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Fig. 1: Visualization of the diffusivity field at 0.2 bits per sample (bps) and its Laplacian field at 1.5 bps, using two of the bit streams
studied in the paper. Compared to the by bit plane stream, the by wavelet norm stream produces a better reconstruction of the original
function (left, compare white features), and a slightly worse, if not comparable, reconstruction of the Laplacian field (right).

Abstract—There currently exist two dominant strategies to reduce data sizes in analysis and visualization: reducing the precision
of the data, e.g., through quantization, or reducing its resolution, e.g., by subsampling. Both have advantages and disadvantages
and both face fundamental limits at which the reduced information ceases to be useful. The paper explores the additional gains that
could be achieved by combining both strategies. In particular, we present a common framework that allows us to study the trade-off in
reducing precision and/or resolution in a principled manner. We represent data reduction schemes as progressive streams of bits and
study how various bit orderings such as by resolution, by precision, etc., impact the resulting approximation error across a variety of
data sets as well as analysis tasks. Furthermore, we compute streams that are optimized for different tasks to serve as lower bounds
on the achievable error. Scientific data management systems can use the results presented in this paper as guidance on how to store
and stream data to make efficient use of the limited storage and bandwidth in practice.
Index Terms—data compression, bit ordering, multi-resolution, data analysis

1 INTRODUCTION

As the gap between the available compute power and the cost of data
movement increases, data transfer, whether from cache, main memory,
or disk, becomes a major bottleneck in many workflows. However,
it has been shown that not every bit of data is always necessary to
answer scientific questions with required accuracy. In particular, for
techniques at the end of scientific workflows, such as visualization and
data analysis, lower fidelity representations of the data often provide
adequate approximations [24, 38, 70]; even during simulation, some
loss in precision is often acceptable [9,38]. As a result, several different
techniques have been proposed to reduce the size of data.

Broadly, these techniques either (i) reduce the data resolution, e.g.,
the number of data points stored, or (ii) reduce the precision of each
data point. Examples of the first kind of approach are subsampling [49],
adaptive mesh refinement [5], octrees and other tree structures [55],
and wavelets [70], and those of the second are various forms of
compression [34, 36, 41, 43, 48, 56, 62]. Traditionally, multiresolution
structures have been used to accelerate dynamic queries, e.g., in
rendering [37], since discarding data points based on the viewpoint
or data complexity can result in significant speed-up. Compression
based on quantization, on the other hand, is more common when
storing data, where in the absence of other information, treating each
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sample as equally important is the null hypothesis. However, in many
situations, a combination of both resolution and precision reduction
may be appropriate. For example, high spatial resolution may be
needed to resolve the topology of an isosurface, yet the corresponding
data samples may be usable at less than full precision to adequately
approximate the geometry. Conversely, accumulating accurate statistics
may require high-precision values, yet a lower resolution subset of data
points may be sufficient for the task.

In general, different levels of adaptivity in combinations of resolution
and precision may be suitable for different types of analysis and
visualization tasks, and for many, these requirements might be data
dependent. Consequently, a globally optimal data organization may
not exist. Instead, we consider a progressive setting in which some
initial data is loaded and processed, and new data is requested
selectively based on the requirements of the current task as well as the
characteristics of the data already loaded. The result is a stream of bits
ordered such that the error is minimized, considering the task at hand.
However, although intuitively considering both resolution and precision
in the ordering certainly has advantages, it is unclear how much the
error could be reduced for a given data budget or how little data could be
used to achieve the same error. Furthermore, optimal data-dependent
orderings may be especially impractical since they assume perfect
knowledge of the data. We therefore need to understand which of
these potential gains are realizable. This paper aims to address these
problems about the suitable bit orderings through extensive, empirical
experiments. In particular, this paper presents:

• a framework that allows systematic studies of the
resolution-versus-precision trade-off for common data
analysis and visualization tasks. The core idea is to represent
various data reduction techniques as bit streams that progressively
improve data quality in either resolution or precision (Section 3).
We can thus compare these techniques fairly, by comparing the



corresponding bit streams.
• empirical evidence that jointly optimizing resolution and precision

can provide significant improvements on the results of analysis
tasks over adjusting either independently. We present a diverse
collection of data sets and data analysis tasks and also show
how different types of data analysis might require substantially
different data streams for optimal results.

• a greedy approach that gives estimations for lower bounds of
error for various analysis tasks. In addition, we also identify
practical streams that closely approximate these bounds for each
task (Section 4.1, Section 4.2, Section 4.3, and Section 4.4) using
a novel concept called stream signature (Section 3.4), which
is a small matrix that captures the essence of how a bit stream
navigates the precision-versus-resolution space.

In the third contribution, we focus on common analysis tasks, with
a notable omission of volume rendering, which is dependent on many
parameters, such as transfer function, camera position, and resolution
of the image, among others. Thus, for volume rendering, a standalone
study is likely required to ensure scientifically sound experiments with
generalizable results.

2 RELATED WORK

Tree-based multiresolution hierarchies. A very common scheme to
generate a tree-like hierarchy is to construct low-resolution copies of
the data from higher resolution ones through downsampling. Examples
include Gaussian and Laplacian pyramids [8] and mipmaps [37, 51].
The data is often stored in blocks on each resolution level. To
save bandwidth, low-resolution versions of distant blocks can be
streamed during rendering. However, these methods increase storage
requirements, making them unsuitable for very large data. Recent
multiresolution techniques save storage by adapting to the data in such
a way that different regions are stored with different resolutions. A very
popular approach is sparse voxel octrees [16, 25] and variations [6, 22,
31]. Smooth-varying regions are stored at coarser octree levels, which
significantly reduces storage. During rendering, blocks of samples are
streamed from an appropriate resolution, determined by how far the
queried samples are from the eye/camera. A sparse, multiresolution
hierarchy can also be built using other trees such as B+ tree [46] and
kd-tree [21, 69], or space-filling curves [26, 49], which reorder data
samples to form a hierarchy without any filtering steps or redundant
samples. Low-resolution levels are constructed via subsampling, which,
unfortunately, is prone to aliasing problems.

Transform-based multiresolution hierarchies. Other
multiresolution approaches reduce data by transform-based
compression. For example, COVRA [24] constructs an octree of
bricks (consisting of blocks) and learns a sparse representation for the
blocks in terms of basis blocks. Similarly, Fout et al. [23] transform
each block using the KLT transform to produce several resolution
levels, and compress each level using vector quantization [48].
Schneider et al. [56] also use vector quantization but with a simple
Haar-like transform that separates each block of 23 voxels into
one average and seven difference coefficients. Other examples
of transform-based hierarchies include works that use the Tucker
decomposition [2, 3, 59, 60], which decomposes the input data (stored
as a tensor) into n matrices of basis vectors and one core tensor. Tensor
decomposition works for higher dimensional data and can achieve high
compression ratios, albeit at the price of a costly transform step.

Wavelets. Transforms that use fixed bases avoid such high computation
cost at the expense of slightly less effective compression. Perhaps the
most popular transform that uses a fixed basis is the (discrete) wavelet
transform (DWT), which constructs a hierarchy of resolution levels
via low and high bandpass filters. The transform is recursively applied
to the lower resolution band, resulting in a hierarchy of “details” at
varying resolution. The DWT is merely a change of basis that does
not increase the data size. Furthermore, the wavelet basis functions
are defined everywhere in space, requiring no special interpolation

rules when given some arbitrary subset of wavelet coefficients. One
disadvantage of the DWT is the random access cost, which is not
constant time, although there has been work to develop acceleration
structures to speed up local queries [67].

Besides offering a multiresolution decomposition, enabling data
streaming with level-of-detail support, wavelet coefficients are
especially amenable for compression, through thresholding or entropy
compression. In storing and visualizing scientific data, wavelets (with
compression) are used in a wide variety of systems [12, 13, 70] and
applications, such as volume rendering with level-of-detail [29, 30, 33,
47, 68], turbulence visualization [65], and particle visualization [52].

Most wavelet-based techniques employ tiling of wavelet coefficients
in individual subands to facilitate random access and spatial adaptivity
in resolution. For example, the VAPOR toolkit [13] incorporates a
multiresolution file format based on wavelets to allow data analysis on
commodity hardware by storing individual tiles in separate files to allow
loading of the region of interest. However, like most multiresolution
work, only the resolution control is leveraged. The precision axis,
which can potentially further reduce data transfer, is left unexplored.

Wavelet coders. Most work that explores the precision axis can be
found in wavelet coders. Wavelet coefficients in corresponding regions
across subbands can be thought of as belonging to a “tree”. The
embedded zerotrees (EZW) coder exploits the observation that in such
trees, “parent” coefficients are often larger in magnitude than their
“children”. EZW therefore locates trees of wavelet coefficients that are
insignificant with regard to a series of thresholds and encodes such a
tree with one single symbol. The thresholds are typically set at the bit
planes, starting from the most significant one. In this way, the data
can be progressively refined in precision during decompression. The
SPIHT coder [54] improves on EZW by locating more general types
of zero trees [10]. SPECK [50] extends SPIHT to also exploit spatial
correlations among nearby coefficients on the same subband.

Floating-point compression. The ZFP compression scheme [41] also
encodes transform coefficients by bit plane, in order of decreasing
significance. By partitioning the domain into 4× 4× 4 independent
blocks, ZFP supports fixed-rate compression, random access to the data,
localized decompression, and fast inline compression. Extensions
of ZFP allow it to vary either the bit rate or precision spatially
over the domain, albeit at fixed resolution [42]. Other notable
compression schemes for scientific data include scalar quantization
encoding (SQE) [34], ISABELA [36], SZ [62], and FPZIP [43], which
generally employ prediction and compress the residuals. ISABELA and
SZ perform residual scalar quantization, whereas FPZIP truncates floats,
which can be seen as nonuniform scalar quantization. Similarly, the
precision-based level of details (PLoD) scheme proposed in MLOC [26]
also truncates floats by dividing a double-precision number into several
parts. MLOC includes a multiresolution scheme based on Hillbert
curves, but this scheme (based on resolution) and the PLoD scheme
(based on precision) are exclusive.

Mixing resolution and precision. Schemes that allow progressive
data access in both resolution and precision include SBHP [11] and
JPEG2000 [64]. Both partition each subband into blocks and code each
block independently, in bit plane order. By interleaving compressed bits
across blocks, one can construct a purely resolution-progressive or a
purely precision-progressive stream, or anything in between. JPEG2000
has found use in the compression of scientific data, e.g., by Woodring et
al. [70]. Since most JPEG2000 implementations are limited to integer
data, the authors apply uniform scalar quantization to convert floating
point data to integer form. Even though JPEG2000 supports varying
both resolution and precision, most works do not explore this capability
but focus only on setting bit rate. In general, efficiently leveraging both
axes of data reduction has not been well studied.

Error quantification. Several works have aimed at quantifying the
error incurred by data reduction, by compression or otherwise, for the
results of analysis tasks. Baker et al. [1] evaluate several compressors,
including FPZIP [43] and ISABELA [36] on ensembles of climate
simulation data. Laney et al. [38] study the effects of lossy compression



on the Miranda hydrodynamic simulation code. Li et al. [39] measure
the error incurred by wavelet compression on turbulent-flow data. Wang
et al. [66] assess the quality of distorted data using a combination
of statistical metrics in the wavelet transform domain. Etiene et
al. have published a series of studies on verification of isosurfaces
in geometrical [20] and topological [19] terms, and verification of
volume-rendered images [18]. They focus on order-of-accuracy and
convergence analysis, where errors are introduced mostly through
discretization, not necessarily for the purpose of reducing data
bandwidth. For volume rendering, Ljung et al. [44] compute an error
estimate based on color variation between low- and high-resolution
levels in each block, which guides the selection of an appropriate
resolution level for every block. Finally, the Z-checker framework [63]
consists of a wide range of independent metrics to evaluate data quality
after lossy compression. In all these works, errors are not quantified in
the context of the tradeoff between resolution and precision.

Finally, for surveys of data reduction techniques in general, we refer
the readers to the work of Rodrı́guez et al. [4] and Li et al. [40].

3 DATA REDUCTION SCHEMES AS PACKET STREAMS

In order to systematically study the resolution-versus-precision
trade-offs among different data reduction schemes, it is important to
perform fair and consistent comparisons. In this section, we develop
such a consistent methodology by proposing to model different data
reduction schemes as streams of uniformly sized data packets, where the
original data contains all the packets, and any reduction step removes
a set of packets (comparable amounts of data). These data streams
are transmitted using a client-server model. At any point, the client is
assumed to have received a subset of packets (in some predetermined
sequential order or in some order requested by the client), which can
be used to reconstruct an approximation to the original data. Therefore,
to compare different streams, we reconstruct the original data using the
same number of packets from each stream and perform desired tasks
on each of the (approximate) reconstructions. A stream is considered
better suited for a given task if it produces results that are closer to
the reference results computed from the original data. Fig. 2 gives a
schematic view of our data streaming model.

Although both the server and the client in our model can be on the
same physical machine, only the server has full knowledge of the data.
Thus, when the client receives a packet, it might not know where that
packet should be deposited. A common solution is to have both the
client and the server agree beforehand on a static ordering of packets,
independent of the data. We use the term data-independent streams to
refer to streams using such solutions. In contrast, for data-dependent
streams, an additional mechanism is needed to inform the client about
the subbands and bit planes of incoming packets. In this paper, we
consider both types of streams, as well as specialized task-dependent
streams optimized for given tasks (see Table 1).

Fig. 2: Our data streaming model. The input is a regular grid of
floating-point samples; the output is a stream of packets. A packet
consists of bits from the same bit plane, from a block of negabinary
wavelet coefficients. Different data reduction schemes generate different
streams. The wavelet subbands are separated by blue lines in the second
image, with the coarsest subband at the top left corner. Quantization and
negabinary conversion happen immediately after wavelet transform.

Symbol Name Data Dependent Task Dependent

Slvl by level 7 7
Sbit by bit plane 7 7
Swav by wavelet norm 7 7
Smag by magnitude 3 7
S[task]-opt task-optimized 3 3
S[task]-sig by signature 3/7 3/7

Table 1: We define various types of data streams, including
data-independent, data-dependent, task-independent, and
task-dependent streams. S[task]-sig can be data dependent or
task dependent, depending on the stream from which it is derived.

3.1 Decomposition of Data into Packets

Although one way to compare different data reduction strategies is to
restrict the techniques to the same data size and compare data quality, it
is difficult to enforce consistency. For example, the amount of change
(in data) in one step of multiresolution simplification may be different
from removing one bit in the quantization of every sample. To make
all data reduction schemes comparable, in each scheme, a data set is
redefined as a stream of equally sized packets. These packets are the
smallest units of data transfer in our framework. A packet consists
of a relatively small number

(
≈ 23) of bits and is associated with a

resolution level and a precision level (i.e., bit plane). In this framework,
different data-reduction schemes become different orderings of packets,
called streams. Restricting two (or more) data streams to the same
number of packets allows us to perform fair and consistent comparisons.

Resolution levels. Although there exist several ways to define
the notion of resolution/scale/frequency, we choose the multilevel
basis functions of the wavelet transform because they have compact
support, and they avoid interpolation problems associated with other
representations. Wavelet transform enables spatial adaptivity (i.e., finer
resolution in regions that contain sharp features, at the expense of
coarser resolution elsewhere). In particular, we choose the CDF5/3
multilinear wavelets [14] for their balance between simplicity and
effectiveness at decorrelating the input signal in practice [64].

A multidimensional wavelet transform can be performed in multiple
passes, which partitions the original domain into subbands, each of
which can be thought of as a resolution level associated with one
or more spatial direction. One transform pass (in 3D) creates eight
subbands, of which the first is a low-pass, downsampled version of
the original data, and the remaining add fine details in each subset of
the dimensions (see Fig. 2 for a visualization of subbands in 2D). A
subsequent transform pass recurses only on the first subband (of the
previous level), creating the next (resolution) level of subbands. We use
l (0≤ l < L) to index the subbands, with l = 0 referring to the coarsest
subband and L denoting the number of subbands. In 3D, the eight
subbands created after one transform pass are indexed in the following
order, from coarse to fine: LLL, LLH, LHL, LHH, HLL, HLH, HHL,
HHH (L stands for “low” and H stands for “high”, referring to the
low- and high-pass filter pair that perform the wavelet transform). The
LHL subband, for example, contains coefficients that are low-pass
transformed along X and Z, and high-pass transformed along Y . In
our experiments, the number of subbands, L, is fixed at 1+3∗7 = 22,
corresponding to three transform passes in 3D.

Precision levels. For creating packets corresponding to different
precision levels, we quantize floating-point wavelet coefficients to B-bit
signed integers. For most of the experiments in this paper, B = 16. This
quantization eliminates the floating-point exponent bits, such that every
bit (except the sign bit) can be associated with a bit plane b (0≤ b < B).
In our convention, the higher indexed bit planes are less significant. We
convert quantized coefficients to the negabinary representation, where
integers are represented in base−2, i.e., ∑

B
b=0 cb(−2)b with cb ∈ {0,1}.

Negabinary encoding is preferred over two’s complement encoding,
because we start data reconstruction by zero-initializing all bits, and
negabinary encoding has no single dedicated sign bit and ensures that
small coefficients have many leading zero-bits. This transformation
increases the number of bit planes by one, i.e., 0≤ b≤ B.



Blocks and packets. Precisely, a packet consists of bits from the same
bit plane, from a block of negabinary wavelet coefficients. A block is a
[g×g×g] grid of adjacent coefficients from the same subband. We let
g be a constant (g = 2 in this paper), so that finer resolution subbands
contain more packets, which presents a trade-off between packets that
provide wider (but coarser) coverage and packets that provide finer (but
more local) details. Every packet (of size one byte in this paper) comes
from a bit plane b and a subband l. g is chosen to be larger than one for
performance reasons, as in practice, most systems read bits in batches.

3.2 Data-Dependent and Data-Independent Streams
We define two streams: by level and by bit plane, which model two
common reduction schemes in the literature. The by level stream, Slvl,
orders the packets strictly from coarser to finer subbands. Within the
same subband, packets follow the row-major order of blocks and then
bit plane order (from 0 to B) within each coefficient. All bits for each
coefficient are streamed together. The other common ordering, by bit
plane, or Sbit, proceeds strictly from higher ordered to lower ordered
bit planes. Within the same bit plane, packets follow the subband
order (from 0 to L−1) and then row-major order in each subband. Slvl
and Sbit are designed to mimic the way data is accessed in traditional
methods that work either in resolution (Slvl) or in precision (Sbit).

Additionally, we define a third stream that combines these two
dimensions and refer to it as by wavelet norm, or Swav. This stream
orders packets in descending order of weights wwav(p) = 2B−b(p)×
‖ψl(p)‖, where p denotes a packet and ψl(p) represents wavelet basis
on subband l(p). The || notation refers to the L2 norm of the wavelet
basis function. The first term captures the contribution of a bit on bit
plane b(p), and the second term captures the contribution of a wavelet
coefficient on subband l(p). In the wavelet representation, a function f
is written as a linear sum of wavelet basis functions, i.e., f = ∑ciψi,
where ci are the coefficients. Since our wavelet transforms are based on
lifting, this norm is usually not one, but it increases with level. Basis
functions in the same subband share the same norm, hence wwav(p)
is simply the contribution (in L2 norm) of a bit on bit plane b(p) and
subband l(p), to the whole function f . This ordering based on norms
of wavelet basis functions was proposed previously by Weiss et al. [67].
For details of computing the norms of basis functions, see Appendix A.

Another common way to reduce data in the wavelet domain is
to leave out the coefficients of the smallest magnitudes. Note that
coefficient magnitudes are only weakly related to error, as the error
also depends on the wavelet basis function norm [67]. We model this
scheme with a stream called by magnitude, or Smag. Here, the weight
function is wmag(p) = ∑c∈block(p) ‖c‖ (the sum is over all coefficients
in the block that contains packet p). If two packets have the same
weight, they are ordered by subband index and then by bit plane.

Unlike Slvl, Sbit, and Swav, the Smag stream is data dependent
because the coefficient magnitudes are not known without the data.
In principle, data-dependent streams are better than data-independent
streams because they can prioritize important packets based on the
actual data. However, data-dependent streams are ill-suited for practical
purposes, because the cost of sending position information likely
outweighs any potential benefit. Nevertheless, we study them for
various reasons. First, the by magnitude scheme is well known in the
literature [13]. Second, the “best” data-dependent streams (which do
not include position information for packets) can serve as a baseline
to evaluate the performance of their data-independent counterparts.
Finally, in addition to being data dependent, streams can also be task
dependent (Section 3.3), which may provide insights into how data
should be queried to perform certain analysis tasks.

3.3 Task-Optimized Streams
Each analysis task may require a fundamentally different stream for
optimal results. Studying such “optimal” streams is important because
they not only serve as a baseline but also can provide insights into
other, more practical streams. Given the original data set f and its
reconstructed approximation f ′ using a subset of packets, let q represent
some quantity of interest, e.g., histogram, isosurface, etc., computed
on f or f ′. For a given q, a well-defined error metric e(q( f ′),q( f )),

which returns a single scalar, is needed. Given f , q, and e, our goal is
to generate an optimal (and data-dependent) stream, Sopt, for q with
respect to e. One possible definition for Sopt is a stream such that the
area under the plotted curve of e, with respect to the number of bits, is
minimized for all packets to be streamed. However, this definition is
limited in practice because a stream should be able to terminate at any
point and still produce as small an error as possible.

Instead, we employ a greedy approach to define the optimal stream.
We notice through experiments, however, that a straightforward greedy
algorithm can pick unimportant packets too early. For example, starting
with an all-zero reconstruction f ′ = 0 and an empty stream, we can
repeatedly append new packets to the stream, which when included
in the current f ′, would minimize e at every step. At some point,
the algorithm might pick a packet that introduces the lowest error
yet contributes very little to improve the quality of f ′ (because more
important packets would increase the error), leading to a nonoptimal
stream. To avoid this problem, we make a modification to this greedy
algorithm and build the stream backwards. We start with a “lossless”
f ′ (i.e., f ′ = f ), and at each step we remove the packet that has the
least impact on the error e from f ′. This modification largely avoids the
previous problem where less important packets were added to Sopt too
early, because by starting with the full (instead of empty) set of packets,
our error measurement better captures the importance of packets.

Unfortunately, such a greedy algorithm is still expensive in practice,
as its complexity is at least O(n2) (n is the number of packets), due
to the 2-level nested loop. For a nx×ny×nz volume, a block size of
bx×by×bz, and B+1 bit planes, n is nx

bx ×
ny
by ×

nz
bz × (B+1). Thus,

even a small volume, e.g., nx,ny,nz = 64 and bx,by,bz = 2, can result
in a prohibitively high run time, as n2 = (32768× 17)2. Therefore,
we adopt a simplified version of this algorithm, where only one pass
through n packets is needed. In iteration i (0 ≤ i < n), we set a new
packet pi to zero, compute and record the incurred error wi using the
error metric e, and then enable pi again at the end of iteration i. After
n iterations, each packet has an associated weight wi. The stream Sopt
is simply the sorted list of packets in decreasing order of the weights.
This simplified algorithm (Algorithm 1) has significantly lower running
time, while (by observation) retaining the same quality for Sopt.

Algorithm 1 Computing a task-optimized stream

1: Inputs:
An original function f
An unordered set of n packets P = {pi}, produced from f
A quantity of interest q, and an error function e

2: Initialize:
A set of n weights {wi}

3: for each packet pi do
4: pi := 0
5: P→ wavelet coefficients C = {c j}
6: (inverse quantization and inverse negabinary transform)
7: {c j}→ f ′ (inverse wavelet transform)
8: wi := e(q( f ′),q( f ))
9: Restore pi

10: end for
11: Sort the pi’s in descending order of wi.
12: Output:

The q-optimized stream, which is the sorted P

For a more optimized implementation, the inverse wavelet transform
on line 7 can be replaced by “splatting” coefficient pi onto the domain,
due to the transform being linear and the fact that pi is the only
coefficient changed in the current iteration. Since tt is almost never
advantageous to stream bits belonging to one coefficient out-of-order,
we also enforce that in the final stream, packets belonging to the same
group follow the bit plane order (from 0 to B).

3.4 Stream Signatures
Unlike data-independent streams, data-dependent streams do
not impose a static ordering of packets. To concisely represent
and characterize the dynamic ordering of data-dependent



(a) by level (Slvl) (b) by bit plane (Sbit) (c) by wavelet norm (Swav)

Fig. 3: Visualization of signatures for Slvl, Sbit, and Swav in 2D. Each
signature is a 10×17 image, corresponding to 10 subbands (in 2D) and
17 bit planes. Each (l,b) “cell” contains a unique value from 0 to 169,
indicating its “priority” in the stream, and is mapped to a white–blue color
scale. Slvl streams bits by resolution (from top to bottom), Sbit streams by
precision (from left to right), while Swav mixes precision and resolution.

streams, we introduce the notion of a stream signature. Any
stream can be represented with respect to the two-dimensional
space of resolution (subbands) and precision (bit planes), i.e.,
LL,B = {(l,b) | 0≤ l < L, 0≤ b≤ B}. Given a stream, we define its
signature A as an L× (1+ B) matrix, where each (l,b) element is
associated with Pl,b, the set of packets belonging to subband l and
bit plane b. In particular, A(l,b), i.e., the (l,b) element of A, is an
integer in the range [0,(1+B)× L), and indicates, on average, the
position at which packets in Pl,b appear in the given stream. For
example, the signature A =

[0 1 4
2 3 5

]
indicates that the stream begins

with packets that lie on the first bit plane of the first subband, as
A(0,0) = 0. Those are followed by packets on the second bit plane
of the first subband (A(0,1) = 1), and then the first bit plane of the
second subband (A(1,0) = 2), and finally, the third bit plane of the
second subband (A(1,2) = 5). Thus, a stream’s signature shows
how the stream traverses the space LL,B and highlights the different
resolution-versus-precision trade-offs among streams, especially
among Sopt streams optimized for different tasks. In Fig. 3 we visualize
the signatures of Sbit, Slvl, and Swav, defined in Section 3.1.

To compute a stream signature, we partition the whole domain (not
individual subbands) into several regions, compute one signature per
region, and average these local signatures. Partitioning is used since
it is only when packets are relatively well localized that their relative
ordering in the LL,B space becomes meaningful. For example, a packet
at one corner of the domain may be streamed before one at an opposite
corner, but this fact contains no useful information. We define a region
to be the spatial volume that is covered by a packet in the coarsest
subband. Algorithm 2 lists the steps of our approach.

Finally, a signature can be used to construct a stream denoted
generically as Ssig. This construction is done by iterating through
each element A(l,b) in ascending order and adding to the end of Ssig all
the packets in Pl,b. An Ssig captures the behavior (in the LL,B space) of
the stream it derives from, but it is stripped from any spatial adaptivity.
Hence, when Ssig is derived from an Sopt, it can serve as a bridge
when comparing the resolution-versus-precision trade-offs between
data-independent and data-dependent streams.

Algorithm 2 Computing a stream signature

1: Inputs:
A stream P = {pi}

2: Initialize:
Per-region signature matrix Ar := 0
Global signature matrix A := 0

3: for each packet pi in P do
4: Let r, b, l be the region, bit plane, and subband that pi belongs
5: Ar(l,b) := Ar(l,b)+ i
6: end for
7: for each region r do
8: Sort the elements of Ar
9: Assign each element of Ar its index after sorting

10: A := A+Ar
11: end for
12: Sort the elements of A
13: Assign each element of A its index after sorting
14: Output:

The signature matrix A

Name Type Data type

boiler [58] combustion simulation float64
plasma [28] magnetic reconnection simulation float32
diffusivity [15] hydrodynamics simulation float64
pressure [15] hydrodynamics simulation float64
turbulence [17] fluid dynamics simulation float32
kingsnake [27] CT scan uint8
foam [45] CT scan uint16

Table 2: Data sets used in our experiments; all volumes are 643.
Additional data sets are included in the supplementary material.

4 EVALUATION ON DIFFERENT ANALYSIS TASKS

Thus far, we have presented several types of streams: data-independent
(Slvl, Sbit, Swav), data-dependent and task-independent (Smag), and
task-dependent (Sopt, Ssig). In this section, we consider a variety of
common analysis and visualization tasks to evaluate the performance
of these streams. For each task, we define an error metric, e, for the
evaluation and comparison of streams. Using Algorithm 1, we compute
streams specifically optimized for each task, S[task]-opt, and use its
signature to compute the corresponding S[task]-sig. For a variety of data
sets, we compare these streams by evaluating the error as a function of
bits per samples (or bps), defined as the total number of bits received
divided by the total number of samples. To mimic the effects of entropy
compression commonly used in practice, we remove from each stream
all packets that consist only of leading-zero bits. The wavelet basis
allows us to always reconstruct data at full resolution, which greatly
simplifies computation of errors, as there exists no standard method to
compute error between grids of different dimensions.

4.1 Function Reconstruction
One of the most fundamental analysis tasks is that of reconstructing
the original function itself. A commonly used error metric in this case
is the root-mean-square error (RMSE). Fig. 4 shows a comparison
of the different streams for a variety of data sets. It can be noted
that, in general, Srmse-opt (the stream optimized to minimize the
RMSE) performs better than Srmse-sig due to spatial adaptivity, whereas
Srmse-sig slightly outperforms Swav, followed by Sbit, Smag, and Slvl.
In particular, Sbit outperforms Slvl (for kingsnake and boiler, it does
so after approximately 1 bps), which can be attributed to the removal
of leading-zero packets. Empirically, wavelet coefficients on finer
scale subbands are much smaller in magnitude [54]. Such coefficients
contain a majority of the leading-zero bits, whose removal benefits Sbit
the most. diffusivity and plasma contain a significant amount of empty
space, which translates to more leading-zero bits after the wavelet
transform that Sbit can take advantage of, and thus, it outperforms Slvl
immediately from the beginning.

Smag underperforms for the same reason that Slvl does, but to a lesser
extent, since Smag is adapted to the data. Swav outperforms both Slvl
and Sbit, because it follows the optimal (data-independent) bit ordering
in LL,B in the L2 norm, which is also the norm that the RMSE is based
upon. Unsurprisingly, Srmse-opt outperforms all the others, as it is the
most data-adaptive (i.e., it can optimize packet ordering in the spatial
domain in addition to the LL,B domain). Srmse-sig is the second best
stream, as it follows the bit ordering of Srmse-opt in LL,B but lacks any
spatial adaptivity. In general, Swav and Ssig have similar performances,
but Ssig performs better when the data is less smooth or noisy, as is the
case for boiler and kingsnake. For such data, fine-level packets tend to
have very few leading one bits among a majority of leading zero bits,
which Swav does not take into account (data-independent streams in
effect assume every packet contains all one bits).

We explore the errors visually by rendering the plasma volume at
0.2 bps, for all streams except Srmse-opt (Fig. 5). Although Slvl has
the precision to obtain an accurate background, it lacks resolution to
resolve the fine details. Sbit, instead, lacks the precision to reconstruct
the (mostly smooth) background, but it has enough resolution to capture
the fine details well. Swav balances both precision and resolution,
producing a more accurate picture as a whole. In this case, the Ssig
stream produces the most accurate rendering overall.
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Fig. 4: Root-mean-square error (RMSE) of reconstructed functions for different streams and data sets; lower RMSE is better. The streams are
truncated at both ends to highlight the differences, without omitting important information. The numbers in brackets are the ranges of original data
samples. The general ordering of error, from lowest to highest, is Sopt < Ssig < Swav < Sbit < Smag < Slvl.

(a) by level (Slvl) (b) by bit plane (Sbit) (c) by wavelet norm (Swav) (d) by magnitude (Smag) (e) by signature (Ssig) (f) reference

Fig. 5: Volume renderings of a 643 region of plasma data set at 0.2 bps. Slvl captures the background (purple-blue) well, whereas Sbit captures the
fine details better. Swav combines the strength of both. Ssig, however, produces the most accurate rendering in overall.

4.2 Derivative Computation

Computation of derivative-based quantities is important in data analysis.
Examples include vorticity (curl) computation from velocity fields to
identify vortical structures, gradient computation for accurate Morse
segmentation and shading, and ridge extraction (e.g., for Lagrangian
coherent structures). In this paper, derivatives are always computed
using finite differences, which is common in practice. In this section,
we use 32 bits for quantization to ensure enough precision for finite
differences. We always compute finite differences on the finest
resolution grid to avoid computing distances between quantities defined
on grids of different resolutions.

4.2.1 Gradient Computation

Given a function f defined on a grid, its gradient at a grid point
x = (x,y,z) is ∇ f (x)=

(
∂ f
∂x ,

∂ f
∂y ,

∂ f
∂ z

)
. For accuracy, we use a five-point

stencil to compute the gradient, i.e., ∂ f
∂x ≈

1
12 f (x− 2,y,z)− 2

3 f (x−
1,y,z)+ 2

3 f (x+1,y,z)− 1
12 f (x+2,y,z), but we note that the relative

performances of the streams stay the same, using the more common
two- and three-point formulas. The error between a gradient field ∇ f ,
and its low-bit-rate approximation ∇ f ′, is defined as e(∇ f ′,∇ f ) =√

1
N ∑

N
i=1 ‖∇ f ′(xi)−∇ f (xi)‖2. Using Algorithm 1, we compute a

gradient-optimized stream, Sgrad-opt, that minimizes the difference
between the reconstructed and the original gradient fields.

Fig. 7 shows the gradient error incurred by different streams for four
data sets. In general, we observe the ordering of performance (from best
to worst) as: Sgrad-opt, Sgrad-sig, Sbit, Swav, Smag, Slvl. This ordering
can also be seen in Fig. 8, where the x-component of the gradient

(a) by bit plane (Sbit) (b) by wavelet norm (Swav)

Fig. 6: A 1D line extracted from plasma, and reconstructed using Sbit and
Swav at 0.6 bps. The original data is in orange and the reconstructions
are in blue. Sbit is worse at capturing the function values (seen as a slight
vertical shift) but it is comparable to Swav in capturing the shape of the
function, which is important for gradient computation.

field for tuburlence is rendered at 0.3 bps. Unlike in the RMSE case,
Sbit performs nearly the same as Swav. To investigate this difference,
we extract a 1D line from the plasma data set and reconstruct the
function using Sbit and Swav at 0.6 bps (Fig. 6). Swav’s reconstruction
is more accurate on average compared to Sbit, which captures well
the function’s shape (due to the presence of fine-scale bits), but not
the function values (due to the lack of precision in the coarse-scale
coefficients). Functions reconstructed with Sbit tend to be “shifted” in
the range domain, as seen in Fig. 6. However, the gradient operator
has the tendency to cancel the shifting effect, bringing the performance
of Sbit closer to that of Swav.

Sgrad-opt again outperforms the rest of the streams. Slvl and
Smag perform poorly for gradient computation, lacking the resolution
to capture sharp features. Sgrad-sig mostly closely follows Sbit in
performance but outperforms it for boiler. Again, compared to the
other fields, boiler is less smooth, resulting in less spatial coherency
in the magnitudes of the fine-scale coefficients, which Sgrad-opt and
Sgrad-sig can take advantage of, whereas Swav or Sbit do not take into
account actual bit values. Overall, the results suggest that besides
minimizing RMSE, Swav also works well for gradient computation,
although for the latter task, Sbit is also good alternative.

4.2.2 Laplacian Computation
The Laplace operator is a second-order differential operator defined
as the divergence of the gradient field. The Laplacian of a 3D
field is defined as ∆ f = ∂ 2

∂x2 f + ∂ 2

∂y2 f + ∂ 2

∂ z2 f . Using a five-point

finite difference, we approximate ∂ 2 f
∂x2 ≈ − 1

12 f (x− 2,y,z)+ 4
3 f (x−

1,y,z) − 5
2 f (x,y,z) + 4

3 f (x + 1,y,z) − 1
12 f (x + 2,y,z). We use

the root-mean-square error to compare two Laplacian fields, i.e.,
e(∆ f ′,∆ f ) = RMSE(∆ f ′,∆ f ). We use Algorithm 1 to compute a
Laplacian-optimized stream, Slap-opt, which minimizes e, and an Slap-sig
stream from its signature. Fig. 9 plots the errors for all relevant
streams. The plots here largely follow the ones in Fig. 7, in terms
of relative performance among the streams, but with more discernible
gaps between Sbit and Slap-sig, as well as between Slap-sig and Sbit. The
results suggest that similar to the gradient case, computation of the
Laplacian favors resolution over precision, but to a higher degree.

4.3 Histogram Computation
A histogram succinctly summarizes the distribution of sample values,
and thus it is useful as a cursory “look” into the data and in guiding
further analysis. For example, it can be used to guide the selection
of colors and opacities in a transfer function. To decide on an error
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(b) diffusivity [1.063e−10,0.497]
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(c) turbulence [0.465e−3,12.19]
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Fig. 7: Gradient error of reconstructed functions. Lower gradient error is better. Leading zero packets are removed, and the plots are truncated
in the same way as in Fig. 4. The numbers in brackets are the ranges of original gradient magnitudes. The trend in error, in all cases, is
Sgrad-opt < Sgrad-sig ≈ Sbit ≈ Swav < Smag < Slvl.

(a) by level (Slvl) (b) by bit plane (Sbit) (c) by wavelet norm (Swav) (d) by magnitude (Smag) (e) by signature (Sgrad-sig) (f) reference

Fig. 8: The x-component of the (643) gradient field of turbulence, reconstructed at 0.3 bps. Sbit, Swav, and Sgrad-sig produce visually comparable
gradient fields.
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(b) diffusivity [−0.404,0.269]
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Fig. 9: Laplacian error comparison among streams. The plots are truncated to better highlight differences without discarding important information.
The numbers in brackets are the ranges of the original Laplacian fields. In all cases, in terms of error, Slap-opt < Slap-sig < Sbit < Swav < Smag < Slvl.

metric to compare histograms, we experimented with several popular
metrics such as Kolmogorov-Smirnov [57], Kullback-Leibler [35], and
Earth Mover’s Distance [53], among others [7,32]. We chose histogram
intersection [61] as the metric of choice, because it is fast to compute
and is reasonably insensitive to changes in precision, as well as the
number of bins. The intersection distance between two histograms H1
and H2 is defined as e(H1,H2) = 1−∑i min(H1(i),H2(i)) (the sum is
over all bins i). Every histogram is normalized by dividing the value
in each bin by the total number of samples. We decided that the error
metric should take into account both the histogram shapes and the range
of values, and we clamped the range of values in reconstructed functions
to that of the original function, so that corresponding histogram bins,
i.e., H1(i) and H2(i), share the same range.

As before, for each data set, we use Algorithm 1 to compute an
Shist-opt stream, optimized for histogram error, and then construct an
Shist-sig from its signature. We plot the error curves for all relevant
streams using the Intersection error metric (compare Fig. 10). We
use 64 for the number of bins but note that there exist no meaningful
differences across a wide range of number of bins (from 64 to 512) in
our experiments. In all cases, the group consisting of Sbit, Slvl, and Smag
underperforms the other group by a large margin. Smag performs poorly,
because it ignores regions of smooth variations, which nevertheless
count toward the distribution. Slvl generally outperforms Sbit at low
bit rates, although there are several crossover points between the two
curves. As can be seen in Fig. 12, Slvl outperforms Sbit when leading
zero packets are present, because increasing resolution does not help as
much as increasing precision. This is because the histogram is oblivious
to spatial locations of samples (which require resolution to resolve) but

is sensitive to sample values (which require precision). However, when
leading zero packets are removed, Sbit benefits significantly more than
Slvl does (for the same reason explained in Section 4.1), resulting in
the observed crossovers.

In the latter group, the performances of Swav and Shist-sig (and even
Shist-opt) differ by a negligible amount. This observation is confirmed
in Fig. 11, where we plot various histograms, reconstructed at 0.3 bps,
for the boiler data set. The histograms produced by Swav and Shist-sig
have approximately the same shape and are the closest to the reference
histogram. The next best histogram is produced by Slvl, followed by
the one produced by Sbit, and finally Smag. These results suggest that
histogram computation benefits from a bit ordering that combines both
resolution and precision, with a strong bias toward precision.

4.4 Isosurface Extraction

Studying isosurfaces of a given function is an essential task in many
visualization and analysis pipelines, as they can highlight features of
interest. For measuring error between isosurfaces, we have found
that the commonly used Hausdorff distance does not work well in our
case, because two very different reconstructed surfaces may share the
same Hausdorff distance to the reference. More sophisticated metrics
exist, focusing on different characteristics such as geometric [20] and
topological [19] properties, but they assume the surface has certain
properties. Since isosurfaces partition the domain into “inside” and
“outside” regions, we opt for a simpler error metric that assumes nothing
about the shape of the isosurfaces, but simply counts misclassified
voxels. This metric differs from comparing histograms with two bins
in that we care about the spatial position and not just voxel counts.
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(c) kingsnake
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Fig. 10: Comparison of histogram errors among streams. Plots are truncated to highlight differences without hiding important trends. In general, in
terms of error, Shist-opt ≈ Shist-sig ≈ Swav < Slvl,Sbit,Smag. The erratic behavior at the beginning for kingsnake is likely due to the data being too noisy.
The especially poor performances of Sbit for boiler and foam are due to the “shifting” effect explained in Section 4.2.1. Crossover points between Sbit
and Slvl are explained in Fig. 12.
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Fig. 11: Histograms of the boiler data set, reconstructed at 0.3 bps. Slvl, Swav, and Shist-sig produce histograms that share a shape similar to the
reference histogram, with most of the peaks and valleys preserved. In contrast, Sbit produces a spurious peak not found in the reference. Finally,
Smag’s histogram has a widely skewed distribution where too many values fall into the first bin.
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Fig. 12: Histogram error curves produced by Sbit and Slvl, for boiler, with
and without leading zero bits. The vertical axis is in log scale. The error
for Sbit reduces in a stair-step fashion, where each step corresponds to a
new bit plane streamed. Sbit benefits significantly more from the removal
of leading zero bits (the blue curve shifts more to the left).

However, if the error caused by discarding a packet is of subvoxel
resolution, such a metric fails to capture the importance of that packet,
causing Siso-opt to be ineffective. Therefore, we add the relative
difference in surface areas (|A1−A2|/|A1|) to the error term. This
additional term is often between [0,1] and is meant to capture the
subvoxel error when the number of misclassified voxels is zero.

With the error metric defined, we can compute a data-dependent
stream optimized for this metric (Siso-opt) and a stream based on
its signature (Siso-sig) using Algorithm 1 and Algorithm 2. Fig. 13
compares the performances of these two streams, along with Sbit, Slvl,
Swav, and Smag. As can be observed, Slvl performs poorly, indicating
that isosurface extraction, requires higher levels of resolution compared
to histogram computation, as we need to resolve a surface in the spatial
domain and not just the range domain of the function. Swav and Siso-sig
typically outperform Sbit, especially at low bit rates. Fig. 14 renders
the isosurfaces reconstructed at 0.6 bps for all streams. In terms of the
quality of the reconstructed surfaces, Siso-sig ≈ Swav > Sbit > Smag >
Slvl, which agrees with the plots in Fig. 13. For isosurface extraction,
Swav appears to be the only stream — among the data-independent ones
— that consistently works well in all cases.

5 DISCUSSION AND FUTURE WORK

This work addresses one of the biggest contemporary challenges
in visualization: management of the enormous amounts of data.
We focus on the trade-off between two prominent dimensions of
data reduction, resolution and precision, with respect to common

analysis and visualization tasks. To keep the study tractable while
not compromising the generalizability of results, we target fundamental
analysis and visualization tasks, with an outlook that these can serve
as building blocks for more complex and multiparameter tasks in the
future. Although the paper focuses on a small set of core tasks, the
framework is generic and applies to any well-defined metric, and one
future direction is to consider a broader set of tasks.

We present the first empirical study to demonstrate that combining
reduction in precision and resolution can lead to a significant
improvement in data quality for the same data budget, and that different
tasks might prefer different resolution-versus-precision trade-offs.
For example, whereas computing histograms requires high precision,
computing derivatives benefits more from higher resolution, and
function reconstruction and isosurface extraction require a suitable
mix of the two (see Fig. 15). We also show that common reduction
techniques, e.g., those based on Slvl and Smag, do not perform well
when leading zero bits are removed (to simulate entropy compression).
For each task, the relative ordering of the rate-distortion curves stays
largely the same regardless of data sets, although the gaps among them
vary depending on the smoothness and noisiness of the data. Compared
to data-independent streams, signature-based streams often perform
better because they can adapt to the data. They are also amenable for
implementation (unlike Sopt), since a signature is negligibly small and
thus can be precomputed and stored during preprocessing. It is also
interesting to consider per-block signatures instead of a global one.

An important question is whether task- and data-dependent streams
provide sufficient advantages over purely data-independent streams.
In practice, data would be used for multiple, and not necessarily
predefined, tasks, and maintaining multiple streams will likely lead
to additional overheads. Here, we consider Ssig to be the best
possible stream that could be realized. Improvements on Ssig in
the resolution-versus-precision space are likely possible, but they
are unlikely to be significant. Given these assumptions and the fact
that Ssig in most cases provides very similar results to Sbit or Swav,
the additional effort (and potential overheads) for task-dependent bit
orderings is unlikely to be beneficial. This leaves a significant gap
between the best data-independent streams and the optimal stream Sopt.
Our experiments suggest that the majority of these differences can be
attributed to spatial adaptivity (see Fig. 15). The prototypical example
is isosurface computation, where Sopt can skip all regions that do not
affect any portion of the surface. It may be worthwhile in future work
to investigate solutions to spatial adaptivity to significantly improve the
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(b) kingsnake, #cells = 45783
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(c) plasma, #cells = 24856
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(d) turbulence, #cells = 33742

Fig. 13: Comparison of isosurface errors among streams. Plots are truncated to highlight differences without hiding important trends. The number of
cells that each original surface occupies is reported. The trend in error is Siso-opt < Siso-sig ≈ Swav < Sbit < Smag << Slvl.
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Fig. 14: Rendering of isosurfaces at isovalue of 0.2, at 0.6 bps, for the pressure data set. The surfaces are colored by the x-component of the normal
vector at each point. Swav and Siso-sig produce surfaces that are closest to the reference, followed by Sbit, Smag, and Slvl.

performance of data-independent streams.
This study can be considered only a first step toward a system of

solutions that can optimize storage, network, and I/O bandwidth to suit
specific tasks at hand. Ultimately, our results can guide development
of new data layouts and file formats for scientific data. Swav appears
to provide the best all around performance. However, for a file format
additional constraints must be considered, such as disk block sizes,
cache coherence, and compression. Furthermore, an ideal format should
allow task-dependent data queries even though task-dependent formats
will likely be restricted to very specific situations.

Finally, for fair comparisons, we always reconstruct the data at full
resolution using wavelets. However, processing and memory costs
are important, and it is likely that adaptive representations would
be used in practice [16, 25, 46]. In these cases the error of a given
approximation depends not only on the available information, but also
on the data structure and algorithm being used. For example, trilinear
interpolation on a coarse grid might produce different results than
wavelet reconstruction on the original mesh. There exist solutions
where both interpolations are equivalent [67], but such solutions have
not yet been implemented in standard tools. An important future
research direction will be to understand the implications of the results
presented here for existing toolchains such as VTK.

(a) Srmse-sig (b) Slap-sig (c) Slap-opt (d) Shist-sig

Fig. 15: (Top) Bit distribution across subbands at 1.6 bps for
signature-based streams, and (bottom) corresponding stream signatures.
The data is a 2D slice from diffusivity. Subbands are separated by
red lines. The color of each pixel indicates the bit plane at which the
corresponding coefficient currently is. Brighter greens correspond to
more precision. Both the top and the bottom rows show that Shist-sig
allocates more bits to the lower subbands, while Slap-sig prefers to stream
bits from higher subbands. Srmse-sig is somewhere in the middle. Both
Slap-sig and Slap-opt share the same signature by definition but only Slap-opt
provides spatial adaptivity, seen as nonuniform colors in each subband.

A L2 NORMS OF CDF5/3 WAVELET BASIS FUNCTIONS

The Swav stream requires the norms of CDF5/3 wavelet basis functions,
which the following pseudocode computes (in 1D).

sca_weights = [1/2, 1, 1/2]

wav_weights = [-1/8, -1/4, 3/4, -1/4, -1/8]

scal_func = sca_weights, wav_func = wav_weights

sca_norms = [], wav_norms = []

for (l = 0; l < n+1; l = l+1) {

sca_norms[l] = norm(sca_func), wav_norms[l] = norm(wav_func)

wav_weights = upsample(wav_weights)

wav_func = convolve(wav_weights, sca_func)

sca_weights = upsample(sca_weights)

sca_func = convolve(sca_weights, sca_func) }

The upsample function adds a 0 between every two adjacent samples
in its argument. The convolve function implements the convolution
operation in 1D. When the loop ends, sca norms[n] stores the the
norm of the basis functions in the coarsest subband (they all share the
same norm), while wav norms[n-1], wav norms[n-2], . . . store the
norms of basis functions in subsequent subbands, from coarse to fine.
Since we use tensor product wavelets, the norms of basis functions in
higher dimensions are simply products of the 1D norms.
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