyph representation of all pairwise, 3-way, and 4-way relationships for 4 variables. The overview can be (c) reordered, (d) filtered, (e) zoomed, and individual glyphs can be selected.

When selected, the variables of the selected glyph will then populate the detail view (b).

Abstract

Analyzing dependencies among variables within multivariate data
is an important and challenging problem, especially when the num-
ber of data points is large, the number of variables is high, or mul-
tiway dependencies are of interest. Several visualization methods
have been proposed to aid in the exploration of such information
through the direct visualization of the summary statistics. These
methods are typically limited to the study of all possible pairwise
relationship but in a manner that does not scale to large multidi-
mensional data. In cases where 3-way relationships are investi-
gated, only subsets of dimensions are considered. In this paper,
we propose a novel technique for analyzing multiway dependen-
cies through an overview+detail visualization. In this approach,
the overview represents all pairwise, 3-, and 4-way dependencies
in the data using glyphs that provide a global visual exploration
interface for selecting candidate relationships. Exploration is sup-
ported through interactive filtering, sorting, zooming, and selection
operations. Once selected, the detailed view helps in developing
an inference by providing specific information about those selected
variables. Various use cases demonstrate how our approach helps
to explore multiway dependencies efficiently in large datasets.
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1 Introduction

Determining dependency is a task of utmost importance in many
fields of science, engineering, and business. For example, in sci-
ence, extensive parameter space searches can be reduced by under-
standing which output variables are dependent upon which input
variables. In business, dependencies between two or more variables
can help managers predict and improve their product positioning.
However, this analysis is challenging when the number of potential
relationships is large and/or multiway dependencies are of interest.
With current techniques, it is infeasible to represent the detail of all
possible multiway dependencies.

Several visualization methods have been proposed to aid in the ex-
ploration of such information through the direct visualization of
summary statistics. For correlation, several approaches have been
proposed, including static correlation visualization for large time-
varying volume data [Chen et al. 2011], multifield-graphs [Sauber
et al. 2006], etc. One major limitation of these approaches is that
they represent only pairwise relationships in a single view. UnTan-
gle Map [Cao et al. 2015] proposes a triangle mesh layout, based
on a greedy algorithm, to represent sets of 3 variables. This method
does not represent all possible relationships but tries to choose the
most relevant ones. Unfortunately, the algorithm makes assump-
tions about which relationships are relevant and does not accom-
modate situations in which users need to understand all potential
multiway relationships. Finally, to the best of our knowledge, no
techniques have looked at 4-way relationships.
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Therefore, we propose a new interactive statistical visualization tool
to effectively perform exploration tasks considering all possible 2-
(i.e., pairwise), 3-, and 4-way relationships in the data. For mea-
suring dependencies, we use the coefficient of determination, or
R2, which is a common measure for the fit of a statistical model.
Our approach uses an overview-+detail style interface with a simple
glyph representation guiding the exploration. To aid in exploring
the data, we provide a robust set of interactive mechanisms, includ-
ing selection, filtering, panning, zooming, and animation, to help
find relationships of interest. We provide visual encodings of mul-
tiway dependencies in a detail view using a point-based represen-
tation modified and extended from UnTangle Maps. The resulting
approach enables efficient sifting through many multivariate rela-
tionships and is capable of supporting large datasets.

In summary, we provide a new interactive visual exploration tool
with which users can easily interact and effectively perform statis-
tical dependency tasks. Our tool includes:

e An extension of UnTangle Maps to support 4-way depen-
dency exploration.

e New glyph-based visual encodings for 2-, 3-, and 4-way de-
pendencies, which support flexible investigation.

e An interactive overview with robust interactive mechanisms
that represents large numbers of multiway dependencies and
enables quick reduction to meaningful relationships.

2 Related Work

Multivariate relationship analysis is an important visual analysis
task [Chan et al. 2010]. To gain insight from the complex mul-
tivariate data [Keim et al. 2006], a number of analysis approaches
have been proposed, such as sampling [Thompson 1992; Chen et al.
2011], clustering [Beham et al. 2014], reducing the number of vari-
ables [Jeong et al. 2009], or the introduction of object and dimen-
sional correlation during projection from multidimensional space to
3D [Teoh and Ma 2005]. Many visualization techniques have been
proposed to improve correlation identification, but these techniques
are not optimally designed for large or high-dimensional data.

SPLOM & Related Techniques. A Scatterplot Matrix
(SPLOM) [Hartigan 1975; Huang et al. 2012] shows the re-
lationships of all pairs of variables by organizing a grid of 2D
scatterplots. However, each scatterplot must render every data
point. This problem can be mitigated by approaches such as
Corrgrams [Friendly 2002], which display a matrix of correlation
glyphs. Nevertheless, as the number of variables increases, the
number of plots grows quadratically, making it difficult to present
all of data. The Correlation Coordinates Plots and Snowflake
Visualization improve upon this layout [Nguyen and Rosen 2016].
Navigation can also help search larger spaces [Elmqvist et al.
2008]. Another method, based on flow-field analysis and applied to
scatterplots, uses sensitivity coefficients to highlight local variation
of one variable with respect to another [Chan et al. 2010]. Finally,
multivariate data can be projected from their attribute space to 2D,
such that points with similar attributes are located close to each
other [Janicke et al. 2008].

Parallel Coordinates & Related Techniques. Parallel Coordi-
nates Plots (PCPs) [Inselberg 1985] are another well-known visu-
alization technique for exploring multivariate datasets in a pairwise
manner. However, user’s ability to infer relationships is often over-
estimated [Harrison et al. 2014; Kay and Heer 2016]. Various mod-
ifications to PCPs, such as using color, opacity, smooth curves, fre-
quency, density, or animation [Heinrich and Weiskopf 2013; Viau

et al. 2010; Yuan et al. 2009], have been shown to improve relation-
ship identification over the standard implementation.

Other Multivariate Data Techniques. Many methods use cor-
relation coefficients to calculate relationships among variables in
data. Gosink et al. [Gosink et al. 2007] present a method that in-
creases the utility of query-driven techniques by visually conveying
statistical information about the trends that exist between variables
in a query. In this method, correlation fields, created between pairs
of variables, are used with the cumulative distribution functions of
variables expressed in a user’s query. Qu et al. [Qu et al. 2007] used
the correlation coefficient to calculate the strengths between differ-
ent data variables in weather data analysis and visualization. Glatter
et al. [Glatter et al. 2008] used two-bit correlation to study tempo-
ral patterns in large multivariate data. Sukharev et al. [Sukharev
et al. 2009] proposed a method based on analyzing pairwise corre-
lation in time-varying multivariate data by using point-wise cor-
relation coefficients and canonical correlation analysis. Another
pairwise correlation visualization approach used local anisotropic
correlation structures in the vicinity of uncertain isosurfaces and
used glyphs to visualize these dependencies [Pfaffelmoser et al.
2013]. Jen introduced a design for exploring correlations between
two scalar fields [Jen et al. 2004]. Some methods have used data
mining techniques to gain insight. Gu and Wang presented three hi-
erarchical clustering methods based on quality threshold, k-means,
and random walks to investigate the correlations with varying levels
of detail [Gu and Wang 2010].

Large Data Techniques. Several approaches deal with large and
complex correlation fields. The Multifield-Graph is used to give an
overview of how multiple fields correlate and to show the strength
of their correlation [Sauber et al. 2006]. The core of their ap-
proach is the computation of correlation fields, which are scalar
fields containing the local correlations of subsets of the multiple
fields. [Chen et al. 2011] also introduced a sampling scheme to
summarize the correlation connection in time-varying multivariate
datasets. This scheme consists of three steps: selecting impor-
tant samples from the volume, prioritizing distance computation for
sample pairs, and approximating volume-based correlation. This
sample-based approach enables users to obtain an approximate cor-
relation coefficient in a cost-effective manner, making it scalable
for large datasets. Furthermore, [Nagaraj et al. 2011] proposed a
multifield comparison measure for scalar fields that helps in study-
ing relations between them. The comparison measure is insensitive
to noise in the scalar fields and to noise in their gradients. Addi-
tionally, [Liu and Shen 2016] proposed a novel association analysis
method that guides visual exploration of scalar-level associations
in the multivariate context. They model directional interactions be-
tween scalars of different variables as information flows to explore
the scalars of interest with confident associations in the multivariate
spatial domain, and provide guidelines for visual exploration.

UnTangle Map. UnTangle Map [Cao et al. 2015] is an effective
way to investigate the relationships between data items and their
probabilistic labels, as well as the relationships among labels. The
design extends the traditional ternary plot, useful for pairwise and
3-way relationship finding, into an interactive mesh of triangles in
order to effectively show item-label relationships, and to enable the
scattering patterns of items to aggregate into a visual summary of
the underlying labels. However, this design has some limitations.
First, it does not represent 4-way relationships, nor it is obvious
how to extend the approach to higher dimensional relationships.
The mesh is laid out in a greedy manner that requires interaction
when all relationships have been explored. Furthermore, with large
numbers of dimensions, either the plots need to shrink or a smaller



percentage of relationships will be shown.

All the approaches reviewed here assist in investigating dependen-
cies in multivariate data. However, these techniques have limita-
tions: first, they are limited in the dimensionality of relationship (to
either pairwise or 3-way relationships); second, they are limited by
the number of data points they can visualize; and finally, they are
limited by the number of relationships they can display simultane-
ously. The goal with our approach is to address these limitations.

3 Multivariate Dependency Modeling

3.1 Pairwise Statistical Correlation

Pairwise relationships can be measured by a wide variety of
techniques. Here, we focus on the Pearson Correlation Coeffi-
cient [Benesty et al. 2008; Ke et al. 2008; Magnello and Vanloon
2009; Wang and Zheng 2013] and Spearman Rank Correlation Co-
efficient [Hogg and Craig 1995; Hogg and Craig 1998], although
our technique can generalize to other measures.

The most common correlation measure is the Pearson Correlation
Coefficient (PCC). The PCC, p(x,y), measures the linear relation-
ship between two variables x and y with means X and y and standard
deviations oy and oy. It is defined as:

_cov(x,y)  Z(xi—%)(yi—7)
play) = G = G0

PCC makes two important assumptions about the data. First, it as-
sumes a linear relationship. However, finding nonlinear relation-
ships can be important [Chen et al. 2010]. Second, data must be
approximately normally distributed with no significant outliers.

The Spearman Rank Correlation Coefficient (SRCC) is the non-
parametric version of the PCC that measures the strength of asso-
ciation between two ranked variables. The rank or order Rx of the
data points x is calculated for each variable independently. Then,
the PCC of the ranked variables is calculated as PCC(Rx, Ry).

3.2 Multivariate Dependency and the Coefficient of De-
termination

The coefficient of determination, or R2, is used to measure how
well the data fit a model [Allison 1998; Keith 2006]. Our usage
of the measure is under the context of multiple correlation, which
is a measure of how well a given (dependent) variable can be pre-
dicted using a linear combination of other (independent) variables.
The value of R? ranges between 0 and 1, where a higher value in-
dicates better predictability of the dependent variable. A value of
1 indicates that the independent variables can perfectly predict the
dependent variable, and a value of 0 indicates that no linear com-
bination of the independent variables is a better predictor than the
fixed mean of the dependent variable.

Multiple correlation requires the selection of a set of independent
variables, x1,x2,...,xy, and a single dependent variable, y. R? can
then be computed using the following equation:

2 -1
RP=c'Rlc (3.2.1)

The correlation matrix R,, represents the inter-correlations between
independent variables. The vector ¢ contains the pairwise correla-
tion ry;, between the independent variables x; and the dependent

variable y. They take the form:
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If all the independent variables are uncorrelated, the matrix Ry, is
the identity matrix and R? simply equals ¢ ¢, the sum of the squared
correlations with the dependent variable. If the predictor variables
are correlated among themselves, Ry,! will account for this.

4 Visual Design of Multiway Dependencies

The visualization of dependencies for multivariate data is challeng-
ing due to the sheer number of potential relationships. For a given
dataset of n variables, the number of dependency relationships is
(;), 3% (’;), and 4 * (Z) for 2-, 3-, and 4-way relationships, respec-
tively. For a dataset of 20 variables, for example, there are 190
2-way, 3420 3-way, and 19,380 4-way relationships. A static dis-
play showing detailed information about all potential variable rela-
tionships for such multiway dependencies may be overwhelming,
confusing, and difficult to make any judgment upon. Therefore, we
develop a multiscale overview+detail design that initially visualizes
summaries of all relationships but provides a variety of interactions
to filter and investigate the details surrounding interesting variable
combinations.

4.1 Overview Design

The premise of our design is quite simple: display as many sum-
maries of relationships as possible, while providing the ability to
sort, filter, and investigate their corresponding details.

4.1.1 Individual Dependency Glyphs

Our first design goal is to represent all possible dependencies on
a single interface. First, the three dependency types can be repre-
sented as different glyph shapes and colors. A 2-way relationship
is represented with an orange circular glyph (top left of Figure 2a).
A 3-way dependency is represented as a purple triangle (top middle
of Figure 2a). A 4-way relationship is represented by a light blue
squares (top right of Figure 2a). These simple visual encodings
can be embedded in the overview such that both the x- and y-axis
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(b) Separate glyph overview.

(a) Visual encodings, circle, tri-
angle, square, for 2-, 3-, and 4-
way dependencies, respectively. B
Glyphs are shown individually E
(top) and composited (bottom).

(¢) Composite glyph overview.

Figure 2: Glyphs used to represent multiway dependencies in the overviews.



are controlled independently, such as in Figure 2b. For each axis,
the user may select metrics, including dimension sorting through
ordered permutations, R2, and time (for time series data).

4.1.2 Multiple Dependency Glyphs

Given the large number of potential relationships, we are interested
in designing a glyph to reduce the visual clutter.

Consider a set of four variables. Among these variables, for any
two, the dependency is symmetric (i.e., either variable may be the
dependent variable). Therefore, there are (3) or 6, possible 2-way
relationships. For possible 3-way dependencies, each of the four
variables can be dependent to (%) or 3, combinations of the other
variables. That means a total of 12 3-way dependencies. Finally,
each variable can be dependent to all others in a 4-way dependency,
for a total of four 4-way dependencies. Among four variables, 22
dependencies exist, which summarize all possible relationships.

To visually represent all potential relationships among these vari-
ables, we can composite the glyphs from Figure 2a top into the
glyphs seen in Figure 2a bottom. Now, this glyph summarizes 22
dependencies—the circle summarizes 6 2-way dependencies, the
triangle summarizes 12 3-way dependencies, and the square sum-
marizes 4 4-way dependencies. Additional information is provided
by modifying the color of the glyphs based upon the average R?
score of the corresponding dependencies. The solid color repre-
sents RZ = 1 and white represents R? = 0.

The glyphs are positioned in such a way that both the x- and y-axes
can be controlled independently. The user may select metrics, in-
cluding ordered permutations of dimensions, Rlzm-n, RZ R(%Vg and
time. R2,,, R2,,., and Rgvg are calculated by performing the associ-
ated operations on all dependencies represented by the glyphs.

4.1.3 Interactions

Ordering. Recall the user may select different metrics for sort-
ing, including ordered permutations of dimension, R2,,, R, Rgvg
and time. Switches among the sorting metrics are handled through

animation to maintain context.

Individual vs. Composite Glyphs. Users have the option to
switch between the composite glyphs (Figure 2c¢), and the individ-
ual relationship glyphs (Figure 2b). They may also limit the rela-
tionships of interest (e.g. only 2- and 3-way relationships). Similar
to the sorting operation, when switching configurations, glyphs are
animated to maintain context.

Filtering. We provide an upper and a lower threshold for filtering
the R? scores of glyphs, such that users can reduce the volume of
data to be visualized and find meaningful relationship glyphs. Users
can raise/decrease the threshold when they want to identify glyphs
that represent stronger/weaker dependencies, respectively.

Navigation. Users can zoom and translate the projection space
to navigate and explore variable dependencies. The size of the
glyphs changes based upon the number of visible glyphs. When
more than 1M glyphs are displayed on the screen, each is replaced
by a point (Figure 8a). When the number of glyphs is small enough,
a 4-way detail view (explained in the following section) is shown
(Figure le). Otherwise, they appear as composite glyphs.

Selection. We provide three selection mechanisms. The first
mechanism allows the user to select which variables to include or

exclude from the analysis. The second allows users to create a se-
lection box or lasso around a region of interest, and the associated
zoom and translate operations are updated. The final mechanism
selects an individual glyph. Once selected, its corresponding set of
relationships is highlighted in the detail view.

4.2 Detail View Design

When a glyph is selected in the overview, the detail view is updated
to provide details of the four variables represented by the glyph.

4.2.1 Visual Encoding Design

Our approach uses an extended version of UnTangle Maps [Cao
et al. 2015] to represent the relationships. Untangle Map repre-
sents 2- and 3-way dependencies using a ternary plot as shown in
Figure 3a. This is a barycentric plot of three variables with each
at a vertex, and the three variables DO, D1, D2 are vertices of
the triangle. When an item is associated with the three variables
with varying probabilities, such probability information presents
the detailed relationships among the three variables. In particu-
lar, if an item contains values for the three variables D; as v; re-
spectively (for i € {0,1,2}), the probability of this item being D; is
vi/(vo+vi +vy). For example, the item i (blue point) is associated
with DO, D1, and D2 with probabilities 0.25, 0.5, and 0.25. The
position of the point closer to D1 indicates this higher probability.

The standard UnTangle Map display does not directly provide in-
formation of 4-way dependencies. Understanding 4-way dependen-
cies in UnTangle Maps requires mentally stitching the information
of 4 plots together. Instead of identifying the relationship in four
different plots, we propose a new representation that builds on the
previous 3-way design by replicating, rotating, and overlapping the
ternary plots to reveal the 4-way relationship.

In this design, the relationship is broken up into four triangle plots
contained within a square. Each edge of the square (D0,D1),
(D1,D2), (D2,D3), and (D3, D0) has been colored red, blue, green,
and purple, respectively. Each data point is broken up into four
components of the corresponding color. Each component (i.e. a
colored point) is placed in the square using a ternary plot made up
of the edge vertices and the midpoint of the opposite edge (e.g. edge
(D0,D1) with point A in Figure 3b). A colored point is placed in
this plot using the two vertex variables and the sum of the probabil-
ities of the other two variables.

For example, consider that a data point in Figure 3b has a proba-
bility of DO, D1, D2, and D3 as 0.65, 0.2, 0.1, and 0.05, respec-
tively. The ternary plot for (DO, D1) is highlighted with the red and
gray dashed lines. The red point (corresponding to (D0,D1)) is
placed based upon the probability 0.65, 0.2, and 0.15 (0.1 4 0.05).
(D1,D2) (blue point) is placed with probability 0.2, 0.1, 0.7.
(D2,D3) (green) is placed with probability 0.1, 0.05, 0.85. Finally,
(D3,D0) (purple) is placed with probability 0.05, 0.65, 0.3.
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(a) 2- & 3-way mapping (b) 4-way mapping

Figure 3: Mapping for 2-, 3-, and 4-way dependencies.
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Figure 4: Visual patterns for non-, uni-, and bi-dominant relationships.

4.2.2 Visual Patterns

In both the standard and our extended version of UnTangle Map, the
important visual pattern is proximity to a vertex or an edge. Proxim-
ity to a vertex indicates dominance of a single variable. Proximity
to an edge indicates dominance of two variables. Some of these
visual patterns can be seen in the examples in Figure 4. When no
variable shows dominance (Figure 4a), all points are centered in the
triangle or square. When a single variable is dominant (Figure 4b),
the points focus around vertex SO. In bi-dominant relationship (Fig-
ure 4c), the points focus between two vertices, SO and S1.

5 Evaluation

To evaluate our approach, we apply our method to four datasets:
a product marketing dataset with 47 variables, a particle physics
dataset with 66 variables, the National Health and Aging Trends
Study (NHATS) dataset with 60 variables, and the Hurricane Isabel
dataset with 13 variables over 48 time steps.

5.1 Performance

We build our software using Processing. We have run our exper-
iments on a variety of desktop and laptop systems running Linux,
MAC OSX, and Windows.

The visualization rendering itself is interactive. Assume that the
dataset has n variables and each variable has k data points. For the
overview, our visualization represents () 43 (3) 44 (;) multi-
way dependencies through (Z) glyphs. We have tested our approach
up to n = 624, and the system has maintained its interactivity. Ren-
dering the detail view is dependent upon the number of data points.
Each point needs to be rendered 8 times: 4 times for the 3-way Un-
Tangle map and 4 times for our 4-way UnTangle map extension.
Therefore, the total number of points rendered is 8k.

The main computational challenge is the precomputation needed
for determining dependencies, in particular, the pairwise corre-
lation coefficients. Computing Pearson Correlation Coefficients
and Spearman Rank Correlation Coefficients takes O(nzk) and

O(nklog(k)), respectively. Computing the Coefficient of Deter-

mination for Multiple Correlation, R? for 2-, 3-, and 4-way depen-
dency takes dependency takes O(n?), O(n?), and O(n?), respec-
tively. Therefore, this approach has an aggregate computing time
of O(n?k +n*) or O(n*klogk +n*). In general, k > n, leading to
the pairwise computation being the bottleneck. Fortunately, much
of the computation is embarrassingly parallel, and is parallelized in
our implementation.

5.2 Marketing Research Case Study

Marketing research data, often collected via surveys, is used to
identify groups of individuals who might best be served by a partic-
ular product design. In this case, we use the Pacific Brands/Berlei
Bras case study data, which is commonly used in business school
marketing courses. Marketing researchers divide their questions
into two types. First, segmentation variables, such as age, sex, in-
come, etc., are used to differentiate groups of people (i.e. indepen-
dent variables). Second are discriminant (i.e. dependent) variables,
which are qualitative, such as feelings about color, texture, etc.

This dataset contains 21 segmentation variables and 26 discrimi-
nation variables, that is, a total of 47 variables with 1,081 2-way
dependencies, 48,645 3-way dependencies, and 713,460 4-way de-
pendencies. This requires 178,365 glyphs to represent all multiway
dependencies.

First, after loading the data into the system, the overview is shown
(Figure 1) with the Pearson Correlation Coefficient. Optionally, the
Spearman Rank Correlation Coefficient can be selected (Figure 5a)
when a non-parametric view of dependency is more appropriate.
To understand 2-, 3-, and 4-way dependencies separately, these op-
tions are selected and animations are used to highlight their tran-
sitions into new positions (Figure 5b). The order of points can be
modified along the x-axis (Figure 5c), y-axis (Figure 5d), or both
(Figure 1c). In these cases, the x-axis is switched to RZ,,, and the y-
axis is switched to Rlzwg, with animation connecting the transitions.
It is clear from many of these views that most dependencies are
weak. A filter on R? € [0.6, 1.0] significantly reduces the number of
relationships to explore (Figure 1d).

(b) 2-, 3-, and 4-way dependency

(¢) Switching x-axis ordering

-

(e) Overview after filtering (f) Selection View

Figure 5: A variety of overviews and one detail view of the marketing research dataset.
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(a) Composite glyph overview

(b) 2-, 3-, & 4-way glyphs overview

(¢) Detail view

Figure 6: Two overviews and one detail view of the physics data.

After some navigation and exploration, a smaller number of glyphs
occupy the screen to highlight their corresponding relationships
(Figure le), which helps to quickly identify the strengths and di-
rections among the relationships.

In the detail view in Figure 5f, the selected glyph contains variables
$0,D9,D10, and D11:

e S0: I am very conscious of bras as fashion objects.
e D9: 1 like to shop in the same lingerie stores as my friends.

e D]O0: I use other people as a source of information for pur-
chase decisions.

e D]I: I use magazines or newspapers as a source of informa-
tion for purchase decisions.

Figure 5f shows that some data points move toward SO but most of
the data points are in the middle. There is no point towards D10,
which indicates that SO is weakly dominant in the 4-way relation-
ship. Figure 5f also shows that there are no points around D70 in
3-way and 4-way dependencies. D10 is less dependent upon other
variables (SO, D9, D11). This shows that to design bras fashion ob-
jects, information of friends shopping destination, and magazines or
newspapers are a good source of information, since SO, D9, D11 are
highly correlated. This previously unknown combination of opin-
ions helps to quickly identify groups of individuals who are best
served by a particular product design. The result might lead mar-
keters to choose a particular design or advertising campaign.

5.3 Particle Physics Case Study

The physics dataset represents a parameter space search in simu-
lations that model subatomic particles under the supersymmetric
extension of the Standard Model. The data has 25 input and 41
output variables with 4,000 items for each variable, which leads to
2.8M 4-way dependencies, 137k 3-way dependencies, and 2, 145
pairwise dependencies, for a total of 3M dependencies. We require
720k glyphs to represent all these relationships.

Determining dependency can be valuable in reducing the size of
a parameter search space by linking input and output variables to-
gether. Many glyphs visible near the top of the overview coordi-
nates in Figure 6a show that the variables of the physics data have
strong dependencies. Users can confirm that this is a combination
of 2-, 3-, and 4-way dependencies by separating the glyphs in Fig-
ure 6b. The overview of composite glyphs and 2, 3, and 4-way
separated glyphs help us understand that this data has many domi-
nant and strong relationships, since many glyphs are on the top of
the plot.

These variables are input and output variables of the simulation.
The expert would like to understand which inputs are correlated
with which outputs. The expert is also interested in which inputs
most strongly reflect linear correlation with a given output. With
our tool, the expert can easily interact with various dependencies
and perform the analysis tasks efficiently.

The expert can quickly select an interesting input/output variable,
and the layout will automatically show variables that are correlated
to the selected variable. For example, the detail view of the selected
glyph in Figure 6¢ enables the expert to quickly identify the depen-
dencies from selected variables (including input 15, 16, 17, and out-
put O12). This shows that variable O12 is highly correlated with
others, and it is dominant.

Using UnTangle Map alone to answer the above questions would
have required adding many dimensions to the layout and exploring
one by one which inputs and outputs are correlated. However, by
using our proposed visualization approach, the expert can quickly
select the interesting input/output in the data, filter the layout and
show only correlated dimensions.

5.4 National Health and Aging Trends Study (NHATS)

The National Health and Aging Trends Study (NHATS) in-
cludes data collection research being conducted by Johns Hopkins
Bloomberg School of Public Health. The goal is to “foster research
that will guide efforts to reduce disability, maximize health and in-
dependent functioning, and enhance quality of life at older ages”.
NHATS collects detailed information on activities and quality of
life for a sample of Medicare beneficiaries over 65.

We explore a subset of the NHATS data that has 60 variables with
38k items. This data has 2M 4-way dependencies, 100k 3-way de-
pendencies, and 1,770 pairwise dependencies, for a total of 2.15M
dependencies. We require 487k glyphs to represent these relation-
ships.

Figure 7 shows an example analysis of the NHATS data. Figure 7a
and 7b show the overview with composite and split glyphs for the
data. It is immediately apparent that many relationships have low
R? values, while a few have high max R2. Using the lasso tool
(Figure 7c¢) filters data down to a subset (Figure 7d).

After exploration, a specific relationship is investigated. Figure 7e
shows the detail view of variables d45, d46, d47, d48. The 4
possible cases of the question “Is [Caretaker Name] paid by you
(d45), your/his/her family, by a government program (d46), or by
your/his/her insurance (d47) or other (d48)?”. The centrality of
these points in the square shows that these four variables have a
non-dominant (uncorrelated) relationship. This makes sense, as the
four options should be mutually exclusive cases of payment.

5.5 Hurricane Data Case Study

Finally, we explore the IEEE Visualization 2004 Hurricane Isabel
contest dataset. It consists of 48 time steps, measuring 13 variables
with a spatial resolution of 500 x 500 x 100 (25M points per time
step). Combining all variables over all time steps leads to an explo-
ration of 624 total variables (i.e. 13 variables x 48 time steps). This
data has 25B 4-way dependencies, 250M 3-way dependencies and
194k 2-way dependencies, requiring 6B glyphs.



Figure 8 shows an example analysis. Figure 8a shows an overview
of all dependency features of the 624 variables. The many points
at the bottom of the chart show weak dependencies, yet patterns
of strong dependencies are still visible. For example, repeated pat-
tern between QRAIN and QSNOW variables is seen in the middle
of chart. To investigate further, the view is filtered by selecting
the QRAIN/QSNOW variables (Figure 8b). Further zooming onto
QRAIN/QSNOW in Figure 8c shows more detailed glyphs that can
be individually inspected.

The relationships can also be sorted by time horizontally, by vari-
able name vertically, and filtered by R? (Figure 8d). Figure 8e
shows the relationships sorted by time horizontally and R? aver-
age vertically. Noticing inconsistency in the CLOUD variable in
Figure 8d warrants further investigation. Using a selection box the
CLOUD glyphs are isolated in Figure 8f. In this view, a number of
conclusions can be drawn. For example, this confirms that the rela-
tionship between CLOUD and Pressure (P) are not consistent over
time. Similarly, the relationship between CLOUD with QGRAUP
is not consistent from time steps 10 to 20.

With over 25B 2-, 3-, and 4-way dependencies, the Hurricane Isabel
data is large and impractical to explore completely. Our approach,
enables quickly reducing the variables of interest. Without our ap-
proach the relationship between CLOUD and Pressure might not
be isolated for analysis, but it is clear through our visualization that
they are not consistent over time.

6 Discussion and Conclusions

We have proposed a method that visualizes multiway dependen-
cies from multivariate data. Previous work has focused on 2-way
or 3-way correlations. UnTangle Map can represent only 2-way or
3-way dependencies. We propose a new glyph-based visualization

(b) 2-,3-,4-way sep.

(¢) Lasso selection

(d) After lasso filter
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Figure 7: A variety of overviews and a single detail view of the NHATS data.
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(¢) Zoomed QRAIN and QSNOW (d) Overview sorted by time

(e) Overview sorted by time & R? (f) Selection of CLOUD

Figure 8: Hurricane Isabel data by variable series (a-c) and timeline series (d-f).

for high-dimensional data that includes an extension to UnTangle
for 4-way dependencies. The combination of these designs and fil-
tering/selection interactions provides a powerful visual exploration
mechanism that is intuitive and effective.

Our approach is scalable to both the number of variables and the
size of data, as demonstrated by the Hurricane Isabel dataset, which
contains hundreds of variables and millions of points. Few other
approaches have attempted to analyze this number of variable de-
pendencies. The practical limit of our approach probably lies in the
range of 500-1000 variables.

We chose to limit our approach to 4-way dependencies for a num-

ber of reasons. First, the number of 5-way relationships is huge,

e.g., (°3*) =775 billion. Second, as the number of independent

variables grows, there is a naturally increasing coefficient of deter-
mination (i.e. more input variables are more likely to explain an
output variable). Nevertheless, most of our visual encodings could
be extended to 5-way dependencies.

Finally, our approach uses the R? coefficient of determination for
multiple correlation with the Pearson Correlation Coefficient and
Spearman Rank Correlation Coefficient. Many other statistical
models could be used in place of the coefficient of determination,
depending on the requirements of the analysis.
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