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1 Introduction

Real-world networks are often modeled as graphs, where edges capture pairwise
interactions between entities represented by vertices. However, in many social
and biological scenarios, pairwise interactions are mere reductions from actual
multiway interactions, which can be captured more adequately by hypergraphs and
simplicial complexes. In studying pathogenic viral responses, multiple genes (vertices)
coordinate with each other to form biological pathways (hyperedges) [50]. While
investigating consensus formation, opinions of individuals (vertices) in a society are
not formed in isolation but rather in large groups (hyperedges) [58]. We study graphs,
hypergraphs, and simplicial complexes, all of which are considered as forms of higher
graphs1. On the other hand, although a simplicial complex can be viewed as a special
case of a hypergraph—specifically, as a downward-closed hypergraph—these two
structures possess distinct algebraic properties (e.g., homology theories) and are
therefore treated separately in this context.

In this paper, we survey the recent literature on finding the cores of higher graphs
using geometric and topological means. Informally, the core of a higher graph is a
minimalist representation that retains its geometric or topological information. Here,
the concept of a core is more general than the k-core of a graph [124], which is a
maximal connected subgraph in which each vertex has a degree of at least k. The
concept of a core also goes beyond the (k, q)-core of a hypergraph [3], which is
a maximal subgraph in which each vertex has a hypergraph degree of at least k
and each hyperedge contains at least q vertices [86]. The notion of a core has been
used in [95] to refer to a minimalistic simplicial filtration that retains the persistent
homology information. Several notions from network science are closely related to this
concept. Coarse geometry of networks preserves geometric or topological properties
while ignoring small-scale features [145]. A network backbone retains short-range
interactions while disregarding long-range ones [15]. The study of cores is relevant
to graph reduction methods, including sparsification, coarsening, and condensation,
some of which focus on preserving geometric or topological information within the
reduced representations; see [63, 90] for surveys.

We focus on geometric and topological methods in extracting the cores of higher
graphs, based on discrete curvatures, effective resistance, and persistent homology.
We do not survey these three classes of concepts in general, but rather focus on
using them for core extraction. We aim to connect tools from graph theory, discrete
geometry, and computational topology to inspire new research on the simplification
of higher graphs.

Paper classification. The annotation of each paper is guided primarily by three
types of higher graphs, namely, graphs, hypergraphs, and simplicial complexes.
It is guided secondarily by certain geometric and topological methods used to
preserve the cores of higher graphs, which, admittedly, partially reflect our own

1 Spivak [132] considered these objects to belong to the categories of higher graphs and studied them
in a unifying framework. We simply borrow the notion of higher graphs in this paper to encompass
the above objects of interest.
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biases in constructing this survey: discrete curvatures, which include Forman-Ricci,
Ollivier-Ricci, and resistance curvatures; effective resistance, which arises from
various notions of Laplacians; and homology, which includes simplicial homology
and persistent homology. For hypergraphs and simplicial complexes, we also survey
geometric methods from percolation and spectral clustering.

Connection to existing surveys. There is a vast literature on graph reduction, also
known as graph summarization or graph simplification; see [29, 31, 63, 66, 90, 144]
for surveys. Graph sparsification approximates a given graph by a sparse graph with a
subset of vertices and/or edges [31]. Graph coarsening groups nodes into super-nodes
and aggregates the intergroup edges into super-edges [29]. Graph condensation
condenses a graph by synthesizing a smaller graph with comparable performance for
graph neural networks (GNNs) [71]; see [56] for a survey. Different from existing
surveys, we focus on higher graph sparsification and coarsening techniques based
on tools in combinatorics (e.g., Laplacians, discrete curvatures) and computational
topology (e.g., persistent homology).

Both graph coarsening and graph clustering involve grouping nodes, but with
different goals: graph coarsening seeks to reduce the size of the graph while main-
taining its essential properties, whereas graph clustering aims to identify meaningful
communities or patterns within the data. The literature on spectral clustering of
graphs is extensive (e.g., [126, 101, 94]), focusing on detecting communities among
nodes by clustering the eigenvectors of specific Laplacians; for a comprehensive
survey, see [144]. For the purpose of this survey, we exclude spectral graph clustering
due to its long history and popularity; instead, we include recent advancements on
the spectral clusterings of hypergraphs and simplicial complexes as they create new
research opportunities.

In network science, percolation theory has received considerable attention, de-
scribing the behaviors of a network (e.g, giant clusters, cluster distribution) when
nodes or edges are randomly designated either occupied or unoccupied [87]. We
exclude network percolation (including an in-depth discussion on k-cores [80]) from
this survey; see [117, 84, 87] for recent reviews. Instead, we pay special attention
to the recent theory of percolation on hypergraphs (e.g. [17]), whereas the theory
of percolation on simplicial complexes remains scarce and does not yet lead to the
computation of well-defined cores (e.g. [154, 153]).

Finally, there are a number of surveys on the combinatorics and topological tools
we utilize: see [96] for a classic review of graph Laplacians and [146] for a recent
survey on persistence Laplacians derived from computational topology; [44, 45] for
introductory texts on persistent homology.

2 Technical Background on Discrete Curvatures

To study the geometry of graphs, discrete curvatures are natural measures that
quantify the local geometry around nodes and edges of a graph. In this survey, we are
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interested in finding the cores of higher graphs using discrete curvatures. Therefore,
in this section we review various notions of discrete curvatures for higher graphs,
followed by discussions of their connections to core-findings in graphs (Section 3),
hypergraphs (Section 4), and simplicial complexes (Section 5), respectively.

The concept of Ricci curvature, originating from differential geometry, has seen
extensive research dedicated to its discretization, for application in graphs and similar
structures [135, 33, 97, 91, 62, 21, 69, 5]. We begin with the discretization of Ricci
curvature, namely, the Forman-Ricci curvature (Section 2.1), the Ollivier-Ricci
curvature (Section 2.2), and their variants. We also discuss the more recent notion of
resistance curvature (Section 2.3), which is related to the effective resistance and the
sparsification of graphs and simplicial complexes.

2.1 Forman-Ricci Curvature

History. One of the simplest discrete curvatures to compute in graphs is the Forman-
Ricci curvature, originally formulated for general CW-complexes by Forman [52]
employing a reinterpretation of the Bochner-Weitzenböck formula. For an oriented,
compact Riemannian manifold, the Hodge Laplacian can be expressed as a sum of the
Bochner Laplacian, i.e.∇∗∇, where∇ is the Levi-Civita connection of the manifold
and ∇∗ its adjoint, and an endomorphism of the bundle of differential forms only
involving the Ricci curvature of the manifold [109, Theorem 9.4.1].

Forman adapted this approach to a combinatorial setting and demonstrated that,
for a weighted CW complex, a similar decomposition could be achieved, and thus
defined a Ricci curvature from the corresponding term within it [52]. Sreejith et
al. [134] introduced the Forman-Ricci curvature to network analysis, particularized for
undirected, possibly weighted graphs (seen as 1-dimensional simplicial complexes).
Forman-Ricci curvature was later extended to possibly directed hypergraphs by Leal
et al. [83]. All these notions are reviewed and unified by Eidi et al. [46].

Definitions for graphs and simplicial complexes. We begin by introducing the
notion of curvature introduced by Forman [52] applied to the case of simplicial
complexes (instead of CW complexes), as they constitute one of our primary objects
of study.

Definition 1 ([52]) For a weighted simplicial complex S and any dimension p, the
Forman-Ricci curvature is a function

Fp : Sp → R

defined for each p-simplex α ∈ Sp as

Fp(α) = wα

∑
β>α

wα
wβ

+
∑
γ<α

wγ
wα

−∑
α̸̃=α

∣∣∣∣∣∣
∑

β>α, α̃

√
wαwα̃
wβ

−
∑

γ<α, α̃

wγ√
wαwα̃

∣∣∣∣∣∣
 ,
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where α < β denotes that α is contained in the boundary of the (p+ 1)-simplex β.
In other words, α is a face of β or β is a coface of α of relative dimension 1.

This definition can be particularized for unweighted simplicial complexes as

Fp(α) =#{(p+ 1)-cells β > α}+#{(p− 1)-cells γ < α}
−#{parallel neighbours of α}, (1)

where a parallel neighbour of a p-simplex α is defined as another p-simplex α̃ sharing
only one face or one coface of relative dimension 1 with α.

Assuming an undirected, unweighted graph G = (V,E), upon substituting p = 1
into Definition 1, one derives the following curvature expression [134, 46] for an
edge e = (u, v),

F(e) = 2− deg(e). (2)

Here, deg(e) denotes the number of parallel neighbours of an edge e, that is, the
number of edges sharing a vertex with e. Note that one can also write deg(e) =
degu(e) + degv(e) = deg(u) + deg(v)− 2 where deg(v) is the degree of a vertex
v and degv(e) is the number of edges sharing the vertex v with e = (u, v). This
relation on degrees gives the following equivalent expression for the Forman-Ricci
curvature in terms of the degrees of the vertices: F(e) = 4−deg(u)−deg(v). From
this notion, Sreejith et al. [134] also defined a node Forman curvature as

F(v) = 1

deg(v)

∑
ev

F(ev), (3)

where ev denotes an edge incident on the node v.
In [133, 123], the Forman-Ricci curvature for nodes and edges was extended to

directed graphs. Borrowing notations from [46], let G = (V,E) be an unweighted,
directed graph, where we denote the directed edge going from u (the tail) to v (the
head) as e = [u, v]. For an edge e = [u, v], we call the input of e to the set of all edges
having u as their head, and analogously, the output of e is the set of all edges having v
as its tail. The degree of the input degin(e) is the number of elements in the input, and
similarly we can define the degree of the output degout(e). Using these notions, we can
define the Forman-Ricci curvature of the edge as F(e) = 2− degin(e)− degout(e).

Definitions for hypergraphs. From the formulation above, the Forman-Ricci curva-
ture can be very naturally extended to (directed) hypergraphsH = (V,E) [83] where
V is the set of vertices andE a set of ordered pairs of subsets of V , called hyperedges.
For e = (e1, e2) ∈ E, let e1 be the tail of the hyperedge, its nodes being input nodes,
and e2 the head of the hyperedge, composed by output nodes. We now define

degin(e) = #{hyperedges with an input node of e as their head}

and

degout(e) = #{hyperedges with an output node of e as their tail}.
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Notice that another hyperedge ẽ from H might have several input nodes of e as their
head, so that the formula above is actually counting the hyperedges with multiplicity
given by this number of “shared” nodes; and similarly for the output nodes of e and
the hyperedges having them as their tail.

Definition 2 ([83]) Given a directed hypergraph H = (V,E) the Forman-Ricci
curvature of an hyperedge e = (e1, e2) ∈ E is

F(e) = |e1|+ |e2| − degin(e)− degout(e).

Note that [83] also generalized the definition of Forman–Ricci curvature to the
setting of weighted undirected hypergraphs. Their formulation is motivated by the
following expression for the curvature of an edge e = (e1, e2) in a weighted graph:

F(e) = we

((
we1
we
−

∑
e′∋e1, e′ ̸=e

we1√
wewe′

)
+

(
we2
we
−

∑
e′∋e2, e′ ̸=e

we2√
wewe′

))
.

Definition 3 ([83]) Given a weighted undirected hypergraph H = (V,E), the For-
man–Ricci curvature of a hyperedge e ∈ E is defined as

F(e) = we
∑
v∈e

(
wv
we
−

∑
e′∋v, e′ ̸=e

wv√
wewe′

)
.

Properties. From its definition, one of the key advantages of the Forman-Ricci
curvature becomes apparent: it has a direct, inexpensive computation for networks,
in contrast to other notions of curvature that will be introduced subsequently. It is
also clear from Equation (2) that the Forman-Ricci curvature of an edge should be
very negative (have high absolute value) when the vertices defining the edge are well-
connected within the network. To investigate in more detail which features of a graph
this function captures, Sreejith et al. [134] examined the Forman-Ricci curvature for
nodes and edges in both theoretical and real-world networks, including transportation
and protein interaction networks. They studied their distributions and investigated
correlations between Forman-Ricci curvature and centrality/connectivity measures,
such as degree, clustering coefficient, and betweenness centrality. As expected, strong
positive correlations with degree are found in random and small-world networks,
whereas weaker negative correlations exist in scale-free networks. Their study also
suggested an observable correlation between Forman-Ricci curvature and the degree
of nodes, as a function of degree assortativity. Negative correlations were discovered
between Forman-Ricci curvature and various centrality measures in different network
types, such as betweenness centrality, which measures the number of shortest paths
passing through an edge and is expensive to compute. Interestingly, the clustering
coefficient—a quantity typically used as a notion of curvature in network—showed
no correlation with Forman-Ricci curvature. Finally, the paper examined the impact
of removing nodes based on their Forman-Ricci curvature on network connectivity,
finding that such removal accelerates network disintegration compared to random or
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clustering coefficient-based node removal. In a follow-up paper, Sreejith et al. [133]
studied similar notions for directed graphs, arriving at the same conclusions.

2.2 Ollivier-Ricci Curvature

History. Recall that in Riemannian geometry, the Ricci curvature is positive when
“small spheres are closer (in transportation distance) than their centers are” [111].
Inspired by this, Ollivier used a probability measure mx that depends on x serving as
an analog for the sphere Sx centered at x. Rather than corresponding points between
two close spheres Sx and Sy , the transportation distance between measures is utilized.
Ollivier introduced a notion of coarse Ricci curvature [103, 104], now commonly
referred to as the Ollivier-Ricci curvature, of Markov chains valid on arbitrary metric
spaces, such as graphs.

With a modification of Ollivier’s definition, Lin et al. [89] introduced another notion
of discrete curvature on graphs. By incorporating gradients of the graph Laplacian,
Münch and Wojciechowski [98, Theorems 2.1 and 2.6] obtained a limit-free formula
of the definition of Lin et al. In these definitions, the Ollivier-Ricci curvature of an
edge is a local quantity that depends on the degrees of its endpoints, which may
result in a lack of robustness of the Ollivier-Ricci curvature for sparse networks.
For this reason, instead of structural neighbourhoods, Gosztolai and Arnaudon [60]
considered distributions generated by diffusion processes across scales.

In a further extension, Eidi and Jost [47] generalized the Ollivier-Ricci curvature
to (possibly directed and/or weighted) hypergraphs. More recently, Coupette et
al. [34] provided a unified framework for several generalizations of Ollivier-Ricci
curvatures [6, 47, 82, 8] on hypergraphs and their computations. Recently, Yamada
[149] extended the Ollivier-Ricci curvature to simplicial complexes.

Definitions for graphs. Let (X, d) be a metric space and ν1, ν2 probability measures
on X . An L1 transportation distance between ν1 and ν2 is

W1(ν1, ν2) := inf
ξ∈Π(ν1,ν2)

∫
(x,y)∈X×X

d(x, y) dξ(x, y),

where Π(ν1, ν2) is the set of measures on X × X projecting onto ν1 and ν2,
respectively.

A random walk m on X is defined as a family of probability measures mx(·) on
X for each x ∈ X , satisfying the following conditions:

1. The measure mx depends measurably on the point x ∈ X;
2. Each measure mx has a finite first moment, i.e., for some (hence any) o ∈ X and

for any x ∈ X ,
∫
d(o, y)dmx(y) is finite.

The data (mx)x∈X allow us to define a notion of curvature as follows:
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Fig. 1: An illustration of Ricci curvatures for surfaces (top) and Ollivier-Ricci curva-
tures (Equation (7)) for graphs (bottom). Top: from left to right, surfaces of negative,
zero, and positive Ricci curvature, respectively. Bottom: red for negative Ollivier-Ricci
curvature, black for zero Ollivier-Ricci curvature, and blue for positive Ollivier-Ricci
curvature. Bottom left: a tree graph with negative Ollivier-Ricci curvature everywhere
except the edges connecting the leaves. Bottom middle: an infinitely sized grid graph
with all edges of zero Ollivier-Ricci curvature. Bottom right: a complete graph with
all edges of positive Ollivier-Ricci curvature. Notice the difference with respect to the
Forman-Ricci curvature (Equation (2)) which would be negative in all the edges of
the graphs on the bottom. Image reproduced from [102, Figure 4] with modifications,
licensed under CC BY 4.0. https://creativecommons.org/licenses/by/4.0/.

Definition 4 ([103, Definition 3]) Let (X, dX) be a metric space with a random
walk m. Let x, y ∈ X be two distinct points. The Ollivier-Ricci curvature (briefly,
OR curvature, originally called the coarse Ricci curvature) of (X, dX ,m) at (x, y) is

κ(x, y) := 1− W1(mx,my)

dX(x, y)
. (4)

Similar to the classical Ricci case, this curvature will be positive or negative
depending on whether the measures mx and my are closer or further apart than the
points x and y themselves. See Figure 1 for a discussion on spaces with positive, zero
or negative Ricci curvature; and their analogue graphs where curvature is measured
using Ollivier-Ricci curvature.

Consider a metric measure space (X, dX , µ) where balls inX have finite measure,
and µ is fully supported on X . Choose some ε > 0 and let B(x, ε) denote the open
ε-ball of x ∈ X . The ε-step random walk on X , starting from a point x, consists in
randomly jumping in the ball of radius ε around x, with probability proportional to
µ, i.e., it is defined to be mx =

µ|B(x,ε)

µ(B(x,ε)) . In the case of unweighted graphs, ε = 1 is
a natural choice.
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Explicitly, for an unweighted graphG, the neighbourhoods of vertices x, y adjacent
to an edge e = (x, y) are endowed with a uniform probability measure, i.e., for z
adjacent to x (denoted z ∼ x),

µx(z) :=
1

degG(x)
.

In [89], still focusing on the case of graphs, the authors proposed not to use a
uniform measure but rather the following one: for any t ∈ [0, 1] and x ∈ V :

mt
x(z) :=


t, if z = x;

1−t
degG(z) , if z ∼ x;
0, otherwise.

(5)

Here, the parameter t controls whether the random walk is likely to revisit a node.
The original definition by Ollivier can be retrieved with t = 0.

The parametric definition for the measure can be further generalized as follows for
a weighted graph (cf. [7]): for any t ∈ [0, 1] and x ∈ V ,

mt
x(z) :=


t, if z = x;
(1−t)wxz∑
z′∼x wxz′

, if z ∼ x;
0, otherwise.

(6)

Here, wxz denotes the weight of the edge between vertices x and z.
Another way of defining the measures for weighted graphs is by Ni et al. [102]:

for any t ∈ [0, 1], p ≥ 0 and x ∈ V , define the probability measure,

mt,p
x (z) :=


t, if z = x;
1−t
Cx
e−dG(x,z)p , if z ∼ x;

0, otherwise.
(7)

Here, Cx =
∑
z∼x e

−dG(x,z)p and dG is the graph distance. For any x ∼ z, dG(x, z)
is the weight between x and z, with a default value of 1 when the graph is unweighted.
Note that when t = 0 and p = 0, or if the graph is unweighted, this measure reduces
to the uniform measure. In this context, t determines the probability of staying at
x, and p controls the extent to which the neighbour z of x is discounted based on
the weight dG(x, z). The idea of the Ollivier-Ricci curvature definition compared to
the Forman-Ricci curvature is illustrated in [141, Figure 5]. In the particular case
when we use the probability measure following Equation (5), which depends on a
parameter t ∈ [0, 1], we can consider the asymptotic curvature for t tending to 1.

Definition 5 ([89, Section 2]) The t-Ollivier-Ricci curvature is

κt(x, y) := 1−
W1(m

t
x,m

t
y)

dG(x, y)
. (8)
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The LinLuYau-Ricci curvature2 at (x, y) is

κLLY (x, y) := lim
t→1

κt(x, y)

1− t
. (9)

Following Equation (9), we may consider a filtration of a graph using t as a
filtration parameter, giving rise to multiscale cores of a graph. This consideration is
left for future discussions.

Remark 1 We review examples of LinLuYau-Ricci curvatures and Forman-Ricci cur-
vatures for various simple graphs. For the computation of LinLuYau-Ricci curvatures,
see [89, page 610] for details. For Forman-Ricci curvatures, the computation can be
done using the formula F (e) = 4− deg(u)− deg(v), where e is an edge connecting
vertices u and v.

• The complete graph Kn has a constant LinLuYau-Ricci curvature on each edge
equal to n/(n− 1). This is the only graph with a constant Ricci curvature greater
than 1. In Kn, the Forman-Ricci curvature is also a constant on each edge with a
value of 6− 2n.

• The cycle Cn for n ≥ 6 has a constant LinLuYau-Ricci curvature on each edge
equal to 0. For small cycles C3, C4, and C5, we have constant LinLuYau-Ricci
curvature on each edge equal to 3/2, 1, and 1/2, respectively. In Cn for any
n ≥ 3, the Forman-Ricci curvature is a constant on each edge with a value of 0.

• The hypercube Qn has a constant LinLuYau-Ricci curvature 2/n and a constant
Forman-Ricci curvature 4− 2n.

To deal with the lack of a resolution parameter of Ollivier-Ricci curvature and
to reveal multiscale structures in real-world networks, Gosztolai and Arnaudon [60]
further modified the definition of the probability measure. They introduced the idea of
initiating a diffusion process at each node i to generate a set of measures pi(τ), where
τ represents the time parameter of the diffusion process. The dynamic Ollivier-Ricci
curvature of an edge is then defined as the distance between the pair of measures
started at its endpoints, normalized by the weight of the edge:

κτ (u, v) := 1− W1(pu(τ), pv(τ))

wuv
, (10)

whenever e = (u, v) is an edge, and 0 otherwise.
Following [141], for a graph G = (V,E), we can further define the Ollivier-Ricci

curvature for vertices (rather than edges) with respect to the curvature of its adjacent
edges. Formally, if for a vertex x ∈ V the set Ex := {e ∈ E : x ∈ e} contains
the edges adjacent to x, then the Ollivier-Ricci curvature at a vertex x is given by
κ(x) =

∑
e∈Ex

κ(e).

Definitions for hypergraphs. To generalize the Ollivier-Ricci curvature to hyper-
graphs, Eidi et al. [47] observed that Definition 4 can also be expressed by the
following formula for an edge e = (v, w) of a graph:

2 We use this notion to differentiate it from the classical Ricci curvature.
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κ(e) = µ0 − µ2 − 2µ3, (11)

where µ0 represents the amount of mass that remains unmoved in an optimal transport
plan, corresponding to the stable mass in directed 3-cycles (u→ v → w → u) for
any vertex u adjacent to v and w. The terms µ2 and µ3 are the amount of mass that
should be moved with distance 2 and 3, respectively.

The above formula Equation (11) is obtained as follows: consider the edge
e = (v, w) and let ev = (v, v1) and ew = (w,w1) be edges emanating from v
and w, respectively. Then define their distance w.r.t. e as de(ev, ew) := d(v1, w1)
where d(v1, w1) denotes the distance between v1 and w1 in the graph, specifically
the minimum number of edges that must be traversed to travel from v1 to w1 (by
construction, not greater than 3: distance 0, when v1, w1 participates in a triangle,
distance 1 for a square, and so on up to 3). Let Ev be the set of edges that have v
as a vertex, and let |Ev| be its cardinality. Define a probability measure mv on the
set of all edges E of the graph by assigning each edge ev ∈ Ev a weight of 1/|Ev|,
and assigning a weight of 0 to all edges not in Ev. For an edge e = (v, w), from
d(v, w) = 1 it follows that the Ollivier–Ricci curvature of Definition 4 is equal to

κ(e) = 1−W1(mv,mw), (12)

where W1 is the 1-Wasserstein distance between mv and mw:

W1(mv,mw) = inf
p∈Π(mv,mw)

∑
(e1,e2)∈E×E

de(e1, e2)p(e1, e2), (13)

where Π(mv,mw) is the set of measures on E × E that project to mv and mw,
respectively. The key idea is to optimally arrange the two collectionsEv ,Ew of edges
sharing one of their endpoints with e, so that the average distances between the paired
edges are minimized. Here, the sets Ev and Ew both include the edge e = (v, w)
that we are evaluating. Let µi (0 ≤ i ≤ 3) be the fraction of edges in Ev that are
moved at distance i in some optimal transport plan. According to Equation (13),
W1(mu,mv) = µ1 + 2µ2 + 3µ3. Observing that

∑3
i=0 µi = 1, Equation (12) then

yields Equation (11).
The above formula Equation (11) is taken as the definition for the curvature

of a hyperedge in a directed hypergraph in [47]. Precisely, if we denote u → ei
when there exists a hyperedge e = (ek, ei) such that u ∈ ek, and similarly, ej → v
when there is a hyperedge e = (ej , ek) such that v ∈ ek, then for a given hyperedge
e = (ei, ej), we can define two sets:M = {u : u → ei} referred to as the masses
andH = {v : ej → v}, referred to as the holes. A probability measure is assigned to
each set, denoted by µM and µH, respectively. For u ∈M and v ∈ H, the distance
d(u, v) between each mass µM(u) and each hole µH(v) of a hyperedge e is defined
as the minimum number of directed hyperedges connecting them. This distance is at
most 3: it is exactly 3 if the shortest path from u to v requires passing through e; it is
0 when u = v, meaning that u is both a mass and a hole of e.

A transport plan is a matrix E whose entries represent the amount of mass, out
of µM(u), to be moved from vertex u to vertex v, denoted by E(u, v). Assume
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we are given an optimal transport plan E , i.e., one that minimizes the quantity∑
u→ei

∑
ej→v d(u, v)E(u, v). Let µi denote the amount of mass that is moved at

distance i, with i ∈ {0, 1, 2, 3}. The Ollivier-Ricci curvature κ of e for a hypergraph
is then defined as κ(e) = µ0 − µ2 − 2µ3. It is bounded above by κ = 1 (achieved
when µ0 = 1, meaning each mass coincides with a hole of its same size) and below
by κ = −2 (achieved when µ3 = 1, meaning each mass must be moved a distance of
3).

Coupette et al. [34] presented a flexible and unifying framework, ORCHID, which
generalizes the Ollivier–Ricci curvature to hypergraphs by extending both the measure
µ and the distance metric in several ways. The distance metric is replaced by a function
aggregating measures (AGG):

κAGG(u, v) := 1− AGG(µu, µv)
d(u, v)

. (14)

and they identified three ways to generalize the probability measure induced by the
lazy random walk on graphs: the equal-nodes random walk on the unweighted clique
expansion of H that results from picking a neighbour v of u uniformly at random;
the equal-edges random walk that follows a two-step random walk on the unweighted
star expansion of H; and the weighted-edges random walk that can be thought as a
random walk on a weighted clique expansion of H .

Treating a hyperedge as a set of nodes, the AGG function can be taken to be:

AGGA(e) :=
2

|e|(|e| − 1)

∑
{u,v}⊆e

W1(µu, µv),

where W1(·, ·) corresponds to the Wasserstein distance; AGGA measures the average
amount of effort to transport the probability mass from one node to another in the
edge e. In general, the AGG function should reduce to the Ollivier–Ricci curvature on
graphs, while remaining computationally tractable and invariant under permutations
of node indices.

The curvature at node u, independent of the choice for AGG, can be obtained as the
mean of all curvatures of edges containing u:

κE(u) :=
1

deg(u)

∑
e∋u

κAGG(e).

Since the hypergraph H is connected, Coupette et al. [34] defined the curvature of an
arbitrary subset of nodes s ⊆ V to be:

κAGG(s) := 1− AGG(s)
d(s)

,

where d(s) := max{d(u, v)|{u, v} ⊆ s}. Coupette et al. [34] observed that the above
definition aligns with their notions of hypergraph curvature for s ∈ E, d(s) = 1.
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Definitions for simplicial complexes. In [149], Yamada generalized the definition
of Ollivier-Ricci curvature to weighted simplicial complexes. Let S be a weighted
simplicial complex with weight function w. Define the degree of a p-simplex α to be

deg(α) :=
∑

α<γ∈Sp+1

wγ .

Two distinct p-simplices α, β in S are connected if they share a (p+ 1)-coface
γ, denoted as α γ∼ β. If γ exists, it is unique. A path from a p-simplex α to another
p-simplex β is a finite sequence of connected p-simplices α = α0, . . . , αm = β. We
call m the length of the path. We define the distance between two p-simplices α and
β to be the length of the shortest path from α to β, and denote it by dS(α, β).

Definition 6 ([149, Definitions 2.8 and 2.9]) Let S be a weighted simplicial complex
with weight function w. For a p-simplex α in S, define the probability measure

mα(α
′) :=

{
wγ

(p+1) deg(α) , if α γ∼ α′ for some γ ∈ Sp+1;
0, otherwise.

For any two distinct p-simplex α and β in S, the Yamada-Ricci curvature at (α, β) is
defined as

κ(α, β) := 1− W1(mα,mβ)

dS(α, β)
.

Properties. When X is a Riemannian manifold and ε is small, the Ollivier-Ricci
curvature derived from the ε-step random walks captures the Ricci curvature in the
following manner. Consider X a smooth, complete, N -dimensional Riemannian
manifold. Let x ∈ X and v be a unit tangent vector at x. Let y be a point on the
geodesic that starts from v. As stated in [104, Example 7],

κ(x, y) =
ε2 Ric(v, v)

2(N + 2)
+O(ε3 + ε2d(x, y)),

where Ric denotes the Ricci curvature and O(·) represents the big O notation.
The Ollivier-Ricci curvature bounds eigenvalues of the Laplacian of the graph

(cf. [104], see also [12]), in the sense that if k is a lower bound for the Ollivier-Ricci
curvature of edges (i.e., κ(e) ≥ k, for all edges e), then the eigenvalues λi satisfy

k ≤ λ1 ≤ · · · ≤ λN−1 ≤ 2− k, (15)

where λ1 is the first non-zero eigenvalue. It follows that the Ollivier-Ricci curvature
provides formal bounds on the local clustering coefficient, which measures the
connectivity of the network around a specific node. Thus, in the case of graphs, the
Ollivier-Ricci curvature controls the amount of overlap between neighbourhoods of
adjacent vertices.

In other words, the Ollivier-Ricci curvature gives us information about how close
we are to increasing the number of connected components in a graph: the smaller
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the eigenvalue gap, the “thinner” the bottleneck among two large components. This
observation motivates the application of the Ollivier-Ricci curvature to community
detection, finding bottlenecks, and clustering (cf. Section 3.2). In [48], Eidi and
Mukherjee focused on this bridge between topology and geometry via random walks
and the Laplacian. In particular, they considered random walks on p-simplices where
p ≥ 1 with the goal of connecting the spectral gap of the Laplacian in degree p to the
p-dimensional homology. The authors then speculated about a connection with the
Ollivier-Ricci curvature of simplicial complexes, which could potentially pave the
way for using this curvature to detect how close a simplicial complex is to exhibiting
higher-dimensional holes.

According to Gosztolai and Arnaudon [60], Ollivier-Ricci curvature measures
how much a graph differs from being locally grid-like, analogous to the concept
of being flat in continuous spaces. The flatness of a network can be understood in
terms of its local connectivity: the distance of a pair of nodes is the same as the
average distance of their neighbourhoods. Thus, an edge with positive (or negative)
Ollivier-Ricci curvature suggests that it is located in a part of the graph that is more
(or less) connected than a grid.

Regarding the dynamic Ollivier-Ricci curvature in Equation (10), initially, as τ
approaches zero—when all nodes support disjoint point masses and the diffusion
has not yet mixed—the dynamic curvature tends toward 0. At the other extreme, as
τ approaches infinity, i.e., as the diffusion reaches a stationary state, the dynamic
curvature tends to 1. At intermediate scales, the curvature can vary between 1 and
some finite negative number, depending on the structure of the graph. According
to [60], as the curvature of an edge evolves, the scale at which it approaches unity
reflects how easily information can be propagated between clusters.

Interestingly, for applications of the Ollivier-Ricci curvature of hypergraphs to
sparsification, removing vertices from a hyperedge has the following effect on the
curvature:

Proposition 1 ([47, Proposition 2.4]) Given a hyperedge e : A = {x1, . . . , xn} →
B = {y1, . . . , ym}, by removing l ≤ n vertices from the set A and l′ ≤ m vertices
from B, the following relation holds between the curvature of the resulting hyperedge
e′ and e:

|κ(e)− κ(e′)| ≤ min{3, 3 (l/n, l′/m)}.

However, in the graph setting, there are lower and upper bounds for the Ollivier-
Ricci curvature of an edge that enjoy a combinatorial formula [139]: a lower bound
for the Ollivier-Ricci curvature κ(e) of the edge e with vertices u and v is given by

κlow(e) := −2
(
1− 1

degG(u)
− 1

degG(v)

)
,

whereas an upper bound is given by

κup(e) :=
∆(e)

max{degG(u),degG(v)}
.
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where ∆(e) denotes the number of triangles in G that include the edge e.
Given these bounds, the arithmetic mean of the lower and upper bounds yields

an approximation of the Ollivier-Ricci curvature computable with a combinatorial
formula:

κ̂(e) =
1

2

(
κlow(e) + κup(e)

)
. (16)

2.3 Resistance Curvature

We now discuss a definition of curvature that is derived from the physical property
of electric circuits called effective resistance. The effective resistance between two
vertices in a weighted graphG = (V,E,w) can be computed via the graph Laplacian
[77], which we review here. Let n = |V | and m = |E|. Using the notation of
Spielman and Srivastava [130], we first define W to be an m×m diagonal matrix
containing the weights w of G. We then define the signed edge-vertex incidence
matrix B ∈ Rm×n as

B(v, e) =


0 if vertex v is not on the boundary of edge e,
1 if vertex v is edge e’s head,
−1 if vertex v is edge e’s tail.

(17)

From here, we can define the graph Laplacian L ∈ Rn×n as

L = B⊤WB, (18)

noting that L is symmetric.
Letting L+ denote the Moore-Penrose pseudoinverse of L, i.e., the unique matrix

L+ such thatLL+ = L+L = proj(ker(L)⊥), Spielman and Srivastava [130] defined
the effective resistance of an edge e to be the entry on the diagonal corresponding to
e of the matrix R ∈ Rm×m defined by

R := BL+B⊤ = B(B⊤WB)+B⊤. (19)

That is, the effective resistance of and edge e is given by:

re := R(e, e).

The pseudoinverse L+ can also be used to define a notion of effective resistance
between pairs of vertices [77]:

rvivj = (ei − ej)
⊤L+(ei − ej)

where ei ∈ Rn is a column vector of length n = |V | with a one in the ith spot and
zeros everywhere else. Alternatively, if we let Γ = L + J

n , where J is the n × n
matrix of all ones, we have that the effective resistance between two vertices vi and
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vj is given by
rvivj = (ei − ej)

⊤Γ−1(ei − ej),

since Γ in this case is invertible. We denote by Ω the matrix whose (i, j)-th entry is
rvivj ; this matrix is known as the effective resistance matrix.

Devriendt and Lambiotte [37] introduced discrete curvatures on both vertices and
edges of weighted graphs based on effective resistance. They called them nodal and
link resistance curvature, respectively. Given a weighted graph G = (V,E,w), we
denote these curvatures as kup : V → R and kdown : E → R, respectively.

Definition 7 (Nodal Resistance Curvature [37]) The nodal resistance curvature of a
vertex vi ∈ V in a graph G is defined as

kup(vi) := 1− 1

2

∑
j∼i

wvivjrvivj . (20)

Here, rvivj denotes the effective resistance between vertices vi and vj , and wvivj the
weight of the edge (vi, vj), where j ∼ i is the set such that there is an edge e ∈ E
connecting vi and vj .

Devriendt and Lambiotte [37] called the quantitywvivjrvivj the relative resistance
of the edge e = (vi, vj) as it quantifies how important the edge e is for the connectivity
of G.

We note that Devriendt et al. [38] introduce a slightly different definition of
resistance curvature, namely

kup = Ω−11. (21)

Observe that the expression in Equation (20) can also be written as

kup =
Ω−11

⟨1, Ω−11⟩
. (22)

It is evident the two definitions are equal up to a factor of ⟨1, Ω−11⟩.
As with the curvatures mentioned in previous sections, there is also a definition of

resistance curvature on edges:

Definition 8 (Link Resistance Curvature [37]) The link resistance curvature of an
edge e = (v1, v2) ∈ E in a graph G is defined as

kdown(e) =
2(kup(v1) + kup(v2))

rv1v2
. (23)

Intuitively speaking, the resistance curvature of a vertex is derived from the
effective resistance of its adjacent edges, whereas the resistance curvature of an edge
comes from the resistance curvature of its vertices. Let κ denote the Ollivier-Ricci
curvature and F denote the Forman-Ricci curvature, it was shown in [37] that for an
edge e = (vi, vj),
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Table 1: A summary of recent works in finding cores of graphs, as surveyed in
Section 3. Ref.: references. V: vertices (nodes). E: edges. FRC: Forman–Ricci
curvature. A-FRC: augmented FRC. ORC: Ollivier–Ricci curvature. ER: effective
resistance. NMI: normalized mutual information. ARI: adjusted Rand index. MAE:
mean absolute error. “Threshold”: a subsampling method that removes vertices or
edges above/below a chosen value. “Probability”: a subsampling method that removes
vertices or edges based on a probability distribution. “Spectral”: properties related to
the Laplacian matrix of a graph.

Ref. Graph Method Criteria Property Preserved

[145] weighted threshold, E FRC backbone
[10] weighted threshold, V or E FRC backbone
[121] weighted threshold, E FRC backbone
[152] unweighted threshold, E Balanced FRC clusters
[76] unweighted threshold, E FRC clusters (modularity, NMI)
[51] unweighted threshold, E A-FRC clusters (accuracy)
[141] weighted threshold, E FRC, ORC, A-FRC single- & mixed-membership

clusters (NMI)
[107] unweighted threshold, E lower FRC clusters

[127] weighted threshold, E ORC clusters (accuracy)
[102] weighted threshold, E ORC clusters (modularity, ARI)
[147] weighted threshold, V and E ORC clusters (MAE)
[60] weighted N/A dynamical ORC multiscale clusters (geometric

modularity)
[140] weighted threshold, E ORC clusters (NMI)

[130] weighted probability, E ER spectral

κ(e) ≥ kdown(e) ≥ F(e)
ωe

.

We believe it is easy to generalize resistance curvature to hypergraphs and simplicial
complexes, which is left for future work.

3 Finding Cores of Graphs

In this section, we survey recent approaches in finding cores of graphs using
geometric or topological means. We begin with the applications of discrete curvatures,
in particular, Forman-Ricci Curvature (Section 3.1) and Ollivier-Ricci Curvature
(Section 3.2), followed by a discussion of graph sparsification based on effective
resistance (Section 3.3). References surveyed in this paper are classified in Table 1.
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3.1 Forman-Ricci Curvature

A number of Forman-Ricci curvature-based graph sparsification methods have been
proposed to preserve the backbone (e.g., [145, 10, 121, 152]). Weber et al. [145]
defined the backbone of a network (graph) as a subnetwork (subgraph) that captures
important nodes (called hubs) and edges (called bridges). Hubs are nodes with high
degree and high betweenness centrality, whereas bridges are edges governing the
mesoscale structure of the graph (such as those forming long-range connections) [10].
According to Barkanass et al. [10], a backbone is considered to be structure-preserving
if it preserves the structural features such as the node degree distribution or community
structure of the original graph. The notions of a network backbone and the core of
a network are sometimes used interchangeably [100]. In this survey, however, we
define the core of a higher graph more generally as a minimalist representation that
retains its geometric or topological information.

On the other hand, graph clustering or community detection can also be regarded as
core finding by grouping (thus preserving) the highly interconnected regions of a graph,
while discarding its small-scale information. To that end, the Forman-Ricci curvature
has also been used as a criterion to guide graph clustering (e.g., [51, 141, 107]).

3.1.1 Curvature-Based Sampling for Preserving Backbones

Using the Forman-Ricci curvature, Weber et al. [145] proposed a sampling method
to reduce the size of a given graph while preserving its backbone. The key idea
is that “high absolute curvature is strongly related to the structural importance of
an edge.” [145]. Their sampling procedure applies thresholding with respect to the
Forman-Ricci curvature, where edges with high absolute curvature are selected and
edges with low absolute curvature are eliminated. They experimentally showcased
that some desirable structure of the graph (such as clusters or communities) are
preserved after the sampling. As an example, they showed that in the weighted graph
of co-occurrences in Les Misérables, the backbone graph maintains relationships
between Valjean and other characters central to the storyline, and preserves a cluster
of revolutionaries around Gavroche.

Barkanass et al. [10] further extended the above sampling procedure by considering
Forman-Ricci curvatures for graphs and 2-dimensional simplicial complexes, as well
as the Haantjes-Ricci curvature, i.e., a form of curvature in general metric spaces.
They showed that sampling by discrete versions of Ricci curvature is mathematically
justified by the relation between the Ricci curvature of a manifold and the Forman
curvatures of its discretization. They further studied coarse embeddings of a network
into a metric space using kernels based on Forman-Ricci curvature.

For real-world applications, Salamatian et al. [121] discussed challenges in
accurately assessing network connectivity within large cloud provider infrastructures,
due to potential manipulation of probe packets. They demonstrated the success
of the above sampling method based on Forman-Ricci curvature, using latency
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measurements from RIPE Atlas anchors and virtual machines in data centers of three
major cloud providers.

3.1.2 Graph Sparsification for Graph Learning

By employing Ricci curvature-based sampling, Zhang et al. [152] proposed a
graph sparsification method based on the balanced Forman-Ricci curvature [142]—
a modification of the Forman-Ricci curvature—to study over-squashing in deep
networks. The balanced Forman-Ricci curvature takes into account the presence of
triangles and cycles of length four. To perform graph representation learning, Zhang et
al. stored the topological information in the form of a sparsified computation subgraph
around each node, where such a sparsified subgraph is obtained by iteratively sampling
the edges with the highest balanced Forman-Ricci curvature in neighbourhoods (of
increasing radius) around the node.

For theoretical foundations of graph sparsification, Spielman and Teng [131]
introduced nearly-linear time algorithms for spectral sparsification, leveraging re-
duced edge sets to preserve graph Laplacians. Benczúr and Karger [14] introduced
randomized edge sampling to approximate minimum s-t cuts, establishing a practical
sparsification technique. Later, Batson et al. [11] proposed deterministic spectral
sparsifiers and proved that every graph has a spectral sparsifier with a number of
edges linear in its number of vertices.

Graph sparsification also appears frequently in graph neural networks (GNNs),
where a number of approaches have been developed to leverage or learn sparse graph
structures. Peng et al. [108] discussed two primary approaches to reducing the training
and inference complexity of GNNs through sparsification: sparsifying either the input
graph or the model itself. Specifically, they formulated model sparsification for GNNs
using both the train-and-prune paradigm and sparse training. Chen et al. introduced
FastGCN [28] that addresses scalability by introducing an importance sampling
technique that sparsifies the neighbourhood aggregation process, leading to efficient
graph convolutional network (GCN) training. Jin et al. [70] proposed a method to
jointly learn sparse graph structures and node features for robust GNN performance
under noise. Franceschi et al. [53] treated the graph structure as a discrete variable
in an optimization setting, enabling the discovery of sparse dependency structures
during training. See [157] for a survey of graph structure learning.

3.1.3 Forman-Ricci Curvature in Community Detection

A number of applications within the field of community detection and graph clustering
[76, 51, 141, 107] employ the Forman-Ricci curvature as a pruning or clustering
criterion.

Kim et al. [76] proposed link pruning as a preprocessing step for community
detection. Their pruning procedure eliminates edges below a certain threshold
according to edge attributes such as the Forman-Ricci curvature. The threshold is
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chosen to preserve a proportion of the edges in the graph, in a similar manner to
the sampling algorithms described in Section 3.1.1. After preprocessing, Kim et
al. performed community detection using standard methods such as the Louvain
method [19]. They used modularity (for real-world social networks) and normalized
mutual information (NMI) for synthetic networks with ground-truth communities to
evaluate the performance of these community detection methods. Roughly speaking,
modularity measures the density of connections within communities, and NMI
describes the similarity between the predicted communities with the ground-truth.
The authors demonstrated empirically that community detection with link pruning
in most cases achieved better performance in terms of modularity and NMI, in
comparison with traditional graph sparsification.

As we will see in Section 3.2, community detection using the Ollivier-Ricci
curvature is well-founded and has been proven to perform well in synthetic and real-
world data. These results are based on the fact that positively curved edges, with respect
to the Ollivier-Ricci curvature, tend to lie within communities, whereas negatively
curved edges tend to serve as bridges between communities. The Forman-Ricci
curvature behaves similarly. Although the Forman-Ricci curvature is advantageous
for computational purposes compared to the Ollivier-Ricci curvature, it may be too
simple in some cases to perform well in community detection.

Consequently, Fesser et al. [51] proposed to use the augmented Forman-Ricci
curvature [67] for community detection and explored the connection between different
augmentations and the expressive power and computational complexity for community
detection. The augmented Forman-Ricci curvature is obtained from augmentations of
the graphs. That is, by adding 2-dimensional cells as cofaces of all cocycles to obtain
an unweighted cellular complex, and applying Definition 1 to the edges, we arrive at

AF(e) = 2 + Γee −
∑
e′∼e
|Γee′ + Γe′e − 1| −

∑
e ̸∼e′
|Γee′ − Γe′e|, (24)

where e ∼ e′ denotes two edges sharing a vertex and e ̸∼ e′ two edges not sharing a
vertex, and Γee′ is the number of the cycles containing both e and e′. See Figure 2 for
an example of the computation of this curvature. An alternative notion of augmented
Forman-Ricci curvature can be obtained by restricting the length of the cycles
considered in the definition of the augmentations of the graph:

AFn(e) = AF(e) taking into account all cycles of at most length n.

This definition is supported by the idea that curvature should be a local construction.
Fesser et al. [51] mostly worked withAFn with n ∈ {3, 4} for community detection.

Several authors have studied the similarities between Ollivier-Ricci curvature
and Forman-Ricci curvature [138, 72, 122], establishing empirical and theoretical
equivalences and connections between these two notions. Fesser et al. [51] per-
formed an extensive correlation analysis of the augmented Forman-Ricci curvature
against the Ollivier-Ricci and the Forman-Ricci curvatures. They applied augmented
Forman-Ricci curvature to community detection and demonstrated performance im-
provement against the Ollivier-Ricci curvature-based method. In general, community
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F(e) = 4− deg(1)− deg(2) = −5
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AF(e) = 0
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Fig. 2: Forman-Ricci curvature vs. augmented Forman-Ricci curvature. Left: Forman-
Ricci curvature of the edge e. Right: augmented Forman-Ricci curvature of the same
edge. We see that the edge is contained in the cycles γ1 = 1234 and γ2 = 125.
Looking at Equation (24), we then see thatAF(e) = 2+2− 3− 1 = 0. This image
is a reproduction of Figure 1 from [51], licensed under CC BY (Creative Commons
Attribution) and generated with the assistance of ChatGPT.

detection methods using the augmented Forman-Ricci curvature are faster and less
computationally expensive than those based on the Ollivier-Ricci curvature.

Tian et al. [141] recently brought forward a unified framework for Ollivier-
Ricci curvature-based community detection, including Ollivier and Forman-Ricci
curvatures, in order to study their respective weaknesses and strengths. As part of
this framework, they implemented a community detection algorithm based on the
augmented Forman-Ricci curvature, with a weighting scheme for the edges (cf., [51]).
In practice, they implemented AF3, that is, they considered only triangles and
worked with simplicial complexes of dimension 2. They empirically showed that
this reduction achieves a similar performance to the one with the full augmented
Forman-Ricci curvature, while providing a significant speed-up in computations. In
addition, they addressed a gap in the literature by incorporating mixed membership
community detection to their analysis. In mixed-membership communities, one node
might belong to more than one community, so that there might be overlaps between
communities. Mixed membership is inspired by real-life situations. For instance, in a
social network, a person might belong to more than one group of friends, such as
school friends and university friends; or a protein might have several functional roles
in a biochemical network (see [141, Figure 1] for an illustrative example). In order
to incorporate this framework with curvature-based community detection methods,
Tian et al. proposed to turn to the dual or line graph.

Park and Li [107] recently introduced the lower Ricci curvature for community
detection. This new notion of curvature is inspired by the balanced Forman-Ricci
curvature (already mentioned in Section 3.1.2), a curvature built upon the Forman-
Ricci curvature to address its unboundedness and scale-dependent nature, in addition
to its skewness toward negative values. As an extension of the Forman-Ricci curvature,
the lower Ricci curvature has linear computational complexity. Park and Li also draw
connections between the lower Ricci curvature and the Cheeger constant, which
motivates the use of this curvature in community detection. In more detail, they
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proved that if there exists a positive constant α > 0, that is, a lower bound of the
lower Ricci curvature for all the edges in the graph, then the diameter of the graph
is bounded from above by α/2 and the Cheeger inequality of the graph is bounded
from below by the same quantity. This observation can be interpreted as follows: for
larger values of α, the graph tends to be fully connected, hence having a smaller
diameter and a larger Cheeger constant, implying more interconnectivity and less
well-separated communities within the graph. Given these theoretical guarantees,
Park and Li proposed a preprocessing algorithm that removes edges with lower
Ricci curvature below a certain threshold, computed as the local minimum of a
Gaussian mixture model fitted to the distribution of the lower Ricci curvatures.
Using this preprocessing algorithm, they demonstrated improvement in efficiency
and performance of a number of community detection methods across simulated and
real-world data.

3.2 Ollivier-Ricci Curvature

The most popular application of the Ollivier-Ricci curvature for core finding is in
clustering and community detection. Sia et al. [127] explored community detection
using the Ollivier-Ricci curvature (Equation (4)) on weighted graphs. They considered
probability measures mx(v) = wxv∑

v′∼x wxv′
if v is adjacent to x and mx(v) =

0 otherwise. Here, wxv denotes the weight of the edge between vertices x and
v. In their study, negatively curved edges act as bottlenecks or bridges linking
different communities, whereas positively curved edges represent within-community
connections. Their algorithm removes edges with the most negative Ollivier-Ricci
curvature, and then re-calculates the curvature for the affected edges. The process is
repeated until all edges have non-negative curvature. Compared with other community
detection methods based on modularity or edge betweenness, this curvature-based
method showed comparable or better accuracy.

Ni et al. [102] introduced a family of probability distributions mt,p
x with t ∈ [0, 1]

and p ≥ 0; see Equation (7). In most computations, they set t = 0.5 and p = 2, and
utilized the resulting random walk {m0.5,2

x }x to define the Ollivier-Ricci curvature;
see Figure 1 for an illustration of this curvature in the case of tree graphs, grid graphs
and complete graphs. They introduced a discrete Ricci flow for a weighted graph
iteratively defined as w(i+1)

xy :=
(
1− κ(i)(x, y)

)
d(i)(x, y), with the superscript

representing the iteration step, d(0)(x, y) = d(x, y), and w(0)
xy being the initial weight

between x and y. The algorithm runs by first applying the graph with 20 to 50
iterations of discrete Ricci flow processes, and then removing edges from highest
curvature to lowest. The hierarchical community structure of the graph is revealed
through careful adjustment of the cut-off threshold. Experiments were conducted
on both synthetic networks and real-world datasets with ground-truth communities.
Compared to several other community detection methods based on modularity or
edge betweenness, their algorithm demonstrates competitive or better performance,
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measured using modularity and adjusted Rand index (ARI), which measures the
accuracy of clustering results against the ground-truth.

Wu et al. [147] utilized the t-Ollivier-Ricci curvature of graphs (defined in
Equation (8)) with t = 0.5 to develop a graph sampling algorithm that reduces
the number of nodes and edges while preserving the number of communities. Their
algorithm starts by randomly selecting an edge and calculating its Ollivier-Ricci
curvature, then then expands the subgraph by choosing the next edge with the
largest difference in Ollivier-Ricci curvature from the previously selected edge.
Their algorithm captures community structure by differentiating between within-
community edges and between-community edges, which is supported by their finding
that edges within a community have larger Ollivier-Ricci curvature than edges between
that community and some other communities. Compared with degree-based graph
sampling methods via the mean absolute error (MAE), this curvature-based method
is more effective at preserving minor communities.

Different from [127, 102] where clusters are identified based on finding negatively
curved edges between clusters, Gosztolai and Arnaudon [60] showed that along its
evolution, the distribution of the dynamical Ollivier-Ricci curvature of edges exhibits
gaps, i.e., differences in the relative magnitude of curvatures, which at characteristic
timescales indicate bottleneck-edges that limit information spreading. These curvature
gaps are claimed to be robust against large fluctuations in node degrees, preserving
community structures up to the phase transition of detectability. As the diffusion
process advances, these gaps capture progressively coarser community features;
and they are used to uncover multiscale communities by analyzing deviations from
constant curvature.

Tian et al. [140] interpreted the graph clustering algorithms of Ni et al. [102]
and Sia et al. [127] as specific instances of a broader algorithm. These algorithms
are based on geometric flows associated with discrete curvature [104], under which
the edge weights of the graph evolve in a way that reveals its community structure.
Starting with a possibly unweighted graph, let the edge weights evolve under the
curvature flow, up to a re-normalization at each iteration: calling GT = (V,ET , wT )
the weighted graph at the iteration T , having fixed cut-off thresholds hT , the new
edge set is

ET+1 := {e ∈ ET : wT (e) > hT },

and the updated weights for any edge e ∈ ET+1 with e = {u, v},

wT+1(e) := (1− κ(e))dG(u, v),

where κ is the discrete curvature of GT and similarly dG is the graph distance of GT .
The intuition is that, over time, the negative curvature of edges connecting different

communities intensifies: edges with lower curvature experience a reduction in weight
under the flow. On the other hand, edges with higher curvature get larger weights.
Thus, interpreting weights as lengths of edges, the internal edges will contract faster
over time, and the bridges will contract slower. The above algorithm is independent
of the particular discrete curvature chosen. In any case, the success of the method
depends crucially on identifying a good weight threshold for cutting edges at each
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step. To speed up the algorithm in the case of the Ollivier-Ricci curvature, Tian et
al. used the combinatorial approximation of the Ollivier-Ricci curvature given in
Equation (16).

3.3 Graph Sparsification with Effective Resistance

Another avenue to find the core of a graph that preserves its spectral properties utilizes
the notion of effective resistance (see Equation (19)), which is directly linked to the
Laplacian of a graph.

Spielman and Srivastava [130] introduced a nearly-linear time algorithm that,
given a weighted graph G = (V,E,w), produces a sparsified graph H = (V, F, u)
that approximately preserves the graph Laplacian of G. H and G share the same
set of vertices, but H contains fewer edges. Let R(e, e) be the effective resistance
of an edge e. The algorithm samples a predetermined number q of edges e from G
with probability p(e) proportional to w(e)R(e, e) (the relative effective resistance, as
named in [37]) and adds them to H with weight w(e, e)/(qp(e)). The sampling is
done independently with replacement, summing the weights if an edge is sampled
more than once. Under such a construction, for 0 < ε ≤ 1, the algorithm produces a
sparsified graph H after q sampling steps, such that the Laplacian of the sparsified
graph LH with (re-weighted) edges satisfies the following relation with respect to the
Laplacian of the original graph LG:

(1− ε)x⊤LGx ≤ x⊤LHx ≤ (1 + ε)x⊤LGx, ∀x ∈ Rn.

The Courant-Fischer theorem, provides a variational characterization of the eigen-
values λi, 1 ≤ i ≤ n of the Laplacian L in terms of the following min-max
expression:

λi = max
V⊆Rn

dim(V )=i

min
x∈V
x̸=0

x⊤Lx

x⊤x
.

The above expression allows us to conclude that

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G), ∀ 1 ≤ i ≤ n.

The strategy followed in this work was later extended to simplicial complexes by
Osting et al. [105] (reviewed in Section 5.5).

Our survey of methods for finding graph cores shows that curvature-based
approaches predominantly employ thresholding techniques to remove vertices or
edges. This preference likely stems from theoretical insights into discrete curvatures,
which suggest that edges with relatively high or low absolute curvatures convey certain
structural information, thereby justifying their removal based on threshold criteria.
On the other hand, the spectral method that leverages effective resistance employs
a probability-based sampling strategy, which removes vertices or edges according
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Table 2: A summary of recent works in finding cores of hypergraphs, as surveyed in
Section 4. V: vertices (nodes). E: hyperedges. ER: effective resistance. “robustness”:
hypergraph robustness.

Ref. Hypergraph Method Criteria Property Preserved

[136] undirected percolation, V and E none robustness
[86] undirected percolation, V and E degree robustness, subhyper-

graph
[17] undirected percolation none robustness, subhyper-

graph

[129] (un)directed sparsification Laplacian spectral
[73] (un)directed sparsification Laplacian spectral
[85] undirected sparsification Laplacian spectral
[68] undirected sparsification Laplacian spectral
[27] undirected cut sparsification max cut global maximum cut
[30] undirected cut sparsification auxiliary graph

edge strength
spectral

[2] weighted threshold, V and E ER clusters

[156] undirected normalized cut Laplacian clusters
[150] weighted normalized cut intra-weights, E clusters
[34] undirected threshold, E ORC, edge and

node features
clusters

to a predefined probability distribution. For future work, it would be interesting to
extract graph cores by sampling with resistance curvature, investigate the properties
preserved, and study the connection between effective resistance based sparsification
and resistance curvature based sampling.

A number of research works utilize probability-based sampling methods (often
referred to as network percolation) to extract cores from graphs or to study the effect of
random removal of nodes and edges. Since network percolation is a well-established
field, we do not review relevant works in this paper, instead, we refer readers interested
in this topic to a recent survey [118]. On the other hand, we believe that hypergraph
percolation for core finding is a fairly new topic and deserves some attention, which
is surveyed in Section 4.

4 Finding Cores of Hypergraphs

Numerous studies have focused on identifying the cores of hypergraphs. Techniques
include finding the (k, q)-core of the hypergraph [86], preserving the quadratic form
of the Laplacian of the resulting hypergraph [129], and approximately preserving
the cuts [27]; see Table 2 for a summary. There is a plethora of clustering and
community detection studies for hypergraphs (see, for example, [32, 116, 155],
among others). However, few of them present a topological or geometric perspective,
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favoring probabilistic or statistical approaches. We close the section reviewing the
only two—to the best of our knowledge—geometric-based clustering method for
hypergraphs: an extension of the Normalized Cut algorithm [126, 94, 101] for spectral
clustering in graphs [156, 150]; and an application of spectral clustering based on
the Ollivier-Ricci curvature [34].

4.1 Preliminaries on Hypergraphs

Given a hypergraph H = (V,E), we let n = |V |, m = |E|, and p =
∑
e∈E |e|,

where |e| denotes the hyperedge size, that is, the number of vertices (or nodes) it
contains. We let the rank of the hypergraph r to be the maximum hyperedge size. A
hypergraph is capacitated if it is equipped with a capacity function c : E → R+,
where c(e) assigns a positive real number to each hyperedge e ∈ E, representing the
capacity of that hyperedge. If all capacities are equal to one, the hypergraph is called
uncapacitated. The (k, q)-core of a hypergraph, defined by Ahmed et al. in [3], is a
maximal subgraph in which each node has at least k hypergraph degrees and each
hyperedge contains at least q nodes [86].

Several notions of hypergraph Laplacians exist in the literature, each motivated
by different applications or structural properties [1, 64, 88, 120, 119]. Here, we
present one such formulation, based on the submodular Laplacian framework [151],
which is commonly used in recent works on spectral sparsification. The Laplacian
LH : RV → RV of an undirected weighted hypergraph H with weight function
w ∈ RE+ is defined [92, 151] such that its quadratic form x⊤LHx satisfies

x⊤LHx =
∑
e∈E

w(e) max
u,v∈e

(x(u)− x(v))2,

for every x ∈ RV .
We say that a node set S ⊆ V cuts a hyperedge e if e∩S ̸= ∅ and e∩ (V \S) ̸= ∅.

Specifically, for a set S ⊆ V , the quadratic form 1⊤
SLH1S coincides with the cut

size of S, where 1S ∈ RV is the characteristic vector of S.
A directed hypergraph H = (V,E,w) as defined by Gallo et al. in [54] consists

of a node set V , a set of hyperedges E, and a weight function w ∈ RE+, where
each hyperedge e is a pair (Te, He) of (not necessarily disjoint) sets of nodes,
where Te, He ⊆ V are called the tail and head of e, respectively. The Laplacian
LH : RV → RV for a directed hypergraph H can be derived using the submodular
Laplacian framework. Using the submodular form of the Laplacian [151], Soma and
Yoshida [129] derived the quadratic form x⊤LHx for a directed hypergraph to be as
follows:

x⊤LHx =
∑

e=(Te,He)∈E

w(e)max
u∈Te

max
v∈He

([x(u)− x(v)]+)2,

where [x]+ = max (x, 0).
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A weighted subgraph H ′ of a hypergraph H on a node set V is said to be an
ε-spectral sparsifier of H if the following holds for every x ∈ RV [129]3,

(1− ε)x⊤LH′x ≤ x⊤LHx ≤ (1 + ε)x⊤LH′x.

4.2 Percolation Methods for Finding Hypergraph Cores

Percolation processes describe the size of the largest connected component when
nodes or hyperedges are randomly removed [17]. In the context of studying the
dependence of hyperedges on their nodes, also known as hypergraph percolation,
as noted by Bianconi and Dor in [17], two types of hyperedges capture different
classes of higher-order interactions. The first type, found in networks such as social
interactions, remains intact unless all but one of its nodes are removed, or fail,
meaning that the hyperedge collapses only when it loses all but one of its constituent
nodes. This failure indicates that the functionality or connection of the hyperedge
is lost when it is no longer supported by a sufficient number of nodes. Thus, these
hyperedges can withstand the failure of one or more nodes. The second type consists
of hyperedges that fail once one of their nodes is damaged, such as in supply chains
or protein-interaction networks. In the first category, Bianconi and Dorogovtsev [17]
noted that current theories and models that treat hypergraphs as factor graphs—which
represent hypergraphs as bipartite networks of nodes and hyperedges—are completely
effective.

We start by outlining contributions to the theory of percolation for hypergraphs
with hyperedges of varying cardinalities. Sun and Bianconi [136] studied hypergraph
pruning (cf., link pruning from Section 3.1.3) at the node and hyperedge levels
separately, proposing percolation methods for finding the (k, 1)- and (1, k)-cores of
random hypergraphs, respectively; this percolation procedure extends percolation
on factor graphs. Higher-order percolation on hypergraphs is related to percolation
on multiplex networks, that is, networks with multiple layers sharing the same set
of nodes. Random hypergraphs can exhibit complex multiplex topologies, which
are characterized by layers representing hyperedges of specific cardinalities, leading
to the concept of random multiplex hypergraphs [136]. This approach avoids the
strict assumption of fixed cardinality hyperedges. The authors argued that multiplex
hypergraphs are excellent tools in statistical mechanics for examining a wide range of
higher-order percolation processes, applicable across various fields. They defined
ensembles of random multiplex hypergraphs, where each node has a generalized
degree vector representing the number of hyperedges of different cardinalities incident
to it. These hypergraphs show significant interlayer hyperdegree correlations and
differ from multiplex bipartite networks, although mapping between the two is
possible under certain conditions. The study demonstrates that the complex topology
and interlayer correlations of multiplex hypergraphs influence percolation processes,
allowing adjustment of the percolation threshold. The research reveals that the

3 Notice that there is a difference between the formulation from [129] vs. the formulation from [130].
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multiplex nature of hypergraph ensembles can be used to explore higher-order
percolation problems, uncovering complex behaviors such as discontinuous hybrid
transitions and multiple percolation transitions.

Lee et al. [86] extended this concept by defining the (k, q)-core of a hypergraph,
which is obtained by iteratively removing nodes with degrees less than k and
hyperedges smaller than q, leading to a repeated pruning process. As the process
continues, any nodes and hyperedges that subsequently fall below these thresholds
are also removed. This process results in a core subhypergraph where every node has
at least k connections, and every hyperedge connects to at least q nodes. To describe
this pruning process for uncorrelated hypergraphs, that is, hypergraphs where there
is no correlation between node degrees and hyperedge sizes, the authors derived
evolution equations for the degree and size distributions. These equations, framed
within a bipartite network representation of hypergraphs, track the fractions of nodes
and hyperedges pruned at each step. The self-consistency equations for the core
structure were obtained using generating functions, which facilitated the analysis of
(k, q)-core percolation transitions.

The analysis of Lee et al. revealed that there is a hybrid phase transition of
(k, q)-core percolation when k ≥ 3 or q ≥ 3 and the second moments of the degree
and size distributions are finite. This hybrid phase transition is characterized by a
discontinuous jump in the order parameter, accompanied by critical behaviour at the
transition point. Additionally, the relaxation dynamics of the fractions of nodes with
degree z = k − 1 and hyperedges of size n = q − 1 at the transition point exhibit a
universal behaviour proportional to t−2 for k ≥ 3 or q ≥ 3, where t denotes the time
step. When k = q = 2, Lee et al. analytically derived and numerically confirmed a
novel degree-dependent critical relaxation dynamics, showing that P (u)(z, t) ∼ t−z
and P (e)(n, t) ∼ t−n for z and n ≥ 2, with both decaying as t−3 for z = n = 1.
Here, P (u)(z, t) represents the probability distribution of nodes with degree z at time
t, and P (e)(n, t) represents the probability distribution of hyperedges with size n at
time t.

Lee et al. further demonstrated that (k, q)-core decomposition is more effective
in eliminating redundant modular structures compared to traditional k-core decom-
position. This obervation was highlighted through a case study on a coauthorship
hypergraph, where (k, q)-core decomposition successfully identified high-impact
teams by eliminating modular structures with large hyperedges and many low-degree
nodes. Lee et al. also noted that (k, q)-core decomposition has advantages in clas-
sifying groups (hyperedges) based on their properties more effectively than the
previous k-core decomposition via this case study. Whereas the theoretical analysis
was confined to hypergraphs with homogeneous distributions, the authors remarked
that their theory can be generalized to heterogeneous cases due to the convergence of
the infinite series, irrespective of the moments’ divergence in the degree distribution.
Furthermore, the method allows for extensions to cases with degree-size correlation.
A key shortcoming of the existing theory, as pointed out in [86], is its reliance on
a tree-like assumption. This relaxation and the development of broader theoretical
models represent promising directions for future research.
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Percolation theory for hypergraphs with hyperedges belonging to the second
type, i.e., hyperedges that fail once one of their nodes is damaged, was recently
developed by Bianconi and Dorogovtsev [17]. Whereas hypergraphs can be efficiently
represented by factor graphs, k-core percolation can significantly differ between the
two. To address these disparities, Bianconi and Dorogovtsev introduced a set of
pruning processes targeting either nodes or hyperedges based on connectivity in the
second neighbourhood. They constructed a message-passing theory for hypergraph
percolation, utilizing the generating function formalism and supporting their analysis
with Monte Carlo simulations on both random and real-world hypergraphs. They
further derived message-passing equations for percolation on both factor graphs
and hypergraphs. Next, they applied message-passing theory to random hypergraphs
described by a degree distribution for nodes and a cardinality distribution for
hyperedges, and a joint degree distribution where each degree is a vector listing the
numbers of hyperedges of each cardinality adjacent to a node.

Bianconi and Dorogovtsev further investigated the critical behavior of hypergraph
percolation, revealing that the node percolation threshold for hypergraphs is higher
than that for factor graphs. Additionally, unlike ordinary graphs where node and
edge percolation thresholds coincide, in hypergraphs the situation is different, with
the threshold for node percolation being higher than that for hyperedge percolation.
The authors determined the presence of a percolation cluster (i.e., a giant connected
component) and its relative size through self-consistent equations, which are derived
using generating functions. The study shows that in hypergraphs, distributions of
hyperedge sizes with heavy tails do not result in hyperresilience, which is a contrast
to factor graphs. In factor graphs, if the size distribution has a diverging second
moment, it leads to a percolation threshold of zero. The distinction between node
and hyperedge percolation in hypergraphs is significant, especially when hyperedges
have large cardinalities. Notably, when pruning focuses solely on hyperedges, the
phase diagram converges to that of factor graph k-cores.

Importantly, the message-passing algorithm developed by Bianconi and Dorogovt-
sev does not assume the absence of correlations in hypergraphs, which allows the
problem to be treated numerically. The final formulas are obtained for hypergraphs
without degree-degree correlations between different nodes. The authors suggested
that the case of correlated hypergraphs can also be treated analytically within their
framework.

Recently, Bianconi and Dorogovtsev [16] studied k-core percolation processes
on hypergraphs and contrasted these with the analogous processes on factor graphs.
The critical distinction arises in the integrity of hyperedges: in hypergraphs, every
node within a hyperedge must be intact for the hyperedge to be considered intact,
reflecting the all-or-none characteristic observed in systems such as supply chains,
protein-interaction networks, and chemical reactions. The authors formulated a
message-passing theory tailored to the k-core percolation on hypergraphs, leveraging
the theory of critical phenomena on networks to underline the main differences from
factor graph-based percolation where hyperedges can still function despite partial
node failures. They explored phase transitions and phase diagrams in these systems,
noting more complex behaviors in hypergraphs compared to factor graphs, especially
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in scenarios where node or hyperedge pruning is based on broader neighbourhood
connectivity. To resolve discrepancies between k-core percolation on hypergraphs
and factor graphs, they introduced a series of pruning processes, designed to either
exclusively target nodes or hyperedges, with a dependence on their connectivity to
the second neighbourhood.

4.3 Spectral Sparsification Methods

Soma and Yoshida [129] extended spectral sparsification of graphs to hypergraphs by
providing an ε-spectral sparsifier for a hypergraph H . They presented a polynomial-
time algorithm that constructs an ε-spectral sparsifier of an undirected or directed
hypergraph H = (V,E) with O(n3 log n/ε2) hyperedges, where n = |V |. Their
main contributions include the development of a randomized algorithm for spec-
tral sparsification and its application to various computational problems involving
hypergraph Laplacians. For an undirected hypergraph, their algorithm outputs an
ε-spectral sparsifier H with O(n3 log n/ε2) hyperedges with high probability in
O(pn+m log(1/ε2) +n3 log n/ε2) time, where n = |V |, m = |E|, p =

∑
e∈E |e|.

Soma and Yoshida further showed that spectral sparsification of directed hyper-
graphs can also be achieved withO(n3 log n/ε2) hyperedges. This result is significant
because even directed graphs with O(n2) edges do not admit nontrivial cut/spectral
sparsification of size o(n2) (o(·) representing little-O notation), whereas directed
hypergraphs, which could have O(4n) hyperedges, do admit such sparsification.
Their study also demonstrated how spectral sparsification can be applied to enhance
the time and space efficiency of algorithms that work with the quadratic forms of
hypergraph Laplacians. This study includes tasks such as calculating eigenvalues,
solving systems based on Laplacians, and conducting semi-supervised learning.

Kapralov et al. [73] presented a polynomial-time algorithm that constructs an
ε-spectral sparsifier for a hypergraph with only O∗(nr) hyperedges, where r is
the maximum hyperedge size, and the notation O∗(·) suppresses (ε−1 log n)O(1)

factors [73]. This result improves upon the previous bounds, i.e., O∗(n3) set by
Soma and Yoshida [129] and O∗(nr3) by Bansal et al. [9]. The algorithm achieves
this sparsification with high probability and a running time of O(mr2) + nO(1).
Additionally, the authors established lower bounds on the bit complexity for any
compression scheme that approximates all cuts in a hypergraph within a factor of
1± ε. We refer the reader to Section 4.1 for the definition of a hypergraph cut. They
demonstrated that Ω(nr) bits are required to represent all cut values of an r-uniform
hypergraph where r equals nO(1/ log logn). For directed hypergraphs, Kapralov et al.
further presented an algorithm that computes an ε-spectral sparsifier with O∗(n2r3)
hyperedges, which represents a significant improvement over the previously known
O∗(n3) bound by Soma and Yoshida. This result is particularly impactful when the
rank r is small. They also introduced a new approach for proving concentration of the
nonlinear version of the quadratic form associated with the Laplacians in hypergraph
expanders.
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Independently, Lee [85] and Jambulapati et al. [68] further improved the bound
in the undirected hypergraph with a near-linear time algorithm. They introduced an
algorithm that constructs an ε-spectral sparsifier withO(nε−2 log n log r) hyperedges
for an n-node, m-edge hypergraph of rank r. This algorithm operates in nearly linear
O∗(mr) time, significantly enhancing both the size and efficiency over previous
works (e.g., [9, 73]). The algorithm by Jambulapati et al. [68] utilizes a novel approach
involving group leverage score overestimates and generic chaining, enhancing the
calculation of sampling weights in nearly linear time to achieve optimal sparsification
bounds. In the context of hypergraphs, group leverage scores assess the importance or
influence of hyperedges, typically derived from spectral properties. By overestimating
these scores, the algorithm simplifies the calculations, using approximations to
determine the importance of each hyperedge efficiently. This approximation results in
adjusted sampling probabilities for retaining significant hyperedges in the sparsifier,
which maintains the structural integrity of the original hypergraph.

Furthermore, the technique of generic chaining, developed by Talagrand [137],
was adapted to manage the accumulation of error in sampling. This method constructs
multiple layers of increasingly finer nets over the probability space, chaining these
layers to control the maximum deviation of the stochastic processes involved. This
rigorous control allows for a more refined process in determining which hyperedges
to retain, tightening the bound on the number of necessary hyperedges. These
innovations offer improvements over previous methods, demonstrating that every
hypergraph admits a sparsifier with nearly linear time complexity and fewer hyperedges.
Specifically, this method effectively reduces the bound on the number of hyperedges
to O(nε−2 log n log r), improving over the previous bounds and approaching the
theoretical limits of sparsification.

Given a hypergraph H = (V,E) with n = |V |, m = |E|, and p =
∑
e∈E |e|,

Chekuri and Xu [27] extended sparsification techniques from graphs to uncapacitated
hypergraphs, focusing on constructing a k-trimmed certificate. A k-trimmed certificate
is a (sparse) subhypergraph H ′ obtained via hyperedge deletion and trimming that
preserves all cuts of value up to k [27]. The authors improved on previously bounds
in [112, 93, 78] to find the min-cut (or minimum cut) of an arbitrary symmetric
submodular function. For a hypergraph, their method adapts the maximum adjacency
ordering to arrange nodes in a sequence where each node has high connectivity to
previously ordered nodes. Edges are then evaluated, and for each node v, only the
first k significant backward edges (i.e., those connecting v to previously ordered
nodes) are retained. This process trims the hypergraph by removing less critical
connections while maintaining essential connectivity properties. The construction of
the k-trimmed certificate involves creating a data structure inO(p) time. The practical
implications include significantly faster algorithms for computing the global min-cut
in hypergraphs. For example, the global min-cut can be computed in O(p + λn2)
time, where λ is the min-cut value of the hypergraph. Chekuri and Xu proposed
a split oracle that, given a hypergraph H and its min-cut value λ, determines if a
split exists between any two nodes {s, t}. The oracle operates in near-linear time by
converting H into an equivalent directed graph HD and computing the maximum
s-t flow in HD. If this flow exceeds λ, no s-t split exists; otherwise, a nontrivial
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min-s-t cut implies a split. Canonical and prime decompositions are introduced to
further break down a hypergraph. A hypergraph is prime if it contains no splits,
with all min-cuts being trivial. A canonical decomposition captures all min-cut
information and is constructed by refining the hypergraph iteratively using splits.
This decomposition helps in identifying cores, as they correspond to components
maintaining the hypergraph connectivity. To compute the canonical decomposition,
an algorithm starts with a prime decomposition and iteratively glues components.
This algorithm operates in O(np+ n2 log n) time for capacitated hypergraphs and
O(np) time for uncapacitated hypergraphs.

Chekuri and Xu [27] discussed a compact representation of a hypergraph called
the hypercactus representation, which captures all min-cuts and is derived from the
canonical decomposition. For a hypergraph with λ = 1, the hypercactus is constructed
by identifying marker nodes and combining canonical decomposition components.
The hypercactus representation can be computed in O(n(p + n log n)) time and
O(p) space for capacitated hypergraphs, and in O(p+ λn2) time for uncapacitated
hypergraphs. The authors then extended Matula’s algorithm to hypergraphs, obtaining
a (2 + ε)-approximation for the global min-cut of a capacitated hypergraph in
O( 1ε (p log n + n log2 n)) time and for uncapacitated hypergraphs in O(p/ε) time.
This generalized version of Matula’s algorithm incorporates the use of node orderings,
inspired by Nagamochi and Ibaraki’s [99] maximum adjacency ordering method for
graphs. Unlike graphs, hypergraphs have several possible orderings, and these yield
different insights into their structure. The authors present an algorithm that computes
approximate strengths for all edges in a hypergraph, running in O(p log2 n log p)
time. The strength γH(e) of an edge e is defined as the maximum min-cut value
over all node-induced subhypergraphs containing e. The algorithm ensures that the
estimated strength γ′(e) is less than or equal to the actual strength γH(e), and that
the sum of the inverses of the approximate strengths satisfies certain bounds. This
edge strength estimation facilitates the construction of a (1 + ε)-cut sparsifier, a
reduced hypergraph that preserves cut size within a factor of 1± ε. This cut sparsifier
can be found in near-linear time, significantly reducing the number of edges while
maintaining essential connectivity properties. This approach extends the work of
Kogan and Krauthgamer [79] and leads to faster algorithms for solving various cut and
flow problems in hypergraphs of small rank. By using the approximate strengths to
sample edges and create sparsifiers, the authors achieved efficient cut approximations.

Chen et al. [30] improved on the work of Chekuri and Xu, providing an algorithm
that runs in Õ(mn+ n10/ε7) time that constructs an approximate sparsifier of size
O
(
ε−2n log n

)
. The authors claimed that this size bound is the best possible bound

within a logarithmic factor by providing an example of a hypergraph such that any
sparsifier must include every hyperedge. Their algorithm works by constructing a
sparsifier via an auxiliary graph G as follows. First, for each hyperedge e in H , add a
clique Fe to G whose node set is the same as the nodes of e, then assign weights to
the edges inG according to a balanced weight scheme, where the weights of the edges
in Fe range from 0 to the weight of the hyperedge e. With this setup, the probability
of sampling a hyperedge e in H is determined by the balanced weight scheme on the
clique Fe ∈ G.
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By generalizing the notion of effective resistance to hypergraphs, Aghdaei and
Feng [2] introduced a scalable algorithmic framework, called HyperEF, for spectral
coarsening of large-scale hypergraphs. This generalization relies on the nonlinear
quadratic form introduced by Chan et al. in [26]: for a weighted undirected hypergraph
H = (V,E,w) with non-negative weights, and a vector x ∈ R|V |,

Q(x) := we
∑
e∈E

max
vk,vl∈e

(x(k)− x(l))2,

where x(k) is the k-th element of the vector x. In the graph setting, the effective
resistance between two nodes vi and vj satisfies the following property, as shown in
Theorem 1 in [2]:

rvivj = max
x∈R|V |

(x⊤(ei − ej))
2

x⊤Lx
.

By extending the above formula to the hypergraph setting while replacing x⊤Lx
with the nonlinear quadratic form Q(x), Aghdaei and Feng [2] defined the effective
resistance of a hyperedge e as

Re := max
x∈R|V |

(
x⊤ (ei − ej)

)2
Q(x)

, (25)

assuming vi and vj are some nodes within e. To enhance computational efficiency,
Re is computed approximately as follows. For a vector x ∈ R|V |, we call R̃e(x) :=
(x⊤(ei−ej))

2

Q(x) the resistance ratio associated with x. Then, Re is approximated as the
sum of the resistance ratios associated with a few Laplacian eigenvectors {ξi} of a
certain bipartite graphGb converted from the original hypergraph. This approximation
is motivated by the following property of graph effective resistance: assuming {ξi}|V |

i=1

is an orthonormal eigenbasis of the graph Laplacian associated with eigenvalues
{λi}|V |

i=1, then

rvivj =
∑
λi ̸=0

(x⊤(ei − ej))
2

ξ⊤i Lξi
.

Here, the vectors {ξi} are computed approximately as the orthonormal basis of
the Krylov subspace K := span{x,Ax, . . . , Axρ}, for a non-negative integer ρ, a
random vector x and the adjacency matrix A of the bipartite graph Gb. Nodes vi
and vj in Equation (25) are selected as the maximally separated nodes within this
ρ-dimensional embedding space K.

The HyperEF algorithm iteratively contracts the hyperedges and nodes via the
following steps: (1) compute the approximate effective resistance as described above;
(2) compute the node weights via a specified formula; (3) compute the hyperedge
weights using both the approximate effective resistance and the node weights; and (4)
contract the hyperedges and cluster nodes when their weights are below a threshold.
The performance of the algorithm is tested by its preservation of the so-called
average conductance of clusters. Experiment results on real-world VLSI designs
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(i.e., very-large-scale integration, the process of creating an integrated circuit by
combining thousands to millions of transistors on a single chip) showed that HyperEF
is faster than HMetis [74], a well-known hypergraph partitioner, while maintaining
comparable or better average conductance values in most cases.

4.4 Spectral Clustering for Hypergraphs

A successful clustering technique in the graph domain is spectral clustering, based on
the eigenvalues and eigenvectors of some matrix containing geometric information
about the graph. A well-established method for spectral clustering is the normalized cut
algorithm [126, 94], which intuitively minimizes the weights of the edges connecting
different clusters without favoring clusters of isolated nodes in the graph.

This normalized cut algorithm was extended to hypergraphs by Zhou et al. [156].
The authors showed that, much like in the graph case, a relaxation in the hypergraph
cut criterion allows to express the optimal cut from a decomposition of a positive
semidefinite matrix, which can be regarded as a hypergraph Laplacian. Nonetheless,
their approach had two limitations. On the one hand, it assumed that nodes within the
same hyperedge have equal relevance, which can be restrictive. On the other hand,
the need to solve an eigenproblem made the approach time and storage consuming.

GraphLSHC [150] was proposed by Yang et al. as an extension of the previous
method to overcome such limitations. For the importance of edges problem, the
authors proposed to use weighted hypergraphs, and extended the normalized cut
algorithm to such a framework. Here, the weights refer to “intra-weights” within
hyperedges. To address the computational issues, they proposed several optimizations,
including an “eigen-trick” that is particularly designed to accelerate the eigenproblem
solver.

To the best of our knowledge, the only existing curvature-based spectral clustering
algorithm for hypergraphs was proposed by Coupette et al. [34], who proposed
an flexible framework to extend the Ollivier-Ricci curvature to hypergraphs (see
Section 2.2). As part of their experimental exploration on hypergraph learning, they
performed spectral clustering using curvatures and other local edge features (e.g., the
number of neighbours of a given edge) and node features (e.g., the average curvature
of the incident edges in a node, or the size of its neighbourhood). They evaluated
the quality of the clustering through the Wasserstein clustering coefficient, which
measures average intra-cluster Wasserstein distances to inter-cluster Wasserstein
distances; and observed that curvature-based clustering consistently obtains better
results.
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Table 3: A table summarizing recent works in finding cores of simplicial complexes,
as surveyed in Section 5. Ref.: references. SC: simplicial complex. WSSD: well-
separated simplicial decomposition. PD: persistence diagram. VR: Vietoris–Rips
complex. Čech: Čech complex. ER: effective resistance.

Ref. SC Key component(s) Criteria Property Preserved

[125] VR point collapse/removal metric ball cover PD
[39] VR batch collapse with pairwise dis-

tance
metric ball cover PD

[40] VR batch collapse with set distance metric ball cover PD
[75] Čech WSSD metric ball cover PD
[95] VR vertex quasi-distance codensity PD
[13] SC simplicial collapse none PD

[24] VR subsample smaller point clouds none PD
[59] VR subsample smaller point clouds none PD
[128] VR subsample smaller point clouds none PD

[105] SC Sampling with replacement ER spectral

[43] SC harmonic embedding, subspace
clustering

none homology generators
(experimentally)

5 Finding Cores of Simplicial Complexes

Finally, we review recent works in finding cores of simplicial complexes. Majority of
these works arise from the fields of computational topology; thus, they have a strong
focus on preserving homological information of the complexes. After reviewing
various notions of simplicial complexes in Section 5.1, we discuss sparsification
methods that preserve (persistent) homology (Sections 5.3 and 5.4) and spectral
properties (Section 5.5) of the complexes. We finish this section with a discussion
on simplicial spectral clustering (Section 5.6). Whereas there have been recent
works on percolation theory for simplicial complexes, e.g., homological percolation
by Bobrowski and Skraba [20], different from hypergraphs, these works have yet
to produce well-defined cores. Therefore, in this paper, we choose not to survey
simplicial percolation.

5.1 Preliminaries on Simplicial Complexes

We first review the definitions of various simplicial complexes popular in computa-
tional topological, including Čech, Vietoris–Rips, Delaunay, Alpha, Delaunay-Čech,
and Wrap complexes.

Given a finite set X ⊆ Rn and a radius r ≥ 0, the Čech complex of X is the nerve
of the r-balls centered at points of X , that is,
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Čechr(X) = {Q ⊆ X |
⋂
x∈Q

Bx(r) ̸= ∅}.

The Vietoris–Rips complex for a scale r is

VRr(X) = {Q ⊆ X | diam(Q) ≤ r}.

The Voronoi cell of a point x ∈ X (w.r.t. X) contains all points closer to x than to
any other point,

Vor(x) = {y ∈ Rn | d(y, x) ≤ d(y, p), ∀ p ∈ X}.

The Voronoi ball of x (w.r.t. X) for a radius r is

Vorr(x) = Br(x) ∩Vor(x).

The Delaunay complex of X for a radius r is

Delr(X) = {Q ⊆ X |
⋂
x∈Q

Vorr(x) ̸= ∅}.

Delr(X) is also called the alpha complex. The Delaunay triangulation of X is
Del(X) := Del∞(X).

The Delaunay-Čech complex for a radius r restricts the Čech complex to the
Delaunay triangulation [13]:

DelČechr(X) = {Q ∈ Del(X) |
⋂
x∈Q

Br(x) ̸= ∅}.

The Wrap complex is defined using the gradient of the Delaunay radius function
sX : Del(X)→ R, see [13] for its technical definition.

5.2 Persistent Homology

In this section, we introduce the basics pertaining to the theory of persistence that are
necessary in Section 5. The fundamental idea is to build a geometric representation
of the input data in the form of a filtration, from which one computes invariants
capturing the topological features at multiple scales. For the purpose of this survey,
given a simplicial complex K, a filtration is an increasing sequence of simplicial
complexes connected by inclusions,

∅ = K0 ↪→ K1 ↪→ · · · ↪→ KN = K.

To extract the topological information from a filtration, persistent homology studies the
p-dimensional homology groups Hp of the simplicial complexes in the filtration. For
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our purposes, these are vector spaces that contain information about the topological
features in a simplicial complex: connected components (for p = 0), tunnels (for
p = 1), voids (for p = 2), and so on. By computing p-homology groups for all
simplicial complexes in a filtration, one obtains a family of vector spaces connected
by linear maps that satisfy a commutativity relation,

∅ = Hp(K0)→ Hp(K1)→ · · · → Hp(KN ) = Hp(K).

This structure is an example of a persistence module. Algebraically, a persistence
module, denoted as (M,ϕ), is a functor M : P→ Vec, where P is a poset category
(e.g., P = Rn), and Vec is the category of finite-dimensional vector space over
a field [18]. The transition map between a pair of such vector spaces is a linear
transformation ϕts : Ms → Mt for s ≤ t ∈ P. When P = R, by the Structure
Theorem [158, 35, 22], a persistence module is fully explained by a family of intervals
called the persistence barcode of the module. An interval or bar in a barcode,
denoted as (x, y), represents the birth time x and the death time y of a homological
feature in the filtration. An equivalent representation of the barcode is given by the
persistence diagram, a multiset of points in the extended real plane (R ∪ ±∞)2.
A point (x, y) in the persistence diagram corresponds to a bar in the barcode. The
persistence diagram has been extensively investigated and successfully applied to
study sensor networks [36], protein interactions [55, 81, 148], DNA structures [49],
robot trajectories [110], and bipedal walks [143], to name a few.

The interleaving distance describes the proximity between two persistence modules.
Two persistence modules, (M,ϕ) and (N,ψ), are ε-interleaved if there are families
of functions ft :Mt → Nt+ε and gt : Nt →Mt+ε that commute with the internal
transition maps, i.e., the following diagrams commute for any s, t ∈ R where s ≤ t:

Ms Mt

Ns+ε Nt+ε,

ϕs,t

fs ft

ψs+ε,t+ε

Ns Nt

Ms+ε Mt+ε,

ψs,t

gs gt

ϕs+ε,t+ε

Mt Mt+2ε,

Nt+ε

ft

ϕt, t+2ε

gt+ε

Nt Nt+2ε.

Mt+ε

gt

ψt, t+2ε

ft+ε

The interleaving distance between two persistence modules is

inf{ε | (M,ϕ) and (N,ψ) are ε-interleaved}.

Given two filtrations K := (Kt), L := (Lt), the persistence diagram of K is a
c-approximation [125] to that of L if there is a bijection π between the diagrams such
that the birth (resp. death) time of a point x in the persistence diagram of K and π(x)
in the persistence diagram of L differ by at most a factor of c.
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5.3 Sparse Filtrations Approximating Persistent Homology

A significant issue in computational topology is that the number of simplices in a
filtration may explode as the number of data points increases. For example, for large
enough radii, both the Čech and the Vietoris–Rips complexes have k-skeletons (i.e.,
simplices up to dimension k) of size O(nk+1) [125], and both complexes contain up
to 2n − 1 (i.e., O(2n)) simplices for n data points (see Table 1 in [106]). Therefore,
many works focus on sparsifying the simplicial filtrations (i.e., removing points or
simplices) while approximately preserving their homological information. We review
representative works based on obtaining sparse filtrations [125, 25] and/or applying
batch collapse [39].

Given n number of points, Sheehy [125] constructed a linear-size (i.e., O(n))
filtered simplicial complex whose persistence diagram approximates that of a Vietoris–
Rips filtration. The key idea is the introduction of a relaxed Vietoris–Rips filtration
based on the notion of a relaxed distance that is provably close to the input metric.
This new relaxed distance adds a weight to each point, which in turn shrinks the
metric ball centered at the point. If a ball is covered by nearby balls, its center point
can be deleted without changing the topology of the input point set, resulting in a
sparsified complex. Formally, given a finite subset P of a metric space (X, d) and
a user-defined parameter ε ≤ 1

3 , the algorithm assigns a deletion time tx (based on
a hierarchical net-tree construction, see [125] for details) to each point x ∈ P and
defines its weight wx based on a scale parameter r:

wx(r) :=


0 if r ≤ (1− 2ε)tx;
1
2 (r − (1− 2ε)tx) if (1− 2ε)tx < r < tx;

εr if tx ≤ r.

Using these weights, the relaxed distance at scale r between two points x, y ∈ P is

d̂r(x, y) := d(x, y) + wx(r) + wy(r).

The relaxed Vietoris–Rips complex is defined to be R̂r := VRr(P, d̂r), which
gives rise to a filtration with varying r. Let Rr := VRr(P, d). The multiplicative
interleaving is

R r
c
⊆ R̂r ⊆ Rr,

where c = 1
1−2ε (see Lemma 4.2. in [125]).

The algorithm then constructs a sparse zigzag Vietoris–Rips filtration with O(n)
total number of simplices, whose persistence diagram is identical to that of the relaxed
Vietoris–Rips filtration. To obtain such a sparsified filtration, the algorithm deletes
vertices and all the corresponding incident simplices from the relaxed Vietoris–Rips
filtration, when they become unimportant at the scale being considered. The algorithm
makes use of an open net Nr and a closed net N r at scale r, defined to be the points
in P with deletion time above r,
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Nr := {x ∈ P : tx > r}; N r := {x ∈ P : tx ≥ r}.

The sparse zigzag Vietoris–Rips complex at scale r is the subcomplex of R̂r induced
by the vertices of Nr,

Qr := {σ ∈ R̂r : σ ⊆ Nr} = VRr(Nr, d̂r).

Its closed version is defined similarly, Qr := VRr(N r, d̂r).
The sparse zigzag Vietoris–Rips filtration is

· · · ↪→ Qr′ ←↩ Qr′ ↪→ Qr ←↩ . . .

This leads to a filtration without the zigzag, defined by the union Sr =
⋃
r′≤rQr′ ,

which gives rise to the so-called sparse Vietoris–Rips filtration, having the same
persistence diagram as the zigzag one.

Sheehy provided theoretical guarantees that (i) the persistence diagram of a sparse
Vietoris–Rips filtration is a multiplicative c-approximation (see Section 5.2 for the
definition) of the standard one and (ii) the filtration has linear size [125].

Dey et al. [39] provided an efficient algorithm to compute persistence diagrams of
filtrations where the simplicial complexes are connected by simplicial maps instead
of inclusions (cf., Section 5.2). They applied their algorithm to approximate the
persistence diagram of a Vietoris–Rips filtration via a sparsified filtration. The key
idea is that a simplicial map can be decomposed into elementary inclusions and
vertex collapses, and these atomic operations can be used to collapse input points in
batches with an increasing radius, thereby controlling the size of the filtration during
persistence computation.

Using a mapping cylinder construction, a simplicial map f : Ks → Kt can
be simulated with a zigzag connected by inclusions Ks ↪→ K̂ ←↩ Kt, via a
third, significantly larger simplicial complex K̂. Dey et al. provided an improved
construction that converts a zigzag module connected by simplicial maps into a
zigzag module connected only by inclusions, where the intermediate modules are not
as big as the naive construction of K̂. They also showed that for a monotone sequence
of simplicial maps, one can further improve the construction by using the notion
of annotation [23], which are binary vectors assigned to simplices. This improved
construction can be used to compute the persistence of the sparse zigzag Vietoris–Rips
filtration of Sheehy [125], without straightening out the zigzag. Whereas the approach
by Sheehy [125] allows points to be deleted with a weighting scheme, Dey et al.
provided an alternative method of sparsifying a Vietoris–Rips filtration via a more
aggressive subsampling by collapsing input points in batches, thus avoiding the
weighting scheme completely. Their construction produces a sparsified filtration that
is a (3 log(1 + ε)/2)-approximation of the original filtration (see Section 5.2) and
can be computed efficiently, where 0 < ε ≤ 1 is a user-defined parameter.

As a follow-up, Dey at al. [40] further provided a thorough computational
comparison of the methods in [125] and [39]. They observed that, despite the linear
size guarantee, the approach by Sheehy still ends up producing very large complexes
due to the union step, and becomes unfeasible for high-dimensional data. On the
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other hand, the batch collapse from Dey et al. [39] is more space efficient, but still
becomes prohibitively large for high-dimensional data. Inspired by their experimental
findings, Dey at al. [40] proposed a new algorithm called SimBa, which obtains
sparsified Vietoris–Rips filtrations through simplicial batch collapse. Comparing
with the approach in [39], the key difference is that, instead of collapsing vertices
based on their pairwise distance, SimBa builds another filtration by collapsing w.r.t.
a set distance. For two sets of points A,B ⊂ P , this set distance is defined as
d(A,B) = mina∈B, b∈B d(a, b). Although this may not seem a major modification,
in practice, it ends up reporting significant improvements in memory and runtime.

We have discussed finding cores only of Vietoris–Rips filtrations as sparsified
filtrations. Kerber and Sharathkumar [75] extended the above ideas to sparsify Čech
filtrations in two constructions. The first construction yields, for a fixed homological
dimension, an approximate Čech filtration of linear size—just like in the Vietoris–Rips
case—which is (1 + ε)-interleaved with the original filtration. The key technical
ingredient for this construction is a generalization to higher dimension of the well-
separated pair decomposition (WSPD), resulting in a well-separated simplicial
decomposition (WSSD). A WSSD decomposes a given point set X into O(n/εd)
tuples; each p-tuple can be viewed as p clusters of points satisfying that, if a ball
contains at least one point of each cluster, a small expansion of the ball will contain
all points [75]. In addition, for any p-simplex that can be formed with the points in S,
there is a decomposition in p+1 clusters of S where each cluster contains one vertex
of the p-simplex. A drawback of this construction is that the constant in the size of
the filtration depends exponentially on the dimension of the ambient space of the
point cloud, whereas for the Vietoris–Rips construction, it depends on its doubling
constant. Intuitively, the doubling constant of a metric space is the minimum number
of metric balls of some radius needed to cover any ball of double that radius.

For the second construction, Kerber and Sharathkumar [75] generalized the
Vietoris–Rips Lemma [45], stating that the Vietoris–Rips complex at scale r is
contained in the Čech complex at scale

√
2r. This allows for the definition of a family

of completion complexes, verifying that the Čech complex at scale r is contained in
a completion complex at scale (1 + ε)r. These complexes are parametrized by an
integer p and they are completely determined by their p-skeleton—of size at most
O(np)—meaning that any higher-dimensional simplex is obtained combinatorially
from the p-simplices. For a specific choice of p, one obtains a (1 + ε)-interleaving
with the original Čech filtration; see [75, Theorem 4] for a precise statement. In this
case, the construction does not depend on the dimension of the ambient space. For
the proof of the approximation to the Čech complex, the key point is using coresets of
the minimum enclosing ball of the point cloud. Here, the coreset of a point cloud is a
subset from which one can obtain an approximation of the minimum enclosing ball.

Mémoli and Okutan [95] continued the above line of work and studied the
simplification of filtered simplicial complexes. A filtered simplicial complex indexed
over I ⊂ R is a family of simplicial complexes (Kt)t∈I such that Ks is contained
in Kt (Ks ↪→ Kt) for all s ≤ t. It arises from the family of simplicial complexes
that forms a filtration in persistent homology computation (see Section 5.2), such as
the Vietoris–Rips or the Čech complexes. The authors aimed to simplify a filtered
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simplicial complex (i.e., reducing the number of simplices) while retaining its
persistent homology. A key idea is the introduction of codensity, defined on the
vertices of a filtered simplicial complex, which quantifies the contribution of each
vertex to the persistent homology (see [95] for its technical definition based on vertex
quasi-distance). The authors showed that removing a vertex with zero codensity does
not affect the homology. If one considers the Vietoris–Rips complex of a finite metric
space, then the codensity of a point equals its distance to the nearest neighbour [95,
Remark 4.1]. Similar to previous approaches [125, 25], the algorithm produces a
simplified filtered complex by removing a vertex and all simplices containing it in an
iterative way (i.e., based on codensity). The authors further introduced the notion of
a simple filtered simplicial complex, which is the one whose vertices all have positive
codensity. They showed the existence of a unique (up to isomorphism) simple filtered
simplicial complex (referred to as the core) for any filtered simplicial complex such
that their interleaving type distance is zero.

Another way to obtain sparsified filtrations is via sequences of simplicial collapses.
Bauer and Edelsbrunner [13] proved that, for a fixed parameter r, there is a collapsing
sequence between the Čech, Čech-Delaunay, Delaunay (alpha), and the Wrap com-
plexes. Since these complexes are homotopy equivalent, we may consider a collapsed
complex as the core of the original complex by preserving both homological and
homotopic properties. In particular, they proved the following theorem.

Theorem 1 (Čech-Delaunay Collapsing Theorem, [13]) Let X be a finite set of
possibly weighted points in general position in Rn. Then, for every r ∈ R,

Čechr(X)↘ DelČechr(X)↘ Delr(X)↘Wrapr(X).

This theorem implies that filtrations built from these four complexes have isomor-
phic persistent homology [13, Corollary 6.1].

5.4 Subsampling Methods Approximating Persistent Homology

We now discuss sparsification of simplicial complexes based on subsampling or
bootstrapping. Cao and Monod [24] introduced a bootstrapping technique to estimate
the persistence diagram of a large input point cloud, whose direct persistence
computation would be otherwise intractable. The authors proposed the following
algorithm: given a finite subset P of a metric space (X, d) with a large number of
points |P | = N , the algorithm takes a number of subsamples ofX , each with n≪ N
points, and computes the persistence diagram of the Vietoris-Rips filtration of each
subsample. The authors showed that the mean of the persistence diagrams of these
bootstrap subsamples is a good approximation of the persistence diagram of the large
data. Here, the mean of persistence diagrams refers to the mean persistence measure,
obtained by first turning the persistence diagram into a discrete measure, where each
point is substituted by a Dirac measure weighted by the multiplicity of the point in
the diagram [41, 42], and then taking the mean of the measures. Building on Divol
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and Lacombe’s work on the convergence of the sample mean to the population mean
of persistence diagrams [42], Cao and Monod derived explicit expressions for the
approximation error of the convergence of the mean persistence measure through a
bias-variance decomposition, justifying their bootstrap approach.

In a similar vein, Gómez and Mémoli [59] studied Vietoris–Rips filtrations of
subsamples. Given a compact metric space (X, d), for a fixed dimension p and an
integer n ≥ 1, they considered the persistence diagrams of p-dimensional Vietoris–
Rips filtrations of all subsets of (X, d) with cardinality at most n ∈ N. They worked
with the notion of a curvature set of a compact metric space (X, d), first introduced by
Gromov [61]. For a fixed n ∈ N, the n-th curvature set ofX is a collection of all n×n
submatrices of the distance matrix of points in X (with possible repetitions) [61].
Starting from (X, d), the algorithm takes subsamples of the distance matrix of X ,
and applies (Vietoris–Rips) persistent homology to each subsample, and aggregates
the persistence diagrams of the subsamples by overlaying them into a single set of
axes. The authors showed that the aggregated diagram is easy to compute, stable, and
enjoys good discriminating power in classification tasks. Solomon et al. [128] also
explored the idea of distributed persistence, and demonstrated that the collection of
persistence diagrams of many small subsets of (X, d) serves as a better invariant than
a single persistence diagram of the entire space (X, d).

Although these approaches do not give rise to a single sparsified filtration, we may
argue that the collection of subsamples and their corresponding filtrations serve as a
replacement of the original data filtration, and approximately preserve its persistence
diagram. It remains open to develop concrete, geometric representations of such a
collection.

5.5 Sparsification Methods Approximating Spectral Properties

As an extension of spectral graph sparsification by Spielman and Srivastava [130],
Osting et al. [105] introduced a subsampling algorithm for the p-skeleton of a
simplicial complex that approximately preserves its p-dimensional up Laplacian.
It relies on the effective resistance of simplices, generalizing Equation (19) using
incidence matrix between simplices of adjacent dimensions. Given a simplicial
complex K, and a fixed dimension p ≤ dim (K), the algorithm runs as follows. It
fixes all the simplices in K up to dimension p− 1 and then samples a number q of
p-simplices independently with replacement, according to a probability distribution
defined by their effective resistance. That way, the algorithm produces a sparsified
simplicial complex J . Fixing a parameter 1/√np−1 < ε ≤ 1, where np−1 is the
number of p− 1 simplices in K, for a sufficiently large value of np−1 and a precise
value of q (see [105, Theorem 3.1] for the full statement), Osting et al. proved that
with probability at least 1/2, they have,

(1− ε)xTLKx ≤ xTLJx ≤ (1 + ε)xTLKx,
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for all x ∈ Rnp−1 , where LK and LJ are the up Laplacian matrices for the original
and sparsified simplicial complexes.

5.6 Spectral Clustering of Simplicial Complexes Preserving Homology

Similar to the case of graphs (Section 3), certain clustering methods of simplicial
complexes may be considered as core finding as they preserve geometric or topological
information of the complexes. Inspired by spectral clustering of graphs, Ebli and
Spreemann [43] introduced a spectral clustering of simplicial complexes. Given
a p-dimensional simplicial complex K of low homological complexity (that is,
βp(K) := rank(Hp(K)) ≤ 10), the algorithm produces a clustering of the simplices
in K of a fixed degree. The key idea is defining a harmonic embedding h of Kp, the
p-skeleton of K, that is,

φ : Kp → Rβp , φ = ξ ◦ j ◦ i,

where i : Kp ↪→ Cp(K) is the inclusion of p-skeleton Kp to the p-chain group
Cp(K), j : Cp(K)→ Hp(K) is the orthogonal projection onto the harmonic group
Hp(K) (i.e., the kernel of the Hodge Laplacian isomorphic to the homology group
of K, Hp(K)), and ξ : Hp(K) → Rβp(K) is a choice of basis. In practice, Ebli
and Spreemann simply chose an orthonormal basis h1, . . . , hβp(K) forHp(K) and
defined

φ(σ) =
(
⟨σ, h1⟩p, . . . , ⟨σ, hβp(K)⟩p

)
.

In a lower-dimensional subspace of Rβp(K), the algorithm performs a subspace
clustering method (e.g., independent component analysis [65]) of im(φ) and treats
the output as the clustering of the original simplices. However, there are no theoretical
guarantees for the above algorithm. The authors experimentally demonstrated that the
simplices assigned to each cluster tend to reflect the presence of homology generators
in the chosen dimension. For instance, when clustering the edges, they observed that
edge clusters tend to respect the independent loops of the underlying space. The
authors considered their algorithm to be complementary to the one presented by
Osting et al. [105].

6 Future Research Opportunities

6.1 Cores of Graphs

An aspect common to many methods using discrete curvatures to find graph cores
through sampling is the lack of theoretical guarantees. Numerous experimental
studies qualitatively show that these sampling techniques produce graphs similar to
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the originals and retain key structures. However, rigorous quantitative descriptions
are scarce.

In practice, the primary sampling technique for sparsifying graphs using Forman-
Ricci curvature involves simple thresholding to retain a certain percentage of edges.
Several methods have been implemented to determine such a threshold, but it remains
unclear which approach is optimal. A first direction for future research could be
comparing all the methods proposed and evaluating in which scenarios they are
more useful. In addition, future research could explore whether different sampling
techniques, perhaps using the empirical distributions of edge curvatures, result in
graph cores with distinct properties or impact the preservation of original graph
structures.

As already mentioned, the Ollivier-Ricci curvature is mainly used for clustering.
One reason it works for a graph with positive curvature can be explained by the
inequalities in Equation (15), which ensure that it bounds the spectral gap of the
Laplacian. However, as reviewed in Section 3.2, the edges representing the bottlenecks
between clusters are those with the lowest negative curvature. A question one may
ask is if and how this negative curvature also relates to the spectral gap.

Samal et al. [122] performed a comparative analysis of two discrete Ricci curvatures,
the Forman-Ricci curvature and the Ollivier-Ricci curvature. They empirically showed
a correlation between these two measures, which increases using the augmented
Forman-Ricci curvature. However, the theoretical reasons for such a correlation
require further study, which may shed some light on extracting graph cores with
discrete curvatures.

Finally, resistance curvature [37, 38], as a newer notion of discrete curvature
for graphs, may be employed for finding graph cores, similar to the ways where
Forman-Ricci the Ollivier-Ricci curvatures are employed.

6.2 Cores of Hypergraphs

We have primarily reviewed methods for finding cores of hypergraphs based on
sparsification and percolation techniques. However, given that hypergraphs inherently
possess a complex underlying geometry, an outstanding gap in this area is the
utilization of geometric methods, such as curvature-based approaches (e.g., [83]), for
identifying the cores of hypergraphs.

The notion of effective resistance was originally defined for graphs by Spielman
and Srivastava [130], and then generalized to simplicial complexes by Osting et
al. [105], and more recently to hypergraphs by Aghdaei and Feng [2]. There are
two possible future venues. First, whereas effective resistance has been used as a
sampling criterion for sparsifying graphs [130] and simplicial complexes [105], its
generalization to the sparsification of hypergraphs remains underexplored. Second,
it would be interesting to define resistance curvature for hypergraphs and obtain
curvature-based hypergraph cores. To define such a notion, we would need to define
effective resistance of hypergraphs. Despite recent progress [2], the question is: does
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there exist a canonical notion of effective resistance for hypergraphs, defined using an
effective resistance matrix? In other words, is there an effective resistance matrix R
for hypergraph, in the form ofR := BL+B⊤, similar to Equation (19), whereB is a
boundary matrix for hypergraphs and L is a hypergraph Laplacian? Whereas multiple
generalizations from graph Laplacian to hypergraph Laplacian have appeared in the
literature [1, 64, 88, 120, 119], to the best of our knowledge, there does not appear to
be a consensus as to the canonical notion of a hypergraph Laplacian. For instance,
Rodrı́guez [113, 114] introduced a version of the Laplacian matrix of a hypergraph
based on the Laplacian degree of a vertex and used it to obtain spectral-like results
on partition problems in hypergraphs [115]. Agarwal et al. [1] defined higher order
Laplacians as operators that measure variations on functions defined on p-chains
formed by the vertex set. Hein et al. [64] made a connection between p-Laplacians of
homogeneous hypergraphs with the total variation. Aktas and Akbas [4] introduced
hypergraph Laplacians inspired by the simplicial Laplacian. It would be interesting to
explore how various notions of resistance curvature (based on different Laplacians)
affect the properties of hypergraph cores.

Another potential direction for future research is the sparsification of hypergraphs
while preserving their homological properties. Given the existence of various homol-
ogy theories for hypergraphs (see [57] for a survey), we anticipate the development
of distinct frameworks tailored to preserving different notions of homology.

6.3 Cores of Simplicial Complexes

Within the area of finding the cores of simplicial complexes, there is still room
for improvement in sparsification methods for filtrations approximately preserving
the persistence diagram. Some ideas could be trying out different schemes for the
batch collapse proposed by Dey et al. [39] or trying to introduce some probabilistic
techniques, useful in the sparsification techniques preserving spectral properties
[105]. In addition, there are other typical filtration constructions, known to have
fewer simplices, that still pose computational constraints due to their size, such
as filtrations based on the alpha complex. It could be interesting to see how the
techniques described in Section 5.3 extend to this setting, which is already favorable
for the purpose of reducing the size of the final complex.

On the other hand, concerning the method for sparsifying simplicial complexes
preserving spectral properties described by Osting et al. [105], there are a few
directions open for future research. First, from the condition obtained relating the
Laplacians of the original and the sparsified complexes, it is not straightforward to see
how the eigenvalues of the sparsified complex actually change. Finding a more direct
relation in this context would be useful and illuminating. Additionally, the method
allows sparsification only for simplices of dimension p, keeping the entire skeleton of
the complex fixed up to dimension p − 1. A potential direction of future research,
already mentioned in [105], would be developing a methodology to sparsify across
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dimensions, without the need to fix the simplices in any dimension, and obtaining
theoretical guarantees for it.

Finally, as already mentioned in Section 5.6, a clear open question regarding the
harmonic clustering algorithm described in [43] involves the derivation of theoretical
guarantees for this method.

7 Conclusion

In this paper, we survey geometric and topological methods to extract the cores
of graphs, hypergraphs, and simplicial complexes. After studying the collection of
recent works, we found that there are noticeable imbalances among core-finding
methods for higher graphs, revealing research gaps and hence opportunities. While
many core-finding methods for graphs focus on sampling/thresholding with discrete
curvatures (Table 1), similar methods are underdeveloped for hypergraphs and
simplicial complexes with theoretical guarantees. Whereas there are a few recent
developments in percolation theory for hypergraphs (Table 2), there is plenty of
room to grow. The percolation theory for simplicial complexes does not yet lead to
the computation of well-defined cores. Sparse filtrations of simplicial complexes
have been developed for preserving persistent homology (Table 3), so the question
is, can one obtain sparsifications that preserve homological and spectral properties
simultaneously? Spectral sparsification methods have been extended from graphs
to hypergraphs and to simplicial complexes; however, the extracted cores may vary
depending on different notions of Laplacians for higher graphs. We aim to use this
survey (cf. Tables 1 to 3) to inspire new research on the simplification of higher
graphs.
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59. Mario Gómez and Facundo Mémoli. Curvature sets over persistence diagrams. Discrete &
Computational Geometry, 72:91–180, 2024.

60. Adam Gosztolai and Alexis Arnaudon. Unfolding the multiscale structure of networks with
dynamical Ollivier-Ricci curvature. Nature Communications, 12(1):4561, 2021.

61. Misha Gromov. Metric structures for Riemannian and non–Riemannian spaces. Modern
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Bogumil Kamiński, Pawel Pralat, and Przemyslaw Szufel, editors, Algorithms and Models for
the Web Graph, pages 16–35, Cham, 2020. Springer International Publishing.

112. Maurice Queyranne. Minimizing symmetric submodular functions. Mathematical program-
ming, 82:3–12, 1998.

113. J.A. Rodrı́guez. On the Laplacian eigenvalues and metric parameters of hypergraphs. Linear
and Multilinear Algebra, 50(1):1–14, 2002.

114. J.A. Rodrı́guez. On the Laplacian spectrum and walk-regular hypergraphs. Linear and
Multilinear Algebra, 51(3):285–297, 2003.

115. J.A. Rodrı́guez. Laplacian eigenvalues and partition problems in hypergraphs. Applied
Mathematics Letters, 22(6):916–921, 2009.
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