
Preserving Topological Feature with Sign-of-
Determinant Predicates in Lossy Compression:
A Case Study of Vector Field Critical Points

Mingze Xia
University of Kentucky

Lexington, USA

mingze.xia@uky.edu

Pu Jiao
University of Kentucky

Lexington, USA

pujiao@uky.edu

Xuan Wu
University of Kentucky

Lexington, USA

xuan.wu@uky.edu

Sheng Di
Argonne National Laboratory

Lemont, USA

sdi1@anl.gov

Kai Zhao
Florida State University

Tallahassee, USA

kzhao@cs.fsu.edu

Xin Liang∗
University of Kentucky

Lexington, USA

xliang@uky.edu

Franck Cappello
Argonne National Laboratory

Lemont, USA

cappello@mcs.anl.gov

Jinyang Liu
University of California, Riverside

Riverside, USA

jliu447@ucr.edu

Hanqi Guo
The Ohio State University

Columbus, USA

guo.2154@osu.edu

Abstract—Lossy compression has been employed to reduce
the unprecedented amount of data produced by today’s large-
scale scientific simulations and high-resolution instruments. To
avoid loss of critical information, state-of-the-art scientific lossy
compressors provide error controls on relatively simple metrics
such as absolute error bound. However, preserving these metrics
does not translate to the preservation of topological features, such
as critical points in vector fields. To address this problem, we
investigate how to effectively preserve the sign of determinant in
error-controlled lossy compression, as it is an important quantity
of interest used for the robust detection of many topological
features. Our contribution is three-fold. (1) We develop a generic
theory to derive the allowable perturbation for one row of a
matrix while preserving its sign of the determinant. As a practical
use-case, we apply this theory to preserve critical points in vector
fields because critical point detection can be reduced to the result
of the point-in-simplex test that purely relies on the sign of
determinants. (2) We optimize this algorithm with a speculative
compression scheme to allow for high compression ratios and effi-
ciently parallelize it in distributed environments. (3) We perform
solid experiments with real-world datasets, demonstrating that
our method achieves up to 440% improvements in compression
ratios over state-of-the-art lossy compressors when all critical
points need to be preserved. Using the parallelization strategies,
our method delivers up to 1.25× and 4.38× performance speedup
in data writing and reading compared with the vanilla approach
without compression.

Index Terms—High-performance computing, lossy compres-
sion, sign of determinant, critical points

I. INTRODUCTION

Today’s scientific applications are producing data at an

unprecedented speed and amount. For a typical example,

* Corresponding author: Xin Liang, Department of Computer Science,
University of Kentucky, Lexington, KY 40506.

climate simulations with 1 km × 1 km resolution generate

over 200 TB of data every 16 seconds [1]. Those data quickly

occupy the storage capacity and/or network bandwidth, leading

to severe problems in data storage and transmission.

To address such data challenges, error-controlled lossy com-

pressors [2]–[6] are proposed and aggressively developed in

the last decade to reduce the size of scientific data while main-

taining accuracy. Featuring high reduction ratios compared

with lossless compressors and better fidelity than classic lossy

compressors, these compressors are widely used in scientific

applications to solve diverse problems, including mitigating

storage requirement [7], improving I/O performance [8], and

accelerating computation [9].

In this work, we aim to preserve the sign of determinant

during lossy compression and leverage this theory to preserve

critical points in vector fields. In comparison, existing error-

controlled lossy compressors preserve the quality of data via

general metrics such as absolute errors and l2 errors, but few

of them provide the preservation of topological information.

Sign of determinant is an important quantity of interest in

computing geometry, which is used to express many predicates

such as convex hulls [10]. It has also been used to detect topo-

logical features, including isosurface and critical points [11].

Critical points are defined as the locations where the vector

field vanishes, and they are the key constituents of vector

field topology that is essential for flow visualizations [12]–

[15]. While our main goal is to preserve critical points that

are essential for visual analysis, the impact extends beyond

that as critical points usually represent important physical

phenomena such as eddies in ocean [16], cyclones in climate

4979

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00378

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
03

78

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

applications [17], and vortices in fluid dynamics [18].
In the visualization community, various topological infor-

mation, such as locations and types of critical points, should

be preserved during the lossy compression to ensure accurate

analytics, while these properties are often overlooked by

existing lossy compressors, leading to altered topology in

the reconstructed data. Although attempts have been made to

preserve topology in vector field compression, the existing

works are either impractical or non-general. For example,

iterative methods such as Delaunay simplification [19] lead

to unbounded running time; the clustering methods [20] work

only for 2D vector fields. A variation of error-controlled lossy

compression was also proposed to preserve the locations and

types of critical points [21]. This approach derives sufficient

error bounds for each vertex based on how critical points are

extracted and leverages those derived error bounds to guide

compression. However, it usually over-preserves data as the

derived error bounds are sufficient but unnecessary, leading

to suboptimal compression ratios. In addition, its error bound

derivation is based on critical point extraction via numerical

methods, which may have ambiguity issues due to the inexact

floating-point arithmetics.
In this work, we propose a novel method to preserve the

sign of determinant during lossy compression and apply it to

preserve topological features such as critical points. Our com-

pression framework is based on the coupled scheme in [21] but

heavily extends it for high robustness, quality, and scalability.

To address the issue of loose sufficient error bounds in [21],

we propose a novel concept, namely speculative compression,

to trade off computation performance for high compression

ratios. In addition, we propose two parallelization strategies

to preserve topological features – critical points in border

cells constituted by vertices from multiple processors. To the

best of our knowledge, this is the first attempt to leverage

error-controlled lossy compressors for topology preservation

in distributed environments. Specifically, our contributions are

summarized as follows.

• We develop a general theory to preserve the sign of

determinant during lossy compression, which can be used

to preserve topological features extensively. As a use

case, we apply it to preserve critical points in vector field

compression.

• We implement a compression framework using the de-

rived theory based on the coupled compression scheme

proposed in [21]. We also propose a speculative com-

pression scheme that features a highly flexible balance

between compression ratios and speed.

• We carefully parallelize our algorithm to achieve critical

point preserving lossy compression in distributed environ-

ments. In particular, we propose both a simple method

with no communication cost and an optimized method

that provides better compression ratios than the simple

one with minimal communication overhead.

• We evaluate our method using four real-world datasets

from climate and computational fluid dynamics (CFD)

simulations. Experiments demonstrate that the proposed

method faithfully preserves the outcome of critical point

extraction while providing a compression ratio up to 4.4×
higher than the state of the arts. This leads to 4.38×
speedup on data reading performance when evaluated

with 768 GB data on a cluster using 4, 096 cores.

The remaining sections are organized as follows. Section II

discusses the background and related works. Section III for-

mulates the research problem and provides an overview. In

Section IV, we propose the error bound derivation theory for

robust critical point preservation. The detailed implementation,

along with the speculative compression scheme, is presented

in Section V. In Section VI, we demonstrate our parallelization

strategies. In section VII, we present and analyze the evalua-

tion results. Finally, we conclude our work with a vision for

future work in Section VIII.

II. BACKGROUND AND RELATED WORKS

In this section, we review the background for critical

point extraction in vector fields and the literature about lossy

compression. Without loss of generality, we assume piecewise

linear interpolation in each cell, which is widely used in the

community.

A. Sign of determinant and robust critical point extraction

The sign of determinant is an important quantity of data

that can be used as algorithmic solutions to a wide range of

geometric problems. Typical applications that rely on the sign

of determinant include point-in-polygon test [22], hyperplane

in Euclidean space [23], nonvertical hyperlanes [24], and

construction of convex hulls [10]. In the following, we only

introduce the algorithm that leverages the sign of determinant

for robust critical point extraction in vector fields because of

limited space, and refer readers to [25] for a more detailed

treatment.

A critical point is defined as the location where the vector

field vanishes. Critical points can be extracted by numerical

methods, which can be reduced to finding zero points in each

cell where the vector field is linearly interpolated according to

data values on the vertices of the cell. In a 2D case, this can be

formulated as solving the barycentric coordinates (μ0, μ1, μ2)
in the equation below:[

u0 u1 u2

v0 v1 v2

]⎡⎣μ0

μ1

μ2

⎤⎦ = 0 and μ0 + μ1 + μ2 = 1, (1)

where (ui, vi) are the vectors in each vertex. A critical point

is detected in the cell if 0 ≤ μk ≤ 1 holds for any k ∈
{0, 1, 2}; otherwise, there would be no critical points in the

cell. While this method provides a means for critical point

detection and extraction, it may lead to ambiguities due to the

inexact, and thus unstable, nature of floating-point arithmetic:

results of the detection could change with the order of the

vertices. For instance, one critical point on the edge of two

cells may be extracted as two separate critical points in the

two cells or no critical points in both cells (see [11] for a

concrete example). This will cause inconsistent results, such

4980

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

as broken or branched traces in critical point tracing, which is

undesired in most cases.

To address this issue, prior research [11], [26] has suggested

the use of Simulation of Simplicity (SoS) [25] for robust

critical point detection and tracking. This is based on an

important lemma in [26]: a simplex contains a critical point if

and only if the origin 0 lies in the convex hull of the vectors

at the simplex’s vertices. As such, the detection of the critical

point in a cell reduces to a point-in-simplex test with x = 0 as

the target point, which is a well-defined problem that can be

solved by computing the orientation. As shown in Algorithm 1,

we can compute the orientation of the simplex and compare

it with the orientation computed after changing one of the

vertices to the target point 0. If all of the orientations have

the same sign, 0 is regarded as inside the simplex, so a critical

point is detected; otherwise, it would be outside of the simplex,

and no critical points will be reported.

If a critical point is detected in a cell, it can be extracted

using the numerical methods mentioned above. In addition,

critical points are categorized into different types, each repre-

senting a specific topology, based on the signs and existence

of imaginary parts in the eigenvalues of their Jacobian matrix.

More details about the types can be found in [27], [28].

Algorithm 1 Point-in-simplex test [25]

Input: Point x and simplex S = {x0,x1, . . . ,xn}.

Output: True if x is in S and false otherwise.

1: s ← Orientation(x0,x1, . . . ,xn) � compute the

orientation for S
2: for i ← 0 to n do
3: (x′

0,x
′
1, . . . ,x

′
n) = (x0,x1, . . . ,xn)

4: x′
i ← x � replace the i-th data with x

5: si ← Orientation(x′
0,x

′
1, . . . ,x

′
n) � compute the

new orientation

6: if s �= si then � x is not in S if the orientations do

not align

7: return false
8: end if
9: end for

10: return true � x is in S if all orientations align

B. Lossy compression for scientific data

Since the lossless compressors [29]–[31] fail to provide

satisfactory compression ratios for scientific data, and the

classic lossy compressors [32], [33] may lead to unbounded

errors, error-controlled lossy compressors are considered as a

viable option for scientific data compression. Error-controlled

lossy compressors can be generally classified into two cat-

egories, namely prediction-based ones and transform-based

ones, depending on how data are decorrelated. Prediction-

based compressors such as SZ [2] and FPZIP [3] decorrelate

data via certain prediction methods, while transform-based

compressors such as ZFP [4] and MGARD [5] do that

leveraging specific transforms. The decorrelated data will then

be quantized to a small set of discrete values for a better

compressibility while controlling the data distortion. After

that, the quantized data will be fed into lossless encoders such

as Huffman [34] and ZSTD [35] to achieve de-facto shrinking

of data size. Despite multiple error controls (including those

for certain quantities-of-interest [36], [37]) provided by these

compressors, most of them are topology-agnostic thus failing

to preserve topological information such as critical points.

Vector field compression has also been studied for years to

reduce data size while preserving critical topology. Most of

these approaches, however, are subject to iterative operations,

suffering from long execution time by nature. This includes

the iterative clustering method, which was used in [20] for

compressing 2D vector fields, the iterative collapsion of edges

[38], and an iterative segmentation-based approach [39]. De-

launay simplification was used in [19] to compress vector

fields based on edge collapsing, but it does not explicitly

preserve the topology.

The most relevant research to the proposed work is [21],

which uses a variation of error-bounded lossy compression

to reduce the size of vector fields while preserving criti-

cal points. This approach derives sufficient vertex-wise error

bounds based on how critical points are extracted, ensuring the

preservation of critical points when the derived error bounds

are enforced at every vertex. Such enforcement is ensured

by performing linear-scaling quantization [7], which in turn

guarantees the preservation. Note that the derived error bounds

need to be aggressively quantized for high compression ratios

and stored for usage during decompression. Although this

approach provides an elegant way for critical point preserving

lossy compression, it has several limitations. First, it can only

preserve critical points extracted by numerical methods, which

may have ambiguous issues themselves due to the inexact

floating-point arithmetics [11], [26]. Second, it leads to subop-

timal compression ratios in general because the derivation only

provides sufficient yet not necessary error bounds. Third, it is

designed for compression with a single processor, which may

not directly generalize to distributed cases. In this paper, we

carefully address all these three limitations by proposing a new

error bound derivation theory, a novel speculative compression

scheme, and two effective parallelization strategies detailed in

the later sections.

III. PROBLEM FORMULATION AND DESIGN OVERVIEW

In this section, we formulate our research problem, followed

by an overview of the proposed compression framework.

We follow [21] to define the false cases in critical point

preservation. Specifically, we have three false cases, namely

false positive (FP), false negative (FN), and false type (FT). FP

occurs if a critical point is detected in a cell with decompressed

data but does not exist with the original data. FN indicates

that a critical point is identified in a cell with the original data

but absent with the decompressed data. At last, FT means that

while the critical point is present in a cell with both the original

data and decompressed data, it has two different types. For

instance, FT occurs when an attracting node in the original

data becomes a repelling one in the decompressed data. If

4981

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

there is a matched pair of critical points in the original and

decompressed data, we call it true positive (TP).

With these evaluation metrics for critical points, we define

the research objective as follows. Basically, we want to achieve

as high compression ratios as possible while enforcing user-

specified absolute error bound τ and preserving all the critical

points. Mathematically, these two constraints can be formu-

lated as ||d − d’||L∞ ≤ τ and card(FP) = card(FN) =
card(FT) = 0, where d and d′ are the original and de-

compressed data, respectively, and card is the cardinality that

indicates the number of false critical points. Note that we also

care about the compression and decompression throughput, but

we prioritize compression ratio because it is more important

in multiple use cases, such as mitigation of storage pressure

and transmission across wide area networks.

We first review the coupled compression scheme proposed

in [21], which is the pioneering work to leverage error-

controlled compression for critical point preservation. This

prior compression scheme inherits the traditional prediction-

based compression pipeline [40], but adds an error bound

derivation module to compute a sufficient error bound, which

guarantees the preservation of critical points extracted by

numerical methods. This error bound is then fed into a linear-

scaling quantizer [7], to ensure the error of the target data point

is less than the bound. As its error bound derivation module is

specifically tied to numerical methods, it does not generalize to

other critical point detection methods directly. In other words,

it cannot provide guaranteed preservation toward critical points

detected by the point-in-simplex test, which is more widely

used than numerical methods due to its robustness. Further-

more, by adopting the sufficient but not necessary error bounds

to guide the compression, it only provides limited compression

ratios (less than 10× in most cases) that are usually insufficient

for practical use. Last but not least, it offers no parallel support,

and a direct parallelization with domain decomposition will

lead to failures in preserving critical points in border cells

constituted by vertices from different processors.

Proposed modules Existing modules

domain
decomposition

Ghost-aware
error bound derivation

Lossless compression
for border elements

lossless
compressor

speculative
quantization

prediction

overwrite with
decompressed value

error bound
derivation Sequential compression

Parallelization

Fig. 1. Overview of the proposed compression framework.

We now present the overview of our framework in Fig. 1,

which is built on the compression scheme mentioned above

but heavily extends the functionality to preserve critical points

detected by robust methods, provide a substantial improvement

on compression ratios, and enable efficient parallelization.

We highlight our proposed modules compared to the prior

compression scheme using cyan boxes. Specifically, we pro-

pose a new error bound derivation module inherited from the

sign of determinant preservation, which is well suited for

preserving both critical points and other features. We then

adopt a speculative quantization module that allows for flexible

trade-offs between compression ratios and speed, making it

adaptable to a wide range of use cases. To preserve critical

points belonging to border cells in a distributed system, we

propose two novel modules which can complement each other

in different cases. The first module is a rather simple one,

which compresses border elements losslessly, and the other

one is driven by a parallelization strategy that integrates a

more effective compression method that performs error bound

derivation using ghost elements. These two modules have

different pros and cons in terms of compression ratios and

speed, thus, can be adopted in an adaptive fashion during

runtime.

IV. THEORETICAL FOUNDATION

In this section, we first derive the theories for preserving

the sign of determinant, which is the foundation for many

problems. After that, we show how to apply them to preserve

features using critical points in vector fields as a case study.

Theorem 1: Given the target (n + 1) × (n + 1) matrix Λ,

a sufficient absolute error bound to perturb the values in the

m-th row while preserving the sign of determinant is:

Ψ(Λ) =

{
0 when det(Λ) = 0

|det Λ|∑n
i=0 |detAmi| Otherwise

(2)

where Ami is the submatrix obtained by removing the m-th

row and the i-th column of Λ.

Proof:
We focus on proving the non-degenerative case since the de-

generative case holds automatically. Without loss of generality,

we assume that the last row (xn0, xn1, . . . , xnn) is perturbed

by an error εi in the position i such that ∀i, |εi| ≤ Ψ(Λ).
Then, the new determinant can be computed as follows:

detΛ′ =

⎡⎢⎢⎢⎣
x00 x01 · · · x0(n−1) x0n

x10 x11 · · · x1(n−1) x1n

...
...

. . .
...

...

xn0 + ε0 xn1 + ε1 · · · xn(n−1) + εn−1 xnn + εn

⎤⎥⎥⎥⎦
=

n∑
i=0

(−1)n+i(xni + εi) detAni

=
n∑

i=0

(−1)n+ixni detAni +
n∑

i=0

(−1)n+iεi detAni

= detΛ +
n∑

i=0

(−1)n+iεi detAni

4982

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

When detΛ > 0, we have:

detΛ′ ≥ detΛ − ∑n
i=0 |εi||detAni| > detΛ −∑n

i=0 Ψ(Λ)|detAni| = detΛ− detΛ = 0.

When detΛ < 0, we have:

detΛ′ ≤ detΛ +
∑n

i=0 |εi||detAni| < detΛ +∑n
i=0 Ψ(Λ)|detAni| = detΛ − detΛ = 0. As such, detΛ

and detΛ′ always have the same sign, which corresponds to

the same orientation.

Lemma 1: If the last column of Λ is an all-one vector, the

sufficient bound can be optimized to:

Ψ(Λ) =

{
0 when det(Λ) = 0

|det Λ|∑n
i=0 |detAni| Otherwise

(3)

This theorem (and the lemma) identifies sufficient error

bounds to preserve the sign of determinants in general cases,

which directly leads to the following lemma and theorem for

feature preservation.

Lemma 2: A sufficient absolute error bound for preserving

the relative intersection position of a value f and an edge

(f0, f1) is:

Ψ(f0, f1; f) = min
(
Ψ(

[
f0 1
f 1

]
),Ψ(

[
f1 1
f 1

]
)
)

= min(|f − f0|, |f − f1|).
This reduces to the derivation theory for isosurface preser-

vation in [37]. In the following, we show that Theorem 1 can

be used to preserve critical points extracted from the robust

point-in-simplex test (see Algorithm 1), which is the focus of

this paper.

Theorem 2: A sufficient absolute error bound for the n-th

point xn in a (n + 1)-simplex S = {x0, x1, . . . , xn} (xi has

n components) to keep the result of critical point detection is:

Ψ(S) = min(Ψ(Λ), min
0≤i≤n−1

Ψ(Ain)) (4)

where Λ is the orientation matrix for S and Ani is the

submatrix obtained by removing the i-th row and the n-th

column of Λ.

Proof: Let Λi be the orientation matrix after replac-

ing xi = (xi0, xi1, · · · , xi(n−1)) with x = (0, 0, . . . , 0).
According to Algorithm 1, preserving the signs of s =
detΛ and si = detΛi is sufficient to preserve the out-

come of the point-in-simplex test for critical point detection.

Thus, a sufficient solution for this problem is Ψ(S) =
min(Ψ(Λ),min0≤i≤n−1 Ψ(Λi)). Meanwhile, we have:

detΛi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x00 x01 · · · x0(n−1) 1
x10 x11 · · · x1(n−1) 1

...
...

. . .
...

...

x(i−1)0 x(i−1)1 · · · x(i−1)(n−1) 1
0 0 · · · 0 1

x(i+1)0 x(i+1)1 · · · x(i+1)(n−1) 1
...

...
. . .

...
...

xn0 xn1 · · · xn(n−1) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (−1)n+i detAin

Therefore Ψ(Λi) = Ψ(Ain) and this completes the proof.

According to Theorem 2, we can directly derive sufficient

error bounds for preserving the result of point-in-simplex test

in 2D and 3D spaces using the following lemmas.

Lemma 3: A sufficient absolute error bound for preserving

the critical point test in a simplex S =
(

u0 v0
u1 v1
u2 v2

)
under a 2D

vector field while perturbing (u2, v2) is:

Ψ(S) = min
(
Ψ(

[u0 v0 1
u1 v1 1
u2 v2 1

]
),Ψ([u1 v1

u2 v2]),Ψ([u0 v0
u2 v2])

)
. (5)

Lemma 4: A sufficient absolute error bound for preserving

the critical point test in a simplex S =

(
u0 v0 w0
u1 v1 w1
u2 v2 w2
u3 v3 w3

)
under a

3D vector field while perturbing (u3, v3, w3) is:

Ψ(S) = min(Ψ(

[u0 v0 w0 1
u1 v1 w1 1
u2 v2 w2 1
u3 v3 w3 1

]
),Ψ(

[
u1 v1 w1
u2 v2 w2
u3 v3 w3

]
),

Ψ(
[
u0 v0 w0
u2 v2 w2
u3 v3 w3

]
),Ψ(

[
u0 v0 w0
u1 v1 w1
u3 v3 w3

]
)). (6)

Note that the error bounds provided in Lemmas 3 and 4 only

preserve the location of critical points (i.e., eliminating FN and

FP). As such, we losslessly compress all nodes of a cell when

a critical point is present. In addition, such error bounds keep

the signs of each determinant, which over-preserve FN cases

because the outcome of the point-in-simplex test will hold

when s �= si for any i (see line 6 in Algorithm 1). We relax

the error bounds for some special cases to accommodate this

situation. In particular, it is well-known that critical points will

not exist in a cell where at least one component of the vector

field for that cell has the same sign, so we revise the sufficient

error bounds accordingly, which is detailed in Algorithm 2 (to

be introduced in the next section).

V. IMPLEMENTATION AND OPTIMIZATIONS

A. Algorithm and implementation

As mentioned in Section III, we follow the coupled com-

pression scheme proposed in [21] to implement our algorithm.

The detailed steps are presented in Algorithm 2. The idea is to

derive the error bound and perform error-bounded compression

on the fly for each data point. Compared to that approach, our

key innovation is to leverage the new error bound derivation

mechanism proposed in the last section (line 5-17). In partic-

ular, we use Ψ(j) derived in Lemmas 3 and 4 to determine

the error bound for a data point with respect to any simplex

j containing that point (line 10). We also pre-compute the

existence of critical points for each cell (line 1-3) to avoid

re-computation in line 7. This is important for the proposed

method as the point-in-simplex test is more expensive than

the numerical methods. In addition, we perform relaxation of

the derived error bound when some components in a cell have

the same sign (line 11-15), which indicates no critical point

in the cell. This is done by evaluating the signs of all vertices

in the current cell for each component. Especially when the

condition holds for any component, we will relax to the error

bound to the maximal one between its current value and the

absolute value of the corresponding component at the current

4983

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

vertex because the latter is sufficient to preserve the sign of

that component which ensures that no critical point will be

present in the decompressed data. After that, we follow the

algorithm in [21] to aggregate and quantize the derived error

bound, which is then used to quantize the original data and

compute the decompressed data for later use (line 18-22). To

this end, the quantized integers of both data and error bounds

are fed to lossless encoders, including Huffman encoder and

ZSTD, to perform the actual data reduction (line 24).

Algorithm 2 CP-preserving lossy compression for 3D data

Input: Input fixed-point vector field {d} = {u,v,w}, fixed-

point error bound τ ′ transformed from user-specified error

bound τ .

Output: Compressed bytes.

1: for i ← 0 → nc − 1 do � pre-compute existence of

critical point for each cell

2: cp exists[i] = point_in_simplex(0, i)
3: end for
4: for i ← 0 to nv − 1 do � iterate vertices

5: for j ∈ vertex cells(i) do � iterate cells connected to

vertex i
6: {i0, i1, i2, i} ← cell vertices(j) � vertices of cell

j; fix i as the last index

7: if cp exists[j] then
8: ξ

(j)
i ← 0 � set to lossless to preserve types

9: else
10: ξ

(j)
i ← min (Ψ(j), τ ′) � see Lemma 4

11: for z ∈ {u, v, w} do � Check if any

component has the same size

12: if sgn(zi0) == sgn(zi1) ==
sgn(zi2) == sgn(zi) then

13: ξ
(j)
i ← max(ξ

(j)
i , |zi|) � Relax the

sufficient error bound

14: end if
15: end for
16: end if
17: end for
18: ξi ← minj ξ

(j)
i � aggregate error bound for vertex i

19: ξ̂i ← quant(ξi) � quantize error bound of vertex i
20: qi ← lossy_compress(di, ξ̂i) � quantize vector

values with error bounds

21: d′
i ← decode(bytes, ξ̂i) � calculate decompressed

value d′
i on the fly

22: di ← d′
i � replace the input value with the

decompressed value

23: end for
24: return compress losslessly({qi}, {ξ̂i})

Similar to [21], the proposed algorithm has a theoretical

computational complexity of O(nv) for structured data where

nv is the number of vertices, but it is expected to have higher

decompression speed due to the adoption of the derivation

theory in Section IV with absolute error bound. This eliminates

the expensive logarithmic transform on original data, which

is required in [21] to perform effective compression with

point-wise relative error bound [41]. In addition, error bound

derivation in this algorithm is based on the point-in-simplex

test that allows for robust critical point detection, which is

very useful in resolving ambiguous cases in a wide range of

analytics. Its memory complexity is also O(nv), which is same

as the coupled method in [21].

B. Speculative compression
To accommodate the variability of computation and I/O in

different computing systems, we propose a novel method to

provide better flexibility on the trade-off between compression

speed and ratios. We called it “speculative compression”,

as it borrows the concept of speculative execution [42] in

computing systems. Specifically, we will compress data with

a relaxed error bound to allow for higher compression ratios

and roll back if such an error bound leads to discrepant results

in our preserving target. This is inspired by the fact that the

derived error bounds are sufficient but not necessary, which

leads to over-preservation in many cases.

 Relaxer :

Speculation
Target

Data v

 Compression with

Decompressed data v’

Verification

 Restrictor

R

Proceed with next data

Success

Failure

Error bound aξ

ξ′ = R(ξ)

ξ′
ξ′

ξ′ = T (ξ′)
T

Exceed limit?

No

Yesξ = 0ξ = ξ′

Fig. 2. Workflow of speculative compression.

Fig. 2 depicts the workflow for speculative compression

given the speculation target, initial error bound ξ, and the

data value v. The input error bound ξ is first relaxed to

a higher one (denoted ξ′) by a relax function R, and then

used to compress the data v and generate the decompression

data v′. Then, the decompressed data is evaluated with the

speculation target to see if all the conditions are met. If such

verification is successful, we will use the relaxed error bound

ξ′ to compress our data; otherwise, we will restrict the current

error bound ξ′ to a lower one by a restriction function T
and repeat the compression. To avoid extended execution time,

we perform a hard cut-off if the number of failures exceeds

a preset limitation nl. In such case, we will set ξ = 0 for

lossless compression of v, which ensures that no error will

be introduced. In our implementation, we use simple relax

function R(x) = 2nlx and restriction function T (x) = 1
2x.

4984

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

Speculative compression is expected to deliver higher com-

pression ratios at the cost of lower compression speed because

it involves a trial-and-error process to figure out an error bound

that is usually larger than the derived one. The essential trade-

offs in between are highly related to the speculation targets.

In the following, we investigate three speculation targets for

Algorithm 2 and compare their impacts using a 2D vector field.

We use di and d′
i to denote the i-th original and decompressed

data (each with multiple components), respectively.

a) Speculation on derived error bound: This speculation

relaxes the error bound to perform compression (line 18-20 in

Algorithm 2), because the errors in the decompressed data may

be much less than the specified error bound. The speculation

target can be formulated as ||di − d′
i||L∞ ≤ ξi (see line

18 in Algorithm 2 for ξi). It is the most lightweight solution

because only the quantization of data and error bounds will

be speculated.

b) Speculation on FN preservation: This specula-

tion relaxes the derivation for preserving FNs (line 10-

15 in Algorithm 2). The target can be formulated as

point_in_simplex(0, j′) == false, where j′ represents

the vertex cell j after changing the current data point di to

d′
i. It introduces higher computational overhead because the

verification needs to involve a point-in-simplex test for every

cell containing the current data point.

c) Speculation on the entire critical point preserva-
tion procedure: This speculation further relaxes the entire

derivation process (line 6-16 in Algorithm 2). The target

can be formulated as critical_point_type(j′) ==
critical_point_type(j). It introduces the highest over-

head because both critical point detection and its type identifi-

cation need to be performed on every adjacent cell containing

the current data point.

We summarize the speculation targets mentioned above

and use an abbreviation for each of them in the later texts.

We also formulate four speculation targets and analyze their

correspondences to our compression algorithm in Table I.

Generally speaking, aggressive speculation leads to high com-

pression ratios but may suffer from low compression speed.

For speculation on FN preservation, we evaluate two different

values of nl to investigate its impact on the speed and ratio.

TABLE I
SPECULATION TARGET AND IMPACT

Speculation Target Abbr.
Correspondence
in Algorithm 2

Speed Ratio

None NoSpec - Fast↑ Low↓
Derived error bound ST1 line 18-20 Fast Low

Preserving FN (nl = 1) ST2 line 10-15 Slow High

Preserving FN (nl = 3) ST3 line 10-15 Slow High

Preserving FN, FP, and FT ST4 line 6-16 Slow↓ High↑

VI. PARALLELIZATION

In this section, we propose two methods to parallelize our

algorithms in distributed environments. The key challenge in

parallelization is to preserve critical points in edge and corner

cells constituted by vertices across different processors, as

depicted by the red and green regions in the 2D example in

Fig. 3 (a). These cells are usually overlooked by traditional

compression methods that are embarrassingly parallel, leading

to incorrect critical point information within. While ghost

elements [43] can be employed to exchange the values of the

border elements, the adjacent elements across two processors

cannot be compressed concurrently because the formula in

Theorem 1 only allows for error introduction in one row.

 P0 P1i

 P2 P3i

Normally compressed node
Losslessly compressed node

 P0 P1i

 P2 P3i

Unprotected edge cells

Unprotected corner cells

(a) Naive parallelization (b) Parallelization with lossless borders

Fig. 3. Embarrassingly parallel strategies.

We first propose a simple yet effective parallelization

strategy to preserve critical points in border cells with no

communication cost. As illustrated in Fig. 3 (b), we use error

bound 0 for all the border elements, which leads to lossless

compression of those elements to ensure the same topology

as that of the original data. However, this may have a nega-

tive impact on the compression ratios compared with naive

parallelization, as more data points are encoded losslessly.

Comparisons between these two methods are presented in

Table II when τ = 0.01, using the strong-scaling results with

1, 8, and 64 cores for the Nek5000 data. According to the

table, it is observed that while being able to preserve all

the critical points, parallelization with lossless border causes

25% ∼ 50% degradation on the compression ratios, and the

level of degradation increases with the number of cores used

due to the increasing percentage of border elements. It is also

observed that adopting a higher level of speculation leads to

more degradation in the compression ratios. Due to the embar-

rassingly parallel design, both parallelization strategies yield

almost linear speedup with around 100% parallel efficiency.

TABLE II
RESULT OF NAIVE PARALLELIZATION ON NEK5000

#Cores Method Speculation TP FP FN FT Ratios Sc(MB/s) Sd(MB/s)

1

Naive None 12,482 0 0 0 14.99 7.54 139.22
parallelization ST4 12,482 0 0 0 19.01 3.50 141.34

Lossless None 12,482 0 0 0 14.26 5.06 93.07
borders ST4 12,482 0 0 0 18.28 4.03 129.94

8

Naive None 12,407 114 66 9 15.23 64.43 897.98
parallelization ST4 12,301 582 169 12 19.41 25.83 903.53

Lossless None 12,482 0 0 0 12.20 65.09 892.63
borders ST4 12,482 0 0 0 14.00 32.42 881.06

64

Naive None 12,322 212 135 25 14.70 513.36 6638.57
parallelization ST4 12,106 1,009 341 35 18.88 189.74 6776.97

Lossless None 12,482 0 0 0 9.34 515.32 6502.96
borders ST4 12,482 0 0 0 10.35 258.67 6597.49

To address the limitation of parallelization with lossless

borders, we propose another strategy that significantly reduces

the number of elements requiring lossless representation with

4985

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

low communication overhead. In particular, we pre-define the

compression order of border elements and perform two-phase

communication and compression as illustrated by a 2D exam-

ple in Fig. 4. We start with the initial arrays on each processor,

each with allocations for ghost elements but no values. During

the first-phase communication, all the processors receive ghost

elements from their left and top neighbors. This provides

opportunities for each processor to normally compress data

in the top left corner, which is done in the first-phase com-

pression. For instance, as P1 receives the ghost elements on

the left edge, it can compress all the data except the last row;

however, the last row and column in P0 cannot be compressed

because of a lack of information on their neighbors. Note

that we use decompressed data to overwrite the original data

upon successful processing of a vertex, which is required for

both accurate prediction [7] and error bound derivation [21].

Also, note the vertices in the corners are always losslessly

compressed to eliminate complex diagonal communication.

In the second-phase communication, all the processors will

receive the ghost elements in the form of decompressed data

from their right and bottom neighbors to provide neighborhood

information for the unprocessed vertices. In the last step,

second-phase compression is performed to compress the rest

vertices. This strategy also generalizes to 3D cases, where the

exchange of ghost elements needs to be performed for each

surface of the data cube, and vertices located on the edges of

the ghost cube are compressed losslessly.

 P0 P1i

 P3 P2i

 P0 P1i

 P3 P2i

 P0 P1i

 P3 P2i

 P0 P1i

 P3 P2i

Exchange ghost elements Partial compression with

lossless corner vertices

Exchange decompressed ghost elementsNormally compress rest vertices

Normally compressed vertex Losslessly compressed vertex
Empty ghost vertexUnprocessed vertex Communicated data

Communication pattern
Valid ghost vertex

1
2

34

Fig. 4. Ratio-oriented parallel strategy.

Efficiency and complexity: We then analyze the efficiency

and complexity of the two methods via the percentage of

lossless compressed border elements and communication over-

head. Without loss of generality, we assume all data are in

single-precision floating-point format (4 bytes per data point),

and λ and β are the message passing latency and bandwidth,

respectively. We also assume that n1 × n2 vertices are evenly

distributed in a
√
p × √

p processor grid in 2D cases and

n1×n2×n3 vertices are evenly distributed in a 3
√
p× 3

√
p× 3

√
p

processor grid in 3D cases.

Parallelization with lossless borders: Since this method

losslessly compresses all border elements, the percent of loss-

less compressed border elements is
2(n1+n2)

√
p

n1n2
in 2D cases

and
2(n1n2+n1n3+n2n3) 3

√
p

n1n2n3
in 3D cases. It has no communica-

tion overhead since the process is embarrassingly parallel.

Ratio-oriented parallelization: In the 2D cases, at most

four elements are losslessly compressed in each processor,

leading to a percentage of less than 4p
n1n2

. Each phase of

communication transmits two messages, each containing n1√
p

and n2√
p vertices with 2 components, respectively. This yields

2(2λ + 8(n1+n2)√
pβ) communication cost in total. In the 3D

cases, at most
4(n1+n2+n3)

3
√
p of vertices are compressed in

a lossless fashion in a processor, which corresponds to a

percentage of
4(n1+n2+n3)

3
√

p2

n1n2n3
. As for the communication,

three messages of n1n2
3
√

p2
, n2n3

3
√

p2
, and n1n3

3
√

p2
vertices with 3 com-

ponents are transmitted in each phase, respectively, leading

to 2(3λ + 12(n1n2+n2n3+n1n3)
3
√

p2β
) communication cost in total.

However, there would be additional computational overhead

for this approach though, as it needs to derive the error

bounds for all the data points in 3D cases, while the prior

parallelization directly uses error bound 0 for border elements.

Based on these statistics, we can conclude that paralleliza-

tion with lossless borders features high speed at the cost of

ratio deduction, while ratio-oriented parallelization mitigates

the ratio deduction with extra overhead. In Table III, we

present the ratios obtained by this parallelization strategy with

no speculation. According to this table, the ratio-oriented

method leads to compression ratios of 14.21× and 13.19×
on the Nek5000 data with respect to 8 and 64 cores while

preserving all the critical point information, which are very

close to the compression ratios provided (15.23× and 14.70×
respectively) by naive parallelization without critical point

preservation. The parallelization efficiency is roughly 75%,

where the overhead mainly comes from the stencil communi-

cation for ghost element exchanges.

TABLE III
RESULT OF RATIO-ORIENTED PARALLELIZATION ON NEK5000

#Cores Method Speculation TP FP FN FT Ratios Sc(MB/s) Sd(MB/s)

1 Ratio-oriented
None

12,482 0 0 0 15.00 7.40 137.76
8 parallelization 12,482 0 0 0 14.21 63.87 848.62

64 12,482 0 0 0 13.19 383.04 4800.0

VII. EVALUATION

We evaluate our methods with four real-world datasets

from climate and CFD simulations and compare them with

four state-of-the-art error-bounded lossy compressors, namely

FPZIP [3], SZ3 [2], ZFP [4], and cpSZ [21]. We present both

the quantitative results in terms of the number of erroneous

4986

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

critical points defined in Section III, as well as qualitative

results for both 2D and 3D data. To this end, we further

evaluate our parallelization strategies and present a large-scale

case with 768 GB of data. Throughout the evaluation, we use

”CR” to denote compression ratio, ”SC”/”SD” to represent

compression/decompression speed in megabytes per second

(MB/s), ”#TP” for the number of preserved critical points, and

”#FN/#FP/#FT” for the number of erroneous critical points.

A. Experiment Setup

We evaluate four scientific datasets from four applications:

• Ocean: A simulated dataset representing ocean currents.

• Nek5000: A fluid simulation generated by Nek5000 [44].

• Hurricane: A simulation of Hurriance-ISABEL from the

National Center for Atmospheric Research [45].

• Turbulence: A direct numerical simulation of forced

isotropic turbulence on a 4, 0963 periodic grid [46].

The detailed information of the datasets is listed in Table IV.

Here nd stands for the number of components in the data, and

nv and nc are the numbers of vertices and cells, respectively.

Based on the size of the data, we will evaluate the quality

of the compression methods using the three datasets and I/O

performance using the last one.

TABLE IV
BENCHMARK DATASETS

Dataset nd nv nc Size

Ocean 2 3600× 2400 2× 3599× 2399 65.92 MB
Hurricane 3 100× 500× 500 6× 99× 499× 499 286.10 MB
Nek5000 3 512× 512× 512 6× 511× 511× 511 1.50 GB
Turbulence 3 4096× 4096× 4096 6× 4095× 4095× 4095 768.00 GB

All of our experiments are conducted on a high-performance

cluster [47], where each compute node contains 2 AMD EPYC

ROME 7702P processors with 128 cores and 512 GB memory

in total. The system is interconnected by 100Gbps InfiniBand

and is equipped with Lenovo GPFS parallel file system.

B. Rate-distortion and speculation

We first present the rate-distortion of our methods and

investigate the impact of speculation targets on the quality

of compression. We use Peak Signal-to-Noise Ratios (PSNR)

as our distortion metric due to its wide acceptance in the

community, and bit-rate in the X-axis represents average bits

per compressed data, which can be computed by 32 over

compression ratios for single-precision floating-point data. The

rate-distortion graphs for the Ocean and Nek5000 data are

shown in Fig. 6, with points in the graph generated by setting

τ = 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, respectively.

As we can see, more aggressive speculation generally leads to

higher compression ratios (lower bit rates), especially when the

global error bound is relatively high, which also exhibits better

rate-distortion in those regions. Nevertheless, the differences

in compression ratios and PSNR diminish as the global error

bound decreases. Another interesting observation is that higher

error bounds may not always lead to higher ratios, which is

clearly shown by the first a few error bounds in the 3D plot

with Nek5000 data. This is possibly caused by the Lorenzo

predictor used in the prediction stage of the compression.

As Lorenzo predictor requires the use of decompressed data

for prediction, lower error bounds may have better prediction

accuracy due to lower errors in the decompressed data. Based

on this observation, we set τ = 0.01 for all later experiments

for all speculation targets.

C. Preservation of critical points

We then present the preservation of critical points with our

methods both qualitatively and quantitatively using the three

datasets mentioned above. Since FPZIP, ZFP, and SZ3 do not

provide mechanisms to preserve critical points, we tune them

to the same ratio as the one provided by our method with no

speculation using the available options provided by them. For

cpSZ, we use pointwise relative error bound 0.1 for 2D data

and 0.05 for 3D data as suggested by authors [21]. Note that

cpSZ only provides guaranteed preservation of critical points

when they are extracted using numerical methods, so it may

introduce a small number of erroneous cases in our evaluation

because we use SoS [25], [26] for critical point extraction.

The results on 2D Ocean data are displayed in Table V.

As shown in the table, while general error-controlled lossy

compressors control the maximal absolute error and/or point-

wise relative error, they cannot preserve critical points. FPZIP

performs the best among the general compressors, probably

because it preserves pointwise relative error. While cpSZ

has good preservation results, both of its two schemes have

limited compression ratios. As comparisons, all of our methods

preserve all the critical points, and our method with the most

aggressive speculation delivers a compression ratio that is

2.71× of that with the coupled scheme in cpSZ. Note that

both cpSZ and our methods yield lower compression speed

compared to the general lossy compressors, as they need to

integrate the topological information into the compression pro-

cess. Nonetheless, their decompression speed is comparable

to SZ3 and FPZIP. In particular, our methods have higher

decompression speed than cpSZ because we avoid the use of

pointwise relative error bound, which requires an expensive

logarithmic transform on the data.

We then present the qualitative results on this dataset

by visualizing all critical points, with surface Line Integral

Convolution (LIC) [48] on the vector field as background.

It is clearly observed that many false positives occur in the

decompressed data of SZ3 and ZFP, especially in regions that

are close to the land areas. Also, it is interesting to see that

only SZ3 and our method with high levels of speculation affect

data in the land areas. For the former, it is mainly caused

by error prorogation in the hierarchical interpolation; for the

latter, it is due to the loosened error bound by the speculation

as no critical points exist in the land areas.

The quantitative results for the two 3D datasets are listed

in Table VI and Table VII, respectively. The trends are pretty

similar to those of 2D, where general lossy compressors intro-

duce a large number of false positives. Note that both cpSZ and

our methods exhibit lower compression speed compared to 2D

4987

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

TABLE V
QUANTITATIVE RESULTS ON 2D OCEAN DATA

Compressors Settings CRu CRv CRall Sc Sd #TP #FP #FN #FT
FPZIP -P 11 17.26 16.52 16.88 154.28 131.7 23,107 1,100 1,054 1,018

ZFP -P 8 16.62 16.79 16.71 489.94 539.42 15,621 61,405 8,002 1,556

ZFP -A 4 18.56 19.98 19.25 522.73 597.60 10,525 48,899 12,884 1,770

SZ3 -A 0.1 19.03 19.46 19.24 136.24 369.25 17,576 72,910 6,755 848

cpSZ
decoupled -R 0.1 - - 7.58 38.99 101.40 25,137 0 0 42
coupled -R 0.1 - - 11.83 31.56 92.73 25,179 0 0 0

Our method

NoSpec -R 0.01 - - 19.57 27.21 174.14 25,179 0 0 0
ST1 -R 0.01 - - 20.82 26.7 161.07 25,179 0 0 0
ST2 -R 0.01 - - 25.38 19.11 182.34 25,179 0 0 0
ST3 -R 0.01 - - 25.56 18.9 169.2 25,179 0 0 0
ST4 -R 0.01 - - 32.11 15.45 168.33 25,179 0 0 0

cpSZ (coupled, CR=11.83)Original data Our method (NoSpec, CR=19.57) Our method (ST4, CR=32.11)

FPZIP (CR=16.88) SZ3 (CR=19.24) ZFP (-A, CR=19.25) ZFP (-P, CR=16.71)

Fig. 5. Qualitative results on 2D Ocean data with surface LIC visualized as context.

(a) Ocean (b) Nek5000

Fig. 6. Rate-distortion of our method under different error bounds and
speculation targets.

cases because each vertex has 24 adjacent cells to be analyzed

for error bound derivation, whereas this number reduces to 6
in 2D data. Compared to the coupled scheme in cpSZ, our

method with the most aggressive speculation yields 446% and

160% improvement on compression ratios in Hurricane and

Nek5000, respectively.

We also present qualitative observations for the two datasets

in Figs. 7 and 8, respectively, using streamlines [49] traced by

points along the diagonal line as the context. We eliminate ZFP

and SZ3 because the large number of false positives across

the entire space makes it hard to visualize. It is observed that

cpSZ leads to the best preservation of the global streamlines,

but its compression ratio is pretty low. Our method with the

most aggressive speculation provides better quality than FPZIP

while providing much higher compression ratios.

D. Parallel I/O performance

We perform a parallel experiment to evaluate the two pro-

posed parallelization strategies for the writing and reading time

using the Turbulence data. The writing time is measured by the

summation of time on compression and writing compressed

data, while the reading time is computed by adding the

time of reading compressed data to decompression time. We

perform a strong-scaling test with 512 cores and 4, 096 cores,

where the Turbulence dataset is divided into 512 blocks of

512×512×512 grids and 4, 096 blocks of size 256×256×256
grids, respectively, with each processor dealing with one

block of data. For simplicity, we use “Simple” to denote the

parallelization with lossless borders and “Ratio-oriented” to

represent the parallelization with two-phase communication

and compression. We also include GZIP [29] as the evaluation

baseline because it is a lossless compressor that can preserve

all the critical points under the distributed setting as our

methods do, while none of existing lossy compressors can do

that. The corresponding results are reported in Fig. 9.

4988

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
QUANTITATIVE RESULTS ON 3D HURRICANE DATA

Compressors Settings CRu CRv CRw CRall Sc Sd #TP #FP #FN #FT
FPZIP -P 9 34.14 40.11 10.77 20.40 183.22 142.74 645 442 334 106

ZFP -P 9 30.63 33.09 11.08 19.59 322.18 673.32 608 27,243 407 70

ZFP -A 1 16.56 16.80 36.94 20.41 310.71 655.11 425 21,856 620 40

SZ3 -A 0.04 17.43 17.52 60.30 22.90 146.38 380.51 487 9,562 550 48

cpSZ
decoupled -R 0.05 - - - 3.30 12.01 60.97 1,085 0 0 0
coupled -R 0.05 - - - 7.24 6.85 85.29 1,085 0 0 0

Our method

NoSpec -R 0.01 - - - 22.78 9.53 142.08 1,085 0 0 0
ST1 -R 0.01 - - - 24.11 9.57 129.49 1,085 0 0 0
ST2 -R 0.01 - - - 36.26 4.16 145.33 1,085 0 0 0
ST3 -R 0.01 - - - 36.98 4.15 142.49 1,085 0 0 0
ST4 -R 0.01 - - - 39.55 4.36 139.74 1,085 0 0 0

cpSZ (coupled, CR=7.24)Original data FPZIP (CR=20.40) Our method (ST4, CR=39.55)

Fig. 7. Qualitative results on 3D Hurricane data with streamlines visualized as context.

TABLE VII
QUANTITATIVE RESULTS ON THE 3D NEK5000 DATA

Compressors Settings CRu CRv CRw CRall Sc Sd #TP #FP #FN #FT
FPZIP -P 11 14.0 13.56 15.34 14.26 140.08 127.89 9,932 2,328 2,084 466

ZFP -P 10 13.64 13.20 14.57 13.78 285.76 534.53 7,253 232,235 4,848 381

ZFP -A 4 14.74 15.06 14.78 14.86 294.48 558.47 5,649 192,363 6,345 488

SZ3 -A 0.13 14.28 14.95 15.62 14.93 48.04 22.68 7,313 114,448 4,762 407

cpSZ
decoupled -R 0.05 - - - 3.27 11.82 58.41 12,482 0 0 0
coupled -R 0.05 - - - 7.30 6.62 83.13 12,469 7 9 4

Our method

NoSpec -R 0.01 - - - 15.00 8.64 141.93 12,482 0 0 0
ST1 -R 0.01 - - - 15.16 8.62 119.10 12,482 0 0 0
ST2 -R 0.01 - - - 19.00 4.75 143.37 12,482 0 0 0
ST3 -R 0.01 - - - 18.27 4.75 142.52 12,482 0 0 0
ST4 -R 0.01 - - - 19.02 5.06 143.99 12,482 0 0 0

The figure shows that all three strategies have negative

impacts on writing data with 512 cores due to the slow com-

pression performance. This is more obvious for ratio-oriented

parallelization because it has higher computational and com-

munication overhead than simple parallelization. However,

benefits are observed for reading data with 512 cores due to

the significantly reduced size (15.17× for the simple paral-

lelization and 19.60× for the ratio-oriented parallelization).

This leads to more than 50% reduction in the reading time

compared to reading the entire dataset without compression.

For the large-scale evaluation with 4, 096 cores, significant

improvements are observed in both writing and reading per-

formance, as the reduced data size per core leads to greatly

decreased compression/decompression time. While the result-

ing compression ratios (13.29× for the simple parallelization

and 18.10× for the ratio-oriented parallelization) are less than

those of 512 cores, overall writing and reading performance

improvements are more obvious. In absolute terms, our ratio-

oriented strategy achieves 1.25× and 4.38× performance on

writing and reading, respectively, compared with the vanilla

approach with no compression. In contrast, lossless compres-

sion with GZIP yields minor performance gain compared with

the vanilla approach because of its limited compression ratios.

As scientific data is usually written once and read multiple

times, we envision a broad use of the proposed methods for

efficient data management due to its high reading performance.

VIII. CONCLUSION

In this paper, we develop a general theory for preserving

signs of determinants and leverage it to implement a feature-

preserving lossy compression framework. Unlike existing

lossy compression frameworks, our framework can preserve

4989

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

cpSZ (coupled, CR=7.30)Original data FPZIP (CR=14.26) Our method (ST4, CR=19.02)

Fig. 8. Qualitative results on 3D Nek5000 data with streamlines visualized as context.

(a) Writing performance

(b) Reading performance

Fig. 9. Reading and writing performance with the proposed parallelization
strategies using the Turbulence data on 512 and 4, 096 cores. Error bar
encodes maximal and minimal time across 3 runs.

all critical points under robust detection algorithms. We further

propose a speculative compression scheme that is able to

obtain higher compression ratios with relaxed error bounds. In

addition, we provide two strategies to parallelize our algorithm

under distributed-memory settings. We evaluate our framework

on four real-world datasets, with the largest dataset exceeding

700GB. Our experiments utilized up to 4, 096 cores across 50
nodes. Some key findings are listed below:

• Our framework provides guaranteed preservation of criti-

cal points while delivering compression ratios up to 440%
better than the state of the arts.

• The proposed speculative compression significantly im-

proves the compression ratios while retaining the crit-

ical points. Specifically, it results in compression ratio

improvements of 54.23%, 26.80%, and 73.62% on the

Ocean, Nek5000, and Hurricane datasets, respectively.

• Both of our parallelization strategies successfully pre-

serve critical points during lossy compression in a parallel

setting. In particular, the ratio-oriented parallelization

leads to up to 1.25× and 4.38× speedup in writing

and reading performance, respectively, compared to the

vanilla approach with no compression on the Turbulent

dataset using 4, 096 cores.

• Compared to cpSZ, although our framework is about

10% − 25% slower in compression speed, the decom-

pression speed is 50% − 100% faster. Also, our frame-

work achieves significantly higher compression ratios

than cpSZ, while being able to preserve critical points

extracted by robust algorithms.

In the future, we will extend this framework to preserve

more features expressed by the sign of determinants. In addi-

tion, we will consider multiple ways to improve the efficiency

of the proposed methods. For instance, we will leverage GPUs

to improve the compression/decompression performance and

investigate optimizations such as non-blocking message pass-

ing for better communication efficiency and asynchronous

reading/writing for faster I/O operations.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing

Project (ECP), Project Number: 17-SC-20-SC, a collaborative

effort of two DOE organizations – the Office of Science and

the National Nuclear Security Administration, responsible for

the planning and preparation of a capable exascale ecosystem,

including software, applications, hardware, advanced system

engineering and early testbed platforms, to support the nation’s

exascale computing imperative. The material was supported by

the U.S. Department of Energy, Office of Science, Advanced

Scientific Computing Research (ASCR), under contract DE-

AC02-06CH11357, and supported by the National Science

Foundation under Grant OAC-2003709, OAC-2104023, OAC-

2330367, OAC-2311756, and OAC-2313122. We acknowledge

the computing resources provided on Bebop (operated by

Laboratory Computing Resource Center at Argonne).

4990

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] I. Foster, M. Ainsworth, B. Allen, J. Bessac, F. Cappello, J. Y. Choi,
E. Constantinescu, P. E. Davis, S. Di, W. Di, H. Guo, S. Klasky, K. K.
Van Dam, T. Kurc, Q. Liu, A. Malik, K. Mehta, K. Mueller, T. Munson,
G. Ostouchov, M. Parashar, T. Peterka, L. Pouchard, D. Tao, O. Tugluk,
S. Wild, M. Wolf, J. M. Wozniak, W. Xu, and S. Yoo, “Computing just
what you need: Online data analysis and reduction at extreme scales,”
in European conference on parallel processing. Springer, 2017, pp.
3–19.

[2] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
“Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE). IEEE, 2021, pp. 1643–1654.

[3] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE transactions on visualization and computer
graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[4] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[5] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the multivariate
case,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. A1278–
A1303, 2019.

[6] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “Tthresh: Tensor
compression for multidimensional visual data,” IEEE transactions on
visualization and computer graphics, vol. 26, no. 9, pp. 2891–2903,
2019.

[7] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 2017, pp. 1129–1139.

[8] X. Liang, S. Di, D. Tao, S. Li, B. Nicolae, Z. Chen, and F. Cappello,
“Improving performance of data dumping with lossy compression for
scientific simulation,” in 2019 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2019, pp. 1–11.

[9] A. M. Gok, S. Di, Y. Alexeev, D. Tao, V. Mironov, X. Liang, and
F. Cappello, “Pastri: Error-bounded lossy compression for two-electron
integrals in quantum chemistry,” in 2018 IEEE International Conference
on Cluster Computing. IEEE, 2018, pp. 1–11.

[10] F. P. Preparata and S. J. Hong, “Convex hulls of finite sets of points in
two and three dimensions,” Communications of the ACM, vol. 20, no. 2,
pp. 87–93, 1977.

[11] H. Guo, D. Lenz, J. Xu, X. Liang, W. He, I. R. Grindeanu, H.-W.
Shen, T. Peterka, T. Munson, and I. Foster, “Ftk: A simplicial spacetime
meshing framework for robust and scalable feature tracking,” IEEE
transactions on visualization and computer graphics, vol. 27, no. 8,
pp. 3463–3480, 2021.

[12] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf, “The state of the art in flow visualization: Dense and
texture-based techniques,” in Computer Graphics Forum, vol. 23, no. 2.
Wiley Online Library, 2004, pp. 203–221.

[13] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post, “Topology-based
flow visualization, the state of the art,” Topology-based methods in
visualization, pp. 1–19, 2007.

[14] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen,
“Over two decades of integration-based, geometric flow visualization,”
in Computer Graphics Forum, vol. 29, no. 6. Wiley Online Library,
2010, pp. 1807–1829.

[15] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth, “A survey of topology-based
methods in visualization,” in Computer Graphics Forum, vol. 35, no. 3.
Wiley Online Library, 2016, pp. 643–667.

[16] D. Matsuoka, F. Araki, Y. Inoue, and H. Sasaki, “A new approach to
ocean eddy detection, tracking, and event visualization–application to
the northwest pacific ocean,” Procedia Computer Science, vol. 80, pp.
1601–1611, 2016.

[17] L. Yan, H. Guo, T. Peterka, B. Wang, and J. Wang, “Trophy: A
topologically robust physics-informed tracking framework for tropical
cyclones,” arXiv preprint arXiv:2307.15243, 2023.

[18] P. Rautek, X. Zhang, B. Woschizka, T. Theusl, and M. Hadwiger,
“Vortex lens: Interactive vortex core line extraction using observed line
integral convolution,” IEEE Transactions on Visualization & Computer
Graphics, no. 01, pp. 1–11, 2023.

[19] T. K. Dey, J. A. Levine, and R. Wenger, “A delaunay simplification
algorithm for vector fields,” in 15th Pacific Conference on Computer
Graphics and Applications (PG’07). IEEE, 2007, pp. 281–290.

[20] S. K. Lodha, J. C. Renteria, and K. M. Roskin, “Topology preserving
compression of 2d vector fields,” in Proceedings Visualization 2000. VIS
2000 (Cat. No. 00CH37145). IEEE, 2000, pp. 343–350.

[21] X. Liang, S. Di, F. Cappello, M. Raj, C. Liu, K. Ono, Z. Chen, T. Peterka,
and H. Guo, “Toward feature-preserving vector field compression,” IEEE
Transactions on Visualization and Computer Graphics, 2022.

[22] K. Hormann and A. Agathos, “The point in polygon problem for
arbitrary polygons,” Computational geometry, vol. 20, no. 3, pp. 131–
144, 2001.

[23] H. Edelsbrunner, Algorithms in combinatorial geometry. Springer
Science & Business Media, 1987, vol. 10.

[24] F. Aurenhammer and H. Imai, “Geometric relations among voronoi
diagrams,” Geometriae Dedicata, vol. 27, no. 1, pp. 65–75, 1988.

[25] H. Edelsbrunner and E. P. Mücke, “Simulation of simplicity: a technique
to cope with degenerate cases in geometric algorithms,” ACM Transac-
tions on Graphics (tog), vol. 9, no. 1, pp. 66–104, 1990.

[26] H. Bhatia, A. Gyulassy, H. Wang, P.-T. Bremer, and V. Pascucci, “Robust
detection of singularities in vector fields,” in Topological Methods in
Data Analysis and Visualization III: Theory, Algorithms, and Applica-
tions. Springer, 2014, pp. 3–18.

[27] J. Helman and L. Hesselink, “Representation and display of vector field
topology in fluid flow data sets,” Computer, vol. 22, no. 08, pp. 27–36,
1989.

[28] H. Theisel, C. Rössl, and T. Weinkauf, “Topological representations of
vector fields,” Shape analysis and structuring, pp. 215–240, 2008.

[29] P. Deutsch, “Gzip file format specification version 4.3,” 1996.

[30] M. Burtscher and P. Ratanaworabhan, “Fpc: A high-speed compressor
for double-precision floating-point data,” IEEE Transactions on Com-
puters, vol. 58, no. 1, pp. 18–31, 2008.

[31] F. Alted, “Blosc compressor,” http://blosc.org/, online.

[32] G. K. Wallace, “The jpeg still picture compression standard,” IEEE
transactions on consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv,
1992.

[33] M. Rabbani, “Jpeg2000: Image compression fundamentals, standards
and practice,” Journal of Electronic Imaging, vol. 11, no. 2, p. 286,
2002.

[34] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[35] Y. Collet, “Zstandard - real-time data compression algorithm,”
http://facebook.github.io/zstd/, online.

[36] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel
techniques for compression and reduction of scientific data-quantitative
control of accuracy in derived quantities,” SIAM Journal on Scientific
Computing, vol. 41, no. 4, pp. A2146–A2171, 2019.

[37] P. Jiao, S. Di, H. Guo, K. Zhao, J. Tian, D. Tao, X. Liang, and
F. Cappello, “Toward quantity-of-interest preserving lossy compression
for scientific data,” Proceedings of the VLDB Endowment, vol. 16, no. 4,
pp. 697–710, 2022.

[38] H. Theisel, C. Rössl, and H.-P. Seidel, “Compression of 2d vector fields
under guaranteed topology preservation,” in Computer Graphics Forum,
vol. 22, no. 3. Wiley Online Library, 2003, pp. 333–342.

[39] S. Koch, J. Kasten, A. Wiebel, G. Scheuermann, and M. Hlawitschka,
“2d vector field approximation using linear neighborhoods,” The Visual
Computer, vol. 32, pp. 1563–1578, 2016.

[40] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao et al., “Sz3: A modular framework
for composing prediction-based error-bounded lossy compressors,” IEEE
Transactions on Big Data, 2022.

[41] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient
transformation scheme for lossy data compression with point-wise
relative error bound,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2018, pp. 179–189.

[42] F. Gabbay and A. Mendelson, Speculative execution based on value
prediction. Citeseer, 1996.

[43] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta,
T. Von Eicken, and K. Yelick, “Parallel programming in split-c,” in
Supercomputing’93: Proceedings of the 1993 ACM/IEEE conference on
Supercomputing. IEEE, 1993, pp. 262–273.

[44] P. Fischer, J. Lottes, and H. Tufo, “Nek5000,” Argonne National
Lab.(ANL), Argonne, IL (United States), Tech. Rep., 2007.

4991

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

[45] H. I. dataset, http://sciviscontest-staging.ieeevis.org/2004/data.html, on-
line.

[46] K. Kanov, R. Burns, C. Lalescu, and G. Eyink, “The johns hopkins
turbulence databases: an open simulation laboratory for turbulence
research,” Computing in Science & Engineering, vol. 17, no. 5, pp.
10–17, 2015.

[47] “Morgan Compute Cluster,” https://www.ccs.uky.edu/, 2023.
[48] D. Stalling and H.-C. Hege, “Lic on surfaces,” Texture Synthesis with

Line Integral Convolution, pp. 51–64, 1997.
[49] A. Datta-Gupta and M. J. King, “Streamline simulation: theory and

practice,” 2007.

4992

Authorized licensed use limited to: The University of Utah. Downloaded on August 27,2024 at 23:51:52 UTC from IEEE Xplore. Restrictions apply.

