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Abstract— Recent advances in high performance computing have enabled large scale scientific simulations that produce massive
amounts of data, often on the order of terabytes or even petabytes. Analysis of such data on desktop workstations is difficult and
often limited to only small subsets of the data or coarse resolutions yet can still be extremely time-consuming. Alternatively, one
must resort to big computing clusters which are not easily available, difficult to program and with software often not flexible enough to
provide custom, scalable analyses. Here we present a use case from turbulent combustion where scientist are interested in studying,
for example, the heat release rate of turbulent flames in a simulation totaling more than 5.5 TB of data. This requires a non-trivial
processing pipeline of extracting iso-surfaces, tracing lines normal to the surface and integrating the heat release for all 660 time
steps to accumulate histograms and time curves. Using existing tools, this analysis even at reduced resolution, takes days and is thus
rarely performed. Instead, we present a novel application based on light-weight streaming processing and fast multi-resolution disk
accesses that enables this analysis to be done interactively using commodity hardware. In particular, our system allows scientist to
immediately explore all parameters involved in the process, i.e. iso-values, integration lengths, etc., providing unprecedented analysis
capabilities. Our application has already led to a number of interesting insights. For example, our results suggest using an adaptive
iso-value and integration length for each time steps would lead to more accurate results. The new approach replaces a traditional
batch-processing work flow, and provides a new paradigm in scientific discovery through interactive analysis of large simulation data.

Index Terms—Large-Scale Data, Streaming Processing, Turbulent Combustion, Multi-Resolution Data Access.

1 INTRODUCTION

Today’s cutting-edge scientific research increasingly relies on large
scale computational modeling and simulation as a means to advance
our understanding of fundamental physical and chemical processes.
With the rapid increases in available computing power, scientists are
able to perform simulations that are larger, more detailed, and more
realistic from first principle descriptions. Aside from the generation
of large-scale high-fidelity simulations, however, the combination of
unprecedented data sizes and more intricate analysis algorithms cre-
ates challenges in extracting scientific knowledge from the data. Even
with the state-of-the-art visualization and analysis tools [2, 4], com-
mon analysis tasks may require substantial computing resources and
personal time, especially for any queries involving large time series.
Consequently, these tasks can be performed only on a subset of data
or at a lower resolution, limiting the ability to explore all useful infor-
mation in simulation.

Alternatively, such an analysis could be conducted in situ as part of
the simulation. However, in many cases the various parameters used
are not known a priori. Sometimes, traditional defaults can be used
or appropriate values could be extrapolated from similar use cases. In
either case, this can easily lead to incorrect results and missed oppor-
tunities, thus wasting the resources and time. Furthermore, these lim-
itations tend to encourage a conservative approach in which the same
analysis pipelines with the same parameters are used since exploring
and validating new techniques is too costly.

This paper presents a prime example of the challenges discussed
above in the area of combustion research. Dynamic interactions be-
tween turbulent flows and premixed flame propagation have been a
long-standing fundamental science question, with practical signifi-
cance in identifying the engine operation conditions for higher effi-
ciency, lower emissions, and combustion stability. In particular, how
the net burning velocity varies as a function of the turbulence intensity
is still not clearly understood. As such, direct numerical simulations
(DNS) of premixed flames have been pursued at higher levels of tur-
bulence intensity, requiring extremely large scale simulations with bil-
lions of grid points and millions of time steps. The massive datasets
produced by such simulations often require a variety of statistical anal-
ysis associated with flame surfaces identified as iso-surfaces, such as
local and surface-integrated front speed, heat release, and strain rates.
Understanding how flames of different chemical mixtures respond to
intense turbulence will help provide information about their stability

under operation conditions. In addition, this information can be used
to inform the development of new combustion systems that run at fuel-
lean conditions, and are therefore less polluting and more energy ef-
ficient, which will result in the reduction of emissions of particulates
and carbon dioxide from combustion devices.

The present study shows an example of such an analysis by comput-
ing the consumption speed of the flame, defined as the surface-normal
integrated reaction rate of a chosen reactant species [3, 7]. Comput-
ing the consumption speed involves extracting an iso-surface, and inte-
grating heat release rate along the normals on both sides of the surface.
The results are summarized through histograms over time. Using the
existing post-processing infrastructures, even a lower resolution ap-
proximation of some medium sized data set can take days. As a result,
such an analysis is commonly performed with a fixed set of the param-
eters such as the iso-value, integration length, etc. The present study
employs the recent advances in progressive, streaming data process-
ing, pioneered in the visualization community, resulting in an interac-
tive pipeline to compute the consumption speeds and related measures
using commodity hardware.

The new analysis framework allows scientists to interactively ex-
plore not only the core parameters such as the iso-value and integration
length but also different resolutions in both space and time. Further-
more, given the integration values, the surface can be colored accord-
ing to the local heat release rate, providing a simple way to study the
spatial distribution of the heat release. The analysis has produced a
number of unexpected results, allowing, for the first time, the assess-
ment of the stability of the results under different parameter choices
in a way that was not previously possible. For example, the analysis
clearly showed the sensitivity of the integration length to the surface’s
curvature, as well as that of the iso-value to the integration length.
More specifically, the present study provides combustion scientists
with the ability to:

• Interactively compute flame consumption speeds and related
measures from large-scale time dependent data.

• Freely explore all parameters involved in the computation.

• Compare and contrast results for different parameter settings and
time ranges.

• Interactively visualize time dependent iso-surfaces of massive
data colored by the local flame consumption speed.
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In summary, the present framework provides scientists unprece-
dented capabilities to explore and analyze the large and complex sim-
ulation data sets. Furthermore, this only requires a simple commodity
workstation rather than the large-scale distributed resources that would
likely be required for alternative approaches.

2 RELATED WORK

In combustion research, a flame’s displacement speed is defined
through a one-dimensional flamelet approach [6], which describes the
dynamics of the flame speed contributions of the diffusion of mass
into the flame sheet and the reactivity of the combustion reactants.
This approach can be extend to define displacement speeds for rele-
vant species across a flame with finite thickness. Similarly, we can
extract a non-dimensional consumption speed for the chemical energy
of the flame. This can provide us with information about how the
topology of the flame, which is affected by the turbulence of the fluid,
changes the overall consumption of premixed fuel.

The definition of the non-dimensional consumption speed is defined
as:

Sh =

∫
ωhrdη∫

ωhr,lamdη
(1)

where ωhr refers to the heat release rate of the gas and η refers to
the integration length. Since the heat release rate can vary in intensity
and has the potential of being non-monotonic, we choose a value of
a scalar that varies monotonically across the flame front. Consistent
with definition of displacement speed in previous work [7], we choose
O2 mass fraction that corresponds to the peak heat release rate at the
one-dimensional laminar condition.

Previous work was able to extract integrated information for two-
dimensional conditions, in particular for the study of extinction by
water spray of diffusion flames[1]. Day et al. [5] utilized a Lagrangian
approach to trace path lines across the flame.

In terms of computation, it is possible to use existing systems such
as MATLAB [13], VisIt [4] or ParaView [2] to compute the integra-
tion of heat release across a chosen iso-surface. in particular, ParaView
and VisIt use the VTK framework [18] and are able to express copmlex
analysis pipelines. However both tools assume the data to be in mem-
ory, which in this case would require substantial compute resources.
Depending on the location of the computing resources interacting with
the solution, for example, to change parameters can be difficult. Fur-
thermore, neither system provides an easy path to use coarser resolu-
tion or subsets of the data. Finally, VTK pipelines are not designed
progressively and will only return a single final result often after con-
siderable time for complex tasks. Instead, the system presented in this
paper remains interactive by progressively processing the data and re-
porting intermediate results and only requires a personal computer.

More recently several libraries and frameworks have emerged to
extend VTK to multi-core and heterogeneous architectures, such as
EAVL [14], DAX [15], or PISTON [11]. These solutions could im-
prove the responsiveness of a VTK based approach and add features
such as multi-core parallel processing. However, these are not yet ma-
ture enough to be easily used especially by non-experts. More impor-
tantly, they do not address the in memory requirement thus requiring
the same resources or suffering from a severe file I/O bottleneck.

Our system is based on ViSUS [17], a fast, progressive streaming
data analysis and visualization framework. ViSUS uses the IDX data
format [10], an open-source I/O format that supports very efficient
parallel write [9], and multi-resolution read through the use of hierar-
chical Z indexing [16]. We leverage the I/O capabilities of the IDX
format to build a fast, general stream processing pipeline and apply
it to the analysis of combustion flame speed in this paper. The idea
of stream processing of data is certainly not new. There have been
streaming algorithms developed for specific problems such as [8] and
[19]. Our progressive data streaming pipeline however is much more
general and is integrated into a full-scale system.

3 APPLICATIONS

Real combustion systems typically favor turbulence in order to allow
for fast conversion of chemical energy, since turbulence can signifi-
cantly wrinkle a flame area and speed up the consumption of fuel and
oxidizer. On the other hand, intense turbulence can often lead to dy-
namics that result in flame extinction due to thermo-diffusive effects
or flame annihilation. For example, gas turbines that operate at lean
conditions are known to exhibit instabilities that result in catastrophic
failures due to the coupling of thermodynamics and acoustics. In jet
engines, flame blowouts can occur due to the lack of anchoring of
the diffusion flame within the combustor, even though the chemical
energy conversion is shown to remain quite vigorous. Thus, study-
ing how flames tend to behave under strong turbulence interactions
can provide us with insights about possible modes of instabilities that
might adversely affect flame, as well as insights towards mitigating
these unstable modes.

In the context of premixed flames, researchers interested in com-
bustion physics look to understand the effects of turbulence on the
structure of the flame surface. Real combustion systems involving pre-
mixed flames tend to produce flames with some sort of mean shear (gas
turbines) or mean curvature (gasoline engines). This science study
seeks to understand the effects of the localized flame surface’s corruga-
tion in the absence of these larger scale effects in order to extract uni-
versal scaling laws for turbulent flame speeds that engineering-based
models can utilize.

Computing the histogram of a flame’s consumption speed one way
of extracting information about the flame dynamics and is useful in
determining to what extent a flame deviates from laminar conditions
when affected by turbulence. Extracting the consumption speed re-
quires an integration of heat release rate across a path that is normal
to a selected iso-surface. The histogram of the consumption speed can
provide us with an idea of how the flame is affected by the action of
turbulence; that is, to what degree the consumption of energy across
the flame’s normal is affected by the corrugation of a selected iso-
surface that corresponds with the flame location. In addition, a visual
inspection of the locations where peak heat release rate is enhanced or
diminished can provide us with details about how the topology of the
flame creates localized regions of flame speed enhancement. This is
crucial in determining how the characteristics of turbulence can lead
to either favorable or unfavorable outcomes in the combustion regime
of interest.

4 SYSTEM

To provide the analysis capabilities needed to solve the challenges de-
scribed above and do so interactively, we have developed a highly flex-
ible data processing framework. The system consists of two main com-
ponents: a cache-oblivious, multi-resolution data access library and a
progressive, streaming dataflow model for processing. Here we first
describe these components in general before discussing the specific
analysis pipelines used to compute flame speed and related measures.

4.1 Cache-oblivious, multi-resolution data access
The data access of our system is based on reordering the data accord-
ing to a hierarchical Z-order. In particular, we are using a publicly
available version of the IDX format [10] originally introduced in [17].
It provides highly efficient, cache-oblivious access to subsets of spatio-
temporal data with variable resolution. In our system this is coupled
to a distributed client-server architecture based on the notion of pro-
gressive queries. More specifically, the client requests data or some
subset of data, at a given resolution and at a specified granularity. The
server produces this data in several non-redundant pieces starting with
a small low resolution approximation which is subsequently refined
according to the requested granularity. The actual data can reside ei-
ther locally, remotely, or even be distributed among several sites. This
aspect of our system has two key properties that are crucial to deliver
the capabilities discussed in Section 5. First, it restricts the file I/O as
well as any potential network transfers to only a small amount beyond
what is strictly required by a given query. This is distinctly different
from most existing analysis frameworks [4, 2], which typically must
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load, for example, an entire field to access a spatial subset or a sub-
sampled approximation. Second, the progressive nature of the query
response delivers some coarse approximation (in both space and time)
of the data very fast and subsequently refines it. As discussed below,
we have developed a suit of algorithms that take advantage of this pro-
gressivity and start processing data as soon as it arrives. Pipelining
these algorithms results in a highly responsive and typically interac-
tive system in which each user request produces an almost immediate
if approximate answer that is continuously refined depending on how
fast data can be loaded and processed.

4.2 Progressive streaming data processing
The second component of our system is a highly flexible data flow
framework specifically designed to support progressive, streaming
processing.

At the center of our system is a dataflow consisting of nodes linked
together through input and output ports which store messages. Nodes
communicate by publishing and receiving messages, which can be as
small as a boolean variable or as large as a whole volume of data.
We use ubiquitously a generic 1-D C++ array type to store multi-
dimensional data, as array elements are stored contiguously in mem-
ory, the data structure is very cache friendly. To avoid unnecessary
data copying, which can be very costly, message passing is always
handled through shared pointers.

Nodes and the links between them form a Directed Acyclic Graph.
An example of a node is the iso-surface extraction module, which takes
a scalar field and outputs a mesh. A rendering node then takes the
extracted mesh and renders it to the screen. Every node is agnostic
about which nodes connect to it and which it connects to; it simply
receives an input, processes the input, and publishes an output. This
modular design brings great power and flexibility: a complex analysis
can be expressed by putting together a small set of data processing
nodes, which can be re-used in other analysis or visualization tasks.

Data movement is often the main bottleneck in most data visualiza-
tion and analysis software. Since our dataflow does not keep a global
state (i.e., each node is restricted to work on its own inputs), and does
not have any synchronization mechanism built in, data can be simply
streamed through a dataflow in a push-based manner. This allows for
very efficient data movement and is the key to our system’s interactiv-
ity.

Our system is also interactive in that the user interface remains re-
sponsive during data processing. The main GUI thread is also respon-
sible for managing and dispatching dataflow’s messages. If a node
does heavy processing, it runs on its own thread. Since message pass-
ing and data processing run on different threads, long computation can
be preempted whenever new inputs come to replace old inputs.

A dataflow can also help limit the amount of data to process. For
example, if the user only cares about a 2D slice in a big 3D volume,
the server can extract only this slice and send it to the client, which can
do further processing on the slice. Such a data extraction task is called
a query. Users can write a script to query data from different sources,
possibly even on different servers, and mix them together as one data
source. Data is cached on the client at query level.

By default, data querying works in progressive mode. Low reso-
lution data will be read and sent first, finer and finer resolution data
will be streamed in as the user waits, until some desired resolution
level is reached. For visualization, this maximum resolution level is
determined by the size of the on-screen projection of visible data in
pixels, and the data’s native resolution. The user, however, can manu-
ally specify a desired resolution, as well as disable progressive stream-
ing. Non-progressive mode might be more preferred for analysis tasks,
where the user often wants full control over the resolution levels at
which the analysis is done.

4.3 Progressive algorithms for combustion analysis
To calculate a combustion flame’s speed, we extend the general set of
data processing nodes in our system with a special node that calculates
integration along the normals of a given surface. This node takes in an
iso-surface of the field O2, and for each point on this surface, integrate
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Fig. 1: Dataflow of the analysis. Data is pushed in the direction of
the arrows, except for the dashed arrow, which means pull-based data
movement.

values from the field HRR (Heat Release Rate) for a short distance
along the surface normal at the point. Note that this node is completely
general and one can substitute O2 and HRR for any two other fields.
We also observe that this type of integral computation along normals
to a surface is relatively common in combustion analysis, justifying
the inclusion of such a processing node in our system’s library. The
whole dataflow for this analysis is depicted in Figure 1.

The user specifies a time step using a Time node, and enters O2 and
HRR as two fields of interest into a Field node. A Position node allows
the user to, for example, zoom into the data and thus limit the analysis
to only the visible portion of the data. The Quality node controls the
desired resolution level (discussed in Section 4.2). Using all these in-
puts, a Query node extracts two fields, 02 and HRR from the dataset,
interleaves them, and pushes the result to the Iso-surface node. This
node allows the user to enter an iso-value, extracts the correspond-
ing iso-surface from the first field (O2) and outputs it as a triangle
mesh. This mesh and the second scalar field (HRR) are passed on to
the next node, Integration, which computes an integral of HRR (IHRR)
for each vertex on the mesh. The integration results are then passed
on to a Histogram node, which draws a histogram of IHRR for the en-
tire surface. The mean IHRR value for the entire surface is then sent
to a Chart node. This allows the user to, for example, move the time
slider and see this mean IHRR value evolves through time. Finally, the
IHRR and the mesh are also sent to a Render node to be rendered onto
the screen, each vertex colored by its corresponding IHRR value.

The user controls time, quality, iso-value, integration length (the
flame thickness), and gets quick feedbacks from the histogram, the
chart, and the rendered iso-surface. Note that each of the three output
nodes (Render, Char, and Histogram) is optional and can be taken out
without affecting the rest of the dataflow. Also, Quality is a dataflow
node rather than just a property of Query because this way we can have
another Quality node to control the quality of other data processing
tasks, such as rendering (by connecting a Quality node to the Render
node). The same idea applies to the other three input nodes (Time,
Field, and Position).

For the current analysis of flame consumption speed, most of the
algorithm is implemented in two nodes: Iso-surface and Integration.
The Iso-surface node implements a fast variant of the popular march-
ing cube method [12]. Once a iso-surface mesh is produced, we need
to first compute a normal for each vertex. This is done by first identi-
fying the all triangles adjacent to the vertex, computing a normal for
each of them, then adding up all these normals, weighted by the ar-
eas of the corresponding triangles. We then step along this normal,
both forward and backward, using the trapezoidal scheme to sum up
tri-linearly interpolated samples from the field HRR. The step size is
chosen so that the sampling frequency is never more than the native
resolution of the data.

The integration results for the whole mesh is then fed into a His-
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togram node. This is a general histogram computing node that com-
putes common statistics and draws a histogram for any given input ar-
ray of values. The histogram of IHRR provides one of the main visual
channels to observe the behavior of the flame’s consumption speed as
parameters are varied. Note that the Histogram node draws a normal,
linear-scale histogram (in black color) and also a log-scale histogram
(in light blue). In all our experiments and screenshots, the Histogram
node is also configured to draw with a fixed scale in both axes, to
make it easier to observe the behavior of the histogram as parameters
change.

The mean IHHR value for each mesh is also output to an optional
Chart node, which saves all values that it receives and plots them in a
graph. With this node, the user can, for example, drags the time slider
and see how the mean flame’s consumption speed evolves over time.

5 RESULTS

With our system, scientists can interactively explore the whole space
of input parameters. In particular, here the user can vary the iso-value
of O2 to get a sense of where most reactivity happens (Section 5.2).
The user can also vary the length of integration (or flame thickness)
and watch the effects of this on both the histogram and the color map-
ping on the iso-surface, which can guide the user in choosing an ap-
propriate length (Section 5.2). In fact, the color mapping of IHRR on
the surface not only acts as a validation tool but can also give new sci-
entific insights not easily obtained otherwise (Section 5.1). To further
increase interactivity, quick analysis can be done with low-resolution
data first to narrow down the range of parameters, followed by accurate
but more expensive analysis of the parameters in the reduced ranges
using high-resolution data (Section 5.4). We give details about the size
of data and timing information for each step of the analysis in Section
5.5.

5.1 Color mapping of integrated heat release rate on sur-
face

We normalize all IHRR values across the iso-surface and use a trans-
fer function to map the computed IHRR values to colors. These colors
are defined for the vertices and are interpolated across the whole sur-
face. In all screenshots given in this paper, we use a ”banded” transfer
function that maps small absolute values to purple/blue colors, and
large absolute values to orange/red colors. Intermediate values vary
smoothly through different shades of cyan, green, and yellow. Note
that because of the way we normalize the IHHR values, blue colors
actually correspond to high absolute IHHR values, while red colors
mean low IHHR values. The transfer function is shown in all screen-
shots, near bottom right corner. Users can easily specify their preferred
transfer function. Iso-surfaces are rendered with standard Phong shad-
ing, with a gray diffuse color to not dilute the transfer function too
much. See any screenshot of the system for an example of the color-
ing of iso-surface (e.g., Figure 5).

The colored iso-surface helps to describe the locations where reac-
tivity occurs. We can also qualitatively describe how the topology of
the surface affects the energy consumption speed. It is observed that
values of high, absolute value of integrated reactivity correspond with
positively curved areas. Low, absolute values of integrated reactivity
occur at locations that are negatively curved. There are also ”valley”
areas where the surface curves negatively but with IHRR values that
are not low. This is because as we integrate reactivity in the normal
direction of points from these valleys, we end up picking up high heat
release rate values produced by the two ”sides” of the valley, where
the surface has positive curvatures.

We can confirm that this phenomenon occurs as well when we look
at the displacement speed correlation [6] with stretch as defined by the
Karlovitz number Ka [3]:

Ka = KaaT +Kac =
δ

SL,0
(aT +S∗d∇ ·n) (2)

where KaaT corresponds to the stretch component and Kac corre-
sponds to the curvature component of total strain (Ka). Figure 2 shows

Fig. 2: Correlation of density weighted displacement speed with total
strain (Ka), colored with the curvature component of total strain (Kac)

Fig. 3: Heat release rate versus mass fraction of O2. The peak value of
heat release rate corresponds approximately to a value of YO2 = 0.19.

that for positive curvature. The analysis provided by the consumption
speed hints that the factor for this acceleration is likely due to enhanced
reactivity at these positively curved areas, similar to what is observed
by the color maps in subsequent figures. The speed by which we are
able to extract these feature provides us with clues that inform our in-
vestigation of the causes for this acceleration, and is valuable towards
understanding the physics we seek to investigate.

5.2 Effects of different iso-values and integration lengths
Choosing an appropriate iso-value of O2 is crucial for the analysis. A
value either too high or too low will not correspond to where most
reactivity happens, and where most energy is released. The traditional
way of determining this is to compute the value of the O2 mass fraction
that corresponds to the peak heat release point in the laminar flame
condition, which in this premixed composition is YO2 = 0.19 as shown
in Figure 3.

Using our system however, the user can just drag the iso-value slider
and see the effects of it on the graph of mean IHRR drawn interactively
(Figure 6). As the graph indicates, a value around 0.195 gives the most
stable result, consistent with the laminar condition estimate. This can
also be seen more clearly in Figure 6a, which is just a more complete
version of the graph seen at the lower right corner of Figure 5d. If the
iso-value is too large or too small, we run the risk of not integrating
over the entire heat release rate profile. As a result, the color dis-
tribution on the surface becomes skewed and the histogram loses its
Gaussian-like shape (Figure 5d).

If the user fixes a reasonably short integration length and drags the
iso-value slider back and forth, the Chart node will show the graph
seen in Figure 6a, indicating the iso-value that gives the most stable
results (in this case YO2 = 0.195). Also, as Figure 6b shows, as we in-
crease the integration length, the effect of the iso-value becomes less
pronounced, as indicated by the mean IHRR curve becoming much
flatter. Its peak value also drifts away from the laminar estimation of
0.19. This suggests that the ideal choice of a stable iso-value is very
sensitive to the choice of integration length. This correlation between
the iso-value and the integration length can be theoretically derived

4



Online Submission ID: 269

Fig. 4: Heat release rate versus distance for a laminar flame. The
physical thickness of the laminar flame condition can be see to ap-
proximately span 1.0 mm.

once one knows of it, but without an environment that encourages in-
teractive exploration and provide clear anecdotal evidences, subtle but
important points like this can easily go unnoticed.

Choosing a right integration length is also important. A length too
short does not capture the full range of the energy conversion profile.
A long integration length on the other hand increases the risks of go-
ing through the surface at a different point in areas of high curvature,
thereby overlapping the energy release associated with another section
of the flame. Traditionally, scientists can arrive at a value for the inte-
gration length based on the physical thickness of the flame which can
be observed in Figure 4. A flame thickness of 1 mm can be deduced
from that graph. Our tool, however, shows clear evidences that a length
of 0.3 mm is already too large, as seen in Figure 7, which shows in-
tegration length of 8 voxels (0.3 mm) skewing the IHHR distribution.
This discrepancy can be explained in the context of highly corrugated
flames, where choosing a shorter integration length ensures that we are
not integrating through some of the highly folded flame surface loca-
tions. Again, Figure 7 shows this effect in both the histogram, which
loses its Gaussian-like shape, and the surface colors, which turn signif-
icantly more yellow and red. A shorter length gives rise to a narrower
and taller histogram, but the distribution remains relatively stable.

Given clear evidences showing that the integration length is sen-
sitive to the flame surface’s curvature, and the choice of iso-value is
sensitive to the integration length, we could propose a new method of
computing IHRR, where both the integration length and the iso-value
are adaptive to each time step. Even with a fixed choice for these pa-
rameters, with our system, scientists can be more confident in their
choice of parameters, found by experimenting and analyzing the sys-
tem’s feedbacks, compared to if they come up with some values just
by purely rationalizing or guesswork.

5.3 Integrated heat release rate as a function of time
A valuable tool to understand the overall flame behavior as a function
of time is to compute the mean value of the consumption speed at the
selected iso-surface. This can provide us with a metric that describes
how the flame is affected by the intensity of the turbulence. Figure
shows this behavior. The first response of the flame is simply a tran-
sient response associated with the initial flame profile. As turbulence
is injected, the flame begins to increase its consumption of energy and
is positively affected as it is folded and stretched. When the mean
injection velocity of turbulence reaches a steady state, the overall con-
sumption of energy exhibits a stable behavior throughout most of the
lifetime of the simulation. At the last section, the flame exhibits an
unstable mode that results in significant acceleration, leading to the
flame propagating too close to the inlet boundary, and thus requiring
the termination of the simulation.

To aid users in understanding the flame behavior through time, our
system can interactively plot the graph of mean IHRR as a function of
time. We use low-resolution data (one-eighth the original) to maintain
interactive dragging speed. The time slider advances 20 steps at a
time, for a total of 33 time steps. It takes roughly two minutes and a

(a) Iso-value = 0.21

(b) Iso-value = 0.195

(c) Iso-value = 0.18

(d) Iso-value = 0.15

Fig. 5: Effects of different iso-values (at time step 200). We fix an
integration length of 1 voxel (about 0.03 mm). From (a) to (e), the
iso-value slider is dragged gradually from 0.21 to 0.15, with a step of
0.15.
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(a) Integration length = 0.0375mm (b) Integration length = 0.15mm

Fig. 6: Mean IHRR (vertical) as a function of iso-value (horizontal),
for different integration lengths. These plots are the more complete
version of the built-in, interactive graph.

half for the user to finish dragging the whole range of 660 time steps.
If the Render node is removed (since rendering is not important here),
the dragging time reduces to 48 seconds. In Figure 8, we compare
our online graph with a graph generated offline by a Python script,
using finer resolution data and more time steps. The two graphs match
pretty well in their overall shapes. If the user only wants to get an
overall sense of how the mean IHRR value behaves through time, the
crude, interactive graph would suffice.

5.4 Effects of different resolutions
Figure 9 shows that when the quality level is reduced gradually from 0
to 3 (with 0 being to the finest resolution, and 3 corresponding to one-
eighth of the data), the mean and standard deviation vary only slightly,
while the overall shape of the histogram remains largely Gaussian-
like, indicating it is most likely sufficient to do quick analysis at these
resolution levels. When the quality is reduced to 4, however, the dis-
tribution of integration results change significantly and the histogram
no longer resembles a Gaussian. This effect can also be seen from the
color mapping on the surface. This large degradation of the results at
quality level 4 suggests that level 3 is probably the lowest quality level
for this dataset that we can do analysis on.

We also notice that the quality of the results depends a lot on the
integration length. As we integrate a longer distance, errors add up
quicker, and at some point, full-resolution data is needed to get an ac-
ceptable results. Fortunately, as Section 5.2 shows, a shorter integra-
tion length is often a more appropriate choice once we fix an optimal
iso-value anyway. The results in Fig 9 are produced with an integration
length of roughly 0.02 mm.

5.5 Timings
Here we provide timing information of each step in the analysis using
our system. All benchmarks run on a laptop with an Intel Core i7-
3610QM 2.3 GHz processor, 8 GB of DDR3 memory, and an NVIDIA
GeForce GTX 660M graphics card. The laptop’s hard drive has an
average transfer rate of 100 MB/s. Both our client and server software
are in the same LAN network, with an average bandwidth of 40 MB/s.
The native resolution of our dataset is 512x256x256 voxels. For this
analysis, we extract two scalar fields stored in 64-bit floating point
format, for a total of 512 MB per time step. The whole dataset has 34
fields and 660 time steps in total, for a total size of 5.7 TB. Table 1
shows the detailed timings.

Full (N) Full (C) Half (N) Half (C)
Query 21 13 3.4 0.3
Iso-surface 0.6 0.6 0.08 0.08
Integration 0.9 0.9 0.2 0.2
Render 0.5 0.5 0.1 0.1

Table 1: Timings of each step. All numbers are in seconds. Full
(N) means full resolution data from network. Half (C) means half-
resolution data (one-eighth the full data in bytes) from cache.

As can be seen from Table 1, iso-surface extraction, integration, and
rendering are relatively fast. Data transfer (Query) is the bottle neck
of the system, either through network, or from cache to memory. This

(a) Integration length = 8 voxels (≈ 0.3 mm)

(b) Integration length = 4 voxels (≈ 0.15 mm)

(c) Integration length = 2 voxels (≈ 0.08 mm)

(d) Integration length = 1 voxels (≈ 0.04 mm)

Fig. 7: Effects of different integration lengths (at time step 391)
. We fix an iso-value of 0.19.
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(a) A graph of mean IHRR values drawn interactively
as the user drags the time slider at the rate of every 20
time steps, using one-eighth the resolution of the origi-
nal data.

(b) The same graph drawn offline using a Python script,
with full resolution data and at the rate of every 10 time
steps.

Fig. 8: The graph of mean IHRR values plotted through time. This
mean energy consumption behavior is consistent with the physical
flame response, particularly its stable positioning in the total domain
volume.

implies that even with caching, using low-resolution data is required to
achieve interactivity. However, note that the Query node only activates
when there is new data to process, such as when the user drags the
time slider. Once the data for a time step is transferred, for analysis
that does not require changing the time step, the data querying time
does not factor in anymore, and the system becomes fully interactive
even with full-resolution data.

Assuming the user wants to do analysis over time (for example,
plotting a graph like the one shown in Figure 8), and thus must use
low-resolution data to achieve interactivity, the trade-off is greater er-
rors in the integration results. But as we have shown in previous sec-
tions, these errors are quite tolerable up until one-eighth the original
data, especially for quick exploration purposes. Scientists can use low
resolution data to experiment with different input parameters and get
feedback quickly. Once the optimal parameter values have been found,
a more expensive analysis can be done with high-resolution data. Even
then, our system only takes about half a minute to process each time
step.

6 CONCLUSIONS

We present a new interactive analysis and visualization system to sup-
port large-scale combustion research. Through the coupling of highly
efficient data accesses and a streaming, progressive dataflow our ap-
plication provides unprecedented capabilities to our collaborators. In
particular, we have demonstrated the analysis of a statistically pre-
mixed planar flame of lean hydrogen-air with well resolved spatial and
temporal scales, allowing for detailed analysis of turbulence-chemistry
interactions. The system provides both an on-the-fly analysis of the
integrated heat release rate for all time steps as well as a local repre-
sentation of the heat release rate through a pseudo-colored iso-surface
which provides new insights about the connection between the local
surface geometry and the level of reactivity. Our system enables our
collaborators to quickly explore the space of input parameters, observe

(a) Quality level 0 (finest resolution)

(b) Quality level 1 (half of the data)

(c) Quality level 2 (one-fourth of the data)

(d) Quality level 3 (one-eighth of the data)

(e) Quality level 4 (one-sixteenth of the data)

Fig. 9: Effects of different resolutions levels (at time step 391)
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how the results evolve and refine their initial estimates of these param-
eters. This is a crucial step forward as it allows scientists to interac-
tively explore previously inaccessible analysis techniques.
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