LDRD Report - Variable precision
computing

Combining IDX and zfp

At the beginning of this project, two prominent data reduction schemes in the literature are: IDX
(resolution-based) and zfp (precision-based). We conducted several experiments to quantify the I/O
tradeoffs among different methods to combine IDX and zfp. The most difficult challenge in
combining these two schemes lie in the fact that coarse-resolution IDX data is not coherent, while
zfp requires coherent data samples to achieve good compression. Conversely, coherent samples
which facilitate good compression in zfp do not provide a good spatial coverage. Our work in this
area includes:

» Studied two methods of combining zfp compression with IDX indexing, namely "block
compression" and "brick compression". "Block compression" involves first organize the data
samples in HZ order according to IDX, then compress each consecutive chunk of samples with
zfp. This method incurs no I/O overheads for low-resolution queries but results in poor
compression. The "brick compression" instead group each 4x4x4 block of samples into one unit,
compress the unit with zfp, then organize these units in HZ order. This results in much better
compression but incurs high I/0 overheads at low resolution.

» To avoid the high I/O overheads of "brick compression", we have to devise a method to use all
decompressed samples within a brick, but this introduces a problem of interpolating unevenly
spaced data points: samples in the same brick are contiguous but samples in subsampled bricks
are far apart. To tackle this problem we studied the interpolation method based on bi-Laplacian
constraints. Although this method can work to some extent, we concluded that it is too unstable
and too slow for our purposes.

* Proposed a novel idea in which each compressed 4x4x4 zfp block is separated into three
"resolution levels": the DC coefficient, the 7 linear coefficients, and 56 higher-order coefficients.
This approach avoids I/O overheads of the brick compression scheme, while retaining its high
compression efficiency. We implemented a prototype for the previous idea and showed that the
idea is scalable on supercomputers, is comparable to zfp in terms of reconstruction quality at
low bit rates, and is able to achieve very high compression ratios (~2000x) while retaining
reasonable data quality.

CESE mm -
/El%.:l: | ERE \

(a) Encode, compress (b) Chunk, compress, en-
code

Figure 1. (a) "Block compression" versus (b) "block compression”

Total time (1/0 + Computation + Decompression)
Smaller is better

4000
3500 /*
5 3000 7 +— Normal IDX
S 2500
g 2000 - —a—8—u—8 ‘ - —@— Bit rate 16
[72]
E 1500 == Bit rate 8
£ 1000 A 7 E—— _
500 - Bitrate 4
0 T T T T T T T T T 1 v Bitrate 2
VoA > B B A e
o o R RC Ny PR —e— Bit rate 1
CACICt RS
@0###03, &
& VSV

Figure 2. Brick compression at multiple bit rates against vanilla IDX for data reading at multiple resolution
levels of a 3D, double-precision combustion simulation grid (the finest resolution is 512x256x256). We can
see that in terms of data reading time, the brick compression scheme only beats regular IDX at low bit
rates, and on relatively fine resolution levels.

RMS error ratio
(IDX block compression/brick compression)

60.00
50.00
40.00
30.00
20.00

RMS error ratio

10.00 - > e

0.00
1 2 3 - 5 6 7

Resolution

—&— Bit rate 1 —@—Bit rate 2 —@—Bitrate 4 Bit rate 8 —@—Bit rate 16

Figure 3. The block compression scheme incurs much higher error, especially for coarse resolution levels,
compared to brick compression.

22

b

Figure 4. With brick compression, if no “smart” interpolation is used, simply placing 4x4x4 blocks into the
low-resolution grid will result in blocky rendering artifacts.

Origihal

Block-downsampled (1/8) Reconstrycted fylLres -

Figure 5. For this Miranda simulation (density field), we were able to approximate the function fairly well at
1/4 the final resolution, but the quality degrades quickly at 1/8 the final resolution. Furthermore, the linear

system is highly ill-conditioned, the boundary cannot be reconstructed at all, and the system takes a long
time to solve.

{45

(a) Original data, 512%, (b) zfp, 0.25 bps, 512°, (c) ours, 0.125 + 8 bps,
float. 512 MB 4 MB. 344 dB 5123, 4 MB. 36.8 dB
=

(d) ours, 0 + 16 bps, (e) ours, 0 + 32 bps, (f) ours, 0 + 8 bps, 64%,
128%,4 MB, 36.8 dB 64x128°, 4MB, 35.7dB 256 KB, 34.6 dB

Figure 6. Comparison of different compression strategies at high ratios. CDF5/3 wavelet is used for
downsampling. The output grids are upsampled to the original resolution using piece-wise constant
upsampling when necessary. Our compression scheme is able to achieve good PSNR values at low bit rates
(c and d). In (f) we further downsample the average field to a resolution of 64x64x64, by decompressing
only the wavelet subbands up to that resolution, to achieve a 2000x compression ratio, while showing that
it is still able to meaningfully reconstruct the data. Note that this is only possible through the combination
of zfp compressionand wavelet downsampling. At this ratio, zfp alone in fixed accuracy mode reports a
PSNR of 27.3 dB, while compression using wavelet alone (by keeping only the lowest-resolution subband)
reports a PSNR of 33.5 dB, neither of which produces a rendering of reasonable quality.

Scaling I/O and in-situ analysis with
reduced-resolution and compressed data

We performed several experiments to demonstrate the scalability of our data reduction techniques
on supercomputers, as well as the feasibility of using such data for scientific analysis. Our
contributions are:

* Implemented a distributed prototype for separated compression of the DC coefficients and the
higher-order coefficients produced by the zfp transform, and demonstrated that at high core
counts, the cost of compression is negligible compared to the communication and I/O costs.

* Made aggregation of coarse-resolution data scalable to up to 32K processes, with two
optimization techniques: localized aggregation and domain partitioning, both of which
constraint the communication to local regions of the network, which is key to scalability.

 Establish a direct link between HZ order (used by IDX) and the ordering imposed by traditional
multi-level wavelet transforms. This means that the wavelet-based hierarchy can leverage our

infrastructures built for scalable I/O of IDX files.

» Showed that good results can be obtained for common topological data analysis techniques
performed on data subsampled up to 4x in each dimension, and that the saving in time far
outweight the loss of accuracy in analysis results.

0.45 0414 51255122512 @ File write 0.18 512x512x512 @ File write
0.4 40368 512 processes @ Aggregation 0.16 4 %% S2processes Aggregation
0.35 0L B Compression 0.14 B Comprassion
03 F0a2
§ g
§ 0.25 5 . § 0.1 o087
2] . 2 | 0074 g.075
£ 02 0167 051 go'm
= 0.15 a2 = 0.06 0047
0.104 0.083
0.1 0.04 4 0026 50z
- 0021
0.05 0.02 4 0,019 0.013 0,047
0 4 L]
o"\;‘;";b"'"b""*:"‘b"’ﬂ"g"";" o'*,?:"',;b"'ﬂa;"é"h'”o;"»i"
O ,;?:ﬁ-» o e W ATy ”mqﬁ’)‘?x
Bit rate (63 :oeﬁlchnls+ averasei] Bit rate (63 coefficients + mnﬂsl
(a) Mira, magnetic, 512 MB (b) Shaheen, magnetic, 512 MB
25 &
1024x1024x 1024 @ File write 0513 1024 x 1024 x 1024 B File write
2 Jrose W96 processes gy Aparegation 0.5 20968 procasies | Aggregation
—- B Compression —_ @ Compression
3 gos
sl 1 8 0.293
g
1127 0.3
-§= N -E- 0.243
1 0791 E 0.207
E S0z 75 0,164

> e O R T T
& B A A f»i'oi"a"af-i* o ";’s;a;a;u,:s;s
PEC U S 2 A & Q-.gaexf; o »1 &6 T W 9 q,p 0.;&
Bit rate (63 coefficients + average) Bit rate (63 l:oeFﬂl:Ients+ average}
(c) Mira, miranda, 4 GB (d) Shaheen, miranda, 4 GB
5 i - -
s Juso 2048 « 2048 x 2048 B File write 05 2048 x 2008 w2008 M File write
'4 32766 processes B Aggregation Dls & 32768 processes @ Aggregation
] = @ Compression
53_5] 3.467 E Compression @M | 0633 06s
£ 3 £05
£25 1 %05 - .
= 2.054 =
£ 2] 1697 £04 1
=15 4 13 F o3 0238 0.257
14 9887 o con 0.2 4 0148 Q157 Dt
] D527 p.az4 4
05 osz 0.1
0 A 0

45’ o '9’ '5" & & 6'5’ AU & 4?' '5" 2 a"' 4?' P -‘"
o PP R AN &
Q Q- Q} FoL Q:p!b

Bit rate (coefficients + average) Bit rate [l:DEfﬁclems + avelage]

(e) Mira, sine, 32 GB (f) Shaheen, sine, 32 GB

Figure 7. Weak scaling experiments with compression at different bit rates. Bit rate for the detail field
varies from 0.125 to 16 and from 8 to 32 for the average field (32 menas uncompressed). Two levels of
wavelet transform are applied to the average field prior to compression. At higher process counts, the cost
of compression is negligible thanks to compression exhibiting a perfect weak scaling behavior compared to
aggregation and I/0. Compression time is more dominant on Mira compared to Shaheen, likely due to a
computationally weaker core. At core counts 512, 4096 and 32768, we observe best-case I/O speedups of 4x,
24x and 34x respectively on Mira and 9x, 8x and 6x respectively on Shaheen.

8 <Uniform aggregation (baseline) 35 <Uniform aggregation (baseline)
7 A 30 A
6 | Blocalized aggregation Blocalized aggregation
g g%
§ 5 gLoca‘ILIzed. aggregation +d in §20 *Loca}i;ec{ aggregatiol
Za partitioning 3 partitioning
Z —15 -
[} 1]
E£34 & A E
Fo] =10 A— A
1 4 5
MIRA SHAHEEN
0 0
8192 32768 8192 32768

16384 16384
Number of processes Number of processes

Figure 8. Efficacy of localized aggregation and domain partitioning. Per-process resolution is 32x32x32, 16
variables, using doubles. In domain partitioning, number of partition is 1 (8192), 2 (16384) and 4(32768).
We compare our baseline aggregation scheme that uses uniform distribution of aggregators, with a second
implementation that uses localized aggregation alone, and a third one that uses both localized aggregation
and domain partitioning. It can be seen that the domain partitioning is necessary on both machines to get
scalable performance. Localized aggregation brought no improvement on Shaheen II, as opposed to a 20%
improvement on Mira. This can be attributed to the differences in network topologies of the two machines.

0 32|8 B4|2 [40(1ej42 0 32|8 B4 36]|10138
33 35 41 43 48 50 52 54
4 |36 38|5 |4 46 4133 B5|6 |37 39
37 139 145 a7 49 51 53 55
48 50 56 58 40 42 114 46
49 51 57 59 56 58 6@ 62
6 |52]1354]7 |6@|15)62 5 j1jiza3|7 @sisjaz
53 55 161 63 57 59 161 63
(a) Kdtree (b) Kdtree de- (c) Quadtree in- (d) Quadtree de-
indexing composition dexing composition
/‘ii?%ﬂii‘%l
= Z =9
ZyXxXzy zyxéiﬂtr;(dezlfizyx
zlal TTTTTTTTTT Ielifefe[e[e]e[e]e]
.] ZyxXzyXx XZYyX
XZYXZYXYZYXZYXZYXZYyX2Z ZIaIll]IIIIIIIlellleleleleH]
Hz[elele[elefelefilal T [[[T T [T 11 o]
............................... XZYX
level 14 (21-7) HzIBI@IBI@I@I@IlI@I@IaI | \ 1 | [] | \ \b\

(a) Hz indexing by identifying
the position j of the least signif-
icant one bit in Z, and swapping
the two sides to obtain Hz.] =
n — jis the Hz level

Figure 9. Correspondence between HZ indexing and wavelet’s subband decomposition (top), and how to
kdtree-style (left) and quadtree-style (right) variants.

compute the indices (bottom), for both

(b) Indexing for octree-style
wavelets. The first non-zero
3-bit group is mapped through a
function and the two sides are
swapped.

(e) sampling rate 16 (32%)

Dab\-
O, -
. Q'Bi;ﬁ-_.;_

.
E
ﬂ_geﬁf

(f) Full resolution (512%) (g) sampling rate 2 (256*) (h) sampling rate 4 (128%) (i) sampling rate 8 (64*) (j) sampling rate 16 (32%)

Figure 10. Parallel merge tree (PMT) analysis algorithm ran on 512x512x512xfloat32 data set, on Tesla
cluster (512 Xeon X5550 2.67GHz Processors) at the SCI institute of the University of Utah. We fixed the
core count to 64, while changing the sampling rate from 1 (512x512x512) to 16 (32x32x32). PMT generates
a merge tree, which is then used to perform segmentation. We observe that visually there is almost no loss
in feature when down sampling from 512x512x512 to 128x128x128, after that we start to see a discernible
loss of features. For example, at sampling rate of 8 and 16 we can see fewer features at top left corner of the
dataset (d and e). We also observe a significant improvement (close to a factor of 8) in execution time as we
go from full resolution (512x512x512) to 1/8th resolution (256x256x256). The rate of improvement slows
down with higher sampling rate, mainly because total time starts to get dominated by the communication
phase.

Number of features . Execution time (seconds)
500 - 16 -
T ——— —
400 - e - 12 i
300 - = N\
8 +—\
200 -
4 - \\
100 \.
0 . : 0 e .
1 2 4 B 16 1 2 4 8 16
Sampling rate Sampling rate

Figure 11. Actual number of features at all sampling rates. It can be seen that we incur a total loss of 140
features (460 at full data vs. 320 at sampling rate of 16) while going down in execution time from 11.5
seconds to 0.27 seconds. Overall, we observe that the time to completion for the PMT algorithm reduces
significantly with sub-sampling, hence, also making it possible for them to be run in in-situ mode. Similar to

PMT, we also observe small, describable differences among the iso-surface extracted at different sampling
rates.

Resolution-precision tradeoffs for data
analytics

Mixed-resolution and mixed-precision bit streaming
in the wavelet domain

An alternative approach to combining zfp and IDX is the wavelet transform. Instead of IDX
subsampling, the wavelet transform provides a hierarchy of resolution. Compression comes from
the fact that in practice, the wavelet transform results in very small fine-level coefficients, which
means the leading zero bits of these coefficients can be encoded more efficiently. Furthermore, the
numbers of leading zeros of neighboring coefficients on the same subband are coherent. Assuming
the wavelet coefficients are quantized to 16-bit integers, 16 wavelet subbands, and 32x32x32 block
size for the purpose of encoding the leading zeros, the overhead of encoding the number of leading
zeros is approximately 10 KB in 2D and 512 KB in 3D.

We combine this idea of encoding the number of leading zero bits for blocks of coefficients with a
progressive streaming strategy where each bit is weighted based on its position and the associated
wavelet basis function’s squared norm (referred to below as "by importance static"). More
important bits are streamed first. Comparing this scheme with traditional schemes such as "by
levels" (where wavelet coefficients are streamed from coarse to fine), or "by bit planes" (Where the
coefficients are streamed from higher-ordered to lower-ordered bit planes), our "skip leading
zeros" scheme results in much better PSNR.

We showed that our "skip leading zero" scheme also outperforms fixed-rate zfp compression in 2D,
and is competitive with zfp in 3D, in terms of compression ratio. In 2D, we showed that both zfp
and SLZ underperformed compared to JPEG2000. In the end, we decided on a hybrid scheme which
combines the strengths of zfp, SLZ and JPEG2000: compressing individual blocks of wavelet
transformed coefficients on each subband using zfp. The wavelet transform used by JPEG2000 and
SLZ is responsible for decorrelating the data, while zfp’s fast encoder can take advantage of any
correlation left among neighboring wavelet coefficients. We showed later that this scheme beats
JPEG2000 in both compression ratio and compression time, for both 2D and 3D.

Comparison of bit ordering schemes for a 2D slice Miranda density field
120

. - "

' - ¥
100} SR FUUUUN: S S .: S SOOI SO S— S SO S E % A SR S
v o "

90 ¥ e e i i
& A R AOTRUUT A BN
o 8o -
o] Y T
wn 70} T
2 e
i - .
E) » L
[SOF o ® e g MBI T R
oxr 40 ¥
% by levels
30 i .
o e by bit planes
T Y AU N =--s by importance static
R ---« progressive, fixed-rate zfp

~ skip leading zeros (ours)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of bits / 500

Figure 12. Comparisons of several bit streaming strategies for a 2D data set.

by static importance
) J - " U

67 of bits

87 of bits

Figure 13. Comparing reconstructed data visually for all the streams (by levels, by bit planes, by static
importance, fixed-rate zfp, and skip leading zeros). It can be seen that at 8% of the data size, our skip
leading zeros scheme results in near-identical data quality compared to the ground-truth.

Same size, quality comparison (Miranda, density) Same size, quality comparison [Miranda, Same size, quality comparison (Miranda, pressure)
140 140 diffusivity) 140
120 12 N 120 \
N N B
10 \ 10 % 100
0
f " E GRS .
— - i [4
b + & &0 wipes
- A -
- = 40 g . ~
20
ZFP IP2K sz ZFP 12K sLz IFP
0
9 o oF 3 Nl & o " ® * - & o i N4 N A P o
Bit rate (bits per sample) Bit rate (bits per sample) Bit rate (bits per sample)
Same size, guality comparison (Miranda, Same size, guality comparison (Miranda, Same size, quality comparison (Magnetic
140 Velocityz) 140 Velocityx) 14¢ reconnection)
12 - 120 120
N\ N N
10 100 100
x B0 e . §°
L A LA - -
£ B -’ —— - H .
60 ?ﬁ Lz = — ~—~—— 60 .
¥ 20 - -
4 3 - 40 -
2K —-517 -=-ZFP ZFP ~—JIK =S —=IFP
o e K A K @ o o s o o R oF R Ao e K &

o " - b . v e v v
Bit rate (bits per sample) Bit rate (bits per sample) Bit rate (bits per sample)

Same size, quality comparison (Flame, OH) Same size, quality comparison (Magnetic

Same size, quality comparison (Fred)
14 reconnection)

,
E

|
PSNR

2K —+-SL17 Fizl) ——J2K —-SLZ ZFP

" & & B o o ¥ e = i . & 3 A N o

b L ™ “w - »
o . . \ % v
Bit rate (bits per sample| Bit rate (bits per sample)

o o a
Bit rate (bits per sample)

Figure 14. We compare SLZ, ZFP and JPEG2000, a state-of-the-art 2D compression algorithm. We compress
the several 2D data sets at different bit rates, and compare the data quality in terms of PSNR (higher is
better). JPEG2000 uses sophisticated entropy encoding, thus produces better compression at low bit rates
compared to SLZ and ZFP. SLZ, on the other hand, is a relatively simple encoding scheme and thus can be
implemented easily and very likely will result in faster encoding and decoding speed.

Percentages of leading zero bits
skipped

100

80

60

40

20

0
<\

A G A A
i‘-&:\ e S

. L
o N ,.ﬁ‘ & &

WS/ mZFP

Figure 15. Percentage of leading zero bits skipped, by SLZ and ZFP. This comparison shows that SLZ is
comparable to ZFP in terms of compression efficiency, averaged over seven 3D fields of a Miranda run.

Resolution-precision tradeoffs in the wavelet domain

Fig. 1: Visualization of the diffusivity field at 0.2 bits per sample (bps) and its Laplacian field at 1.5 bps, using two of the bit streams
studied in the paper. Compared to the by bit plane stream, the by wavelet norm stream produces a better reconstruction of the original
function (left, compare white features), and a slightly worse, if not comparable, reconstruction of the Laplacian field (right).

Figure 16. Visualization of the diffusivity field at 0.2 bits per sample and its Laplacian field at 1.5 bps, using
two of the bit streams studied in the paper. Compared to the by bit plane stream, the by wavelet norm
stream produces a better reconstruction of the original funciton (left, compare white features), and a
slightly worse, if not comparable, reconstruction of the Laplacian field (right).

There currently exist two dominant strategies to reduce data sizes in analysis and visualization:
reducing the precision of the data, e.g., through compression, or reducing its resolution, e.g., by
subsampling. We explored the additional gains that could be achieved by combining both
strategies. In particular, we present a common framework that allows us to study the trade-off in
reducing precision and/or resolution in a principled manner. We represent data reduction schemes
as a progressive stream of bits, and study how various bit orderings such as by resolution, by
precision, etc. impact the resulting approximation error across a wide range of test data and
analysis tasks. Furthermore, we compute streams optimized for different tasks, to serve as lower
bounds on the achievable error. Scientilc data management systems can use our results as
guidance on how to store and stream data to make eflilcient use of the limited storage and
bandwidth in practice. Our contributions include:

* A framework that allows systematic studies of the resolution-versus-precision tradeoffs for
common data analysis and visualization tasks. The core idea is to represent various data
reduction techniques as bit streams that improve data quality in either resolution or precision
in each step. We can thus compare these techniques fairly, by comparing the corresponding
data streams.

10

* Empirical evidence that jointly optimizing resolution and precision can provide signillcant
improvements on the results of analysis tasks over adjusting either independently. We present a
diverse collection of data sets and data analysis tasks, and also show how different types of data
analysis might require substantially different data streams for optimal results.

* A greedy approach that gives estimations for lower bounds of error for various analysis tasks.
In addition, we also identify practical streams that closely approximate these bounds for each
task, using a novel concept called stream signature, which is a small matrix that captures the
essence of how a bit stream navigates the precision-versus-resolution space.

* A visualization tool that lets user interactively explore different streaming strategies and gain
insights into each.

58s
= : - T
‘P S e I
-t e el o O 395 2
Original data |Wavelet transform + blocking| | Block — packets | | Ordering packets|

Figure 17. Our data streaming model. The input is a regular grid of floating-point samples; the output is a
stream of packets. A packet consists of bits from the same bit plane, from a block of negabinary wavelet
coefficients. Different data reduction schemes generate different streams. The wavelet subbands are
separated by blue lines in the second image, with the coarsest subband at the top left corner.

We present the first empirical study to demonstrate that combining reduction in precision and
resolution can lead to a significant improvement in data quality for the same data budget, and that
different tasks might prefer different resolution-versus-precision trade-offs. For example, whereas
computing histograms requires high precision, computing derivatives benefits more from higher
resolution, and function reconstruction and isosurface extraction require a suitable mix of the two.
We also show that common reduction techniques, e.g., those based on wavelet levels and coefficient
magnitudes, do not perform well in the presence of entropy compression.

0.40

00101 - —— by bit plane 0,051 —— by hit plane 0.5 —— by bit plane] —— b hit plane
| by level by level by level 201 by level
0.008] 4 —— by magnitude 0.04+ —— by magnitude 030151 by magnitude —— by magnitude
N by wavelet norm m by wavelet norm m 8257 (| by wavelet norm m 151 by wavelat norm
| rmse-optimized 00,031 | rmse-optimized E 0.20 !‘| rmse-pptimized 2} L rmse-optimized
rmse signature E 0.024 \ —— ymse slgnature E 104] rmse signature

rmse signature 7 o15{
4

o1 |

5] "= ST

0.05 J—T:____,-;LT——_;__T:___»— —_
0.00 o! —_—
00 0.5 10 1.5 20 25 30 0.0 05 1.0 15 20 25 3.0 0.0 05 1.0 L5 20 25 3.0
Bits per sample Bits per sample Bits per sample Bits per sample
(a) baoiler [2.351e—9,0.138] (b) diffusivity [—0.848,0.711] (c) plasma [0.024, 14.67] (d) kingsnake [63,185]

Figure 18. Root-mean-square error (RMSE) of reconstructed functions for different streams and data sets;
lower RMSE is better. The streams are truncated at both ends to highlight the differences, without omitting
important information. The numbers in bracets are the ranges of original data samples.

11

&b ®

(a) by level (8,) (b) by bit plane (Spy) (c) by wavelet norm (Syay) (d) by magnitude (8 pag) (e) by signature (8yg) (f) reference

Figure 19. Volume rendering of a 64x64x64 region of plasma data set at 0.2 bps. Level-based stream
captures the background (purple-blue) well, whereas bit-plane-based stream captures the fine details better.
Wavelet-norm-based stream combines the strength of both. Signature-based stream, however, produces the
most accurate rendering in overall.

T
=

() Semse-sig () Siap-sig (C) Siap-opt (d) Shist-sig

Figure 20. (Top) bit distribution across subbands at 1.6 bps for signature-based streams, and (bottom)
corresponding stream signatures. Subbands are separated by red lines. The color of each pixel indicates the
bit plane at which the corresponding coefficient currently is. Brighter greens corresponds to more
precision. Both the top and the bottom rows show that histogram signature allocates more bits to the lower
subbands, while Laplacian signature prefers to stream bits from higher subbands. RMSE signature is
somewhere in the middle.

[Stroam sidr) |
(isogram =

Bar chart of block stream
(taller= finer resolution level) | mmp
(greener = lower-ordered bit)

Figure 21. Our bit stream visualization tool.

Compared to data-independent streams, signature-based streams often perform better because they
can adapt to the data. They are also amenable for implementation, since a signature is negligibly
small and thus can be precomputed and stored during preprocessing. Here, we consider signature-

12

bases streams to be the best possible stream that could be realized. Improvements on these streams
in the resolution-versus-precision space are likely possible, but they are unlikely to be significant.
Given these assumptions and the fact that signature-based streams in most cases provides very
similar results to bit-plane-based or wavelet-norm-based streams, the additional effort (and
potential overheads) for task-dependent bit orderings is unlikely to be beneficial.

This leaves a significant gap between the best data-independent streams and the optimal stream.
Our experiments suggest that the majority of these differences can be attributed to spatial
adaptivity. The prototypical example is isosurface computation, where the optimal streams can skip
all regions that do not affect any portion of the surface. It may be worthwhile in future work to
investigate solutions to spatial adaptivity to significantly improve the performance of data-
independent streams.

Resolution-precision tradeoffs for IDX-based
hierarchies

For IDX-based multiresolution hierarchies (as opposed to wavelets), we proposed a linear
programming algorithm to determine the best resolution and precision level for each spatial block,
given a data budget. Using this algorithm, we computed and compared different query paths (in the
resolution/precision 2D space) for different quantities of interest.

We hypothesized that different queries will result in very different refinement patterns.
Surprisingly, many queries (such as RMSE and segmentation) result in almost identical data
streams suggesting that there are only few classes of streams. This result may be applicable when
designing a static stream order for local data (such as in data blocking) where depending on the
query class a particular order would be selected.

In general, our findings here for IDX-based hierarchies agree with our results for the wavelet-based
hierarchies explored in our IEEE TVCG paper.

13

16

0.088 0.062 0.031 0.018 3.4e-05
15 Eu.oss 0.062 0.031 0.0180.00018
mu.osa 0.062 0.032 0.018 0.00034
mu.oss 0.062 0.032 0.0180.00063
e 0.088 0.062 0.032 0.018 0.0011
u.nag 0.062 0.032 0.019 0.0021 024
0.19 mn.osa 0.062 0.033 0.02 0.0037
OREN - "F 0.087 0.062 0.033 0.021 0.0063
0.19 mo.ose 0.063 0.034 0.024 0.011
0.19 m 0.09 0.068 0.041 0.033 0.023

0.32
14

13
12
1"

Precision (# bits) 0

0.16

0.08
5 QU i 011 0.068 0.065 0.062 0.062 0.062

m 012 012 012 0.12 0.12
mmz 042 042 042 042

10 1" 12 13 14 15 16 17 18
Resolution (level)

Figure 22. Error matrix that on x-axis has the resolution levels, on y-axis precision levels, and the values
inside its cells are the individual errors at that particular resolution/precision with respect to the full
resolution/precision dataset. We tile the dataset and vary resolution within each tile independently. For
each tile we compute the error matrix and then construct an integer linear program (ILP) to find the
optimal bit distribution given a bit budget.

Improvements in wavelet transform and
wavelet compression

Tile-based wavelet transform

We implemented tile-based wavelet transform, where the transform happens one tile at a time,
instead of a big transform done on the whole volume. The goal is to reduce the potentially huge
memory requirement when processing very big volumes which might not even fit in main memory.
The tiles are of fixed size (e.g. 32x32x32 in 3D), but each tile is padded by one voxel in each
dimension to make sure the transform computes the same values as the global transform does. The
new transform is mostly the same as before (we use lifting), but special treatment is required at the
voxels at cell boundaries so that we do not double-count the values in these voxels.

We have tested the algorithm it on a volume of size 384x384x256xfloat64, and observed not only a
reduction in memory usage but also a reduction in transform time: the new approach takes 700m:s,
while the traditional approach takes 1900ms to transform this volume. The faster speed is likely due
to the better use of the cache (a tile can usually fit in L2 cache).

Finally, the implementation uses dynamically scheduled tasks (each tile corresponds to a task) that
can easily scale (with minimal code changes) from desktop computers, where each task maps to a
thread, to supercomputers, where tasks can be scheduled to run remotely.

14

Figure 23. Visualizing our tile-based transform. The bright red pixel marks the currently selected pixel on
the second level, while the dark red pixels each corresponds to the selected pixel on the next coarser level.
Here we show only the LL subband for each level; in 2D there are three more subbands, namely LH, HL and
HH. On each level, a tile depends on a few neighboring tiles on the previous, finer level. This number

depends on the location of the tile as well as on the subband. A regular tile on subband 0 will have 64
dependencies in 3D and 16 in 2D.

Distributed wavelet transform

We implemented a distributed wavelet transform (for CDF5/3 wavelet), meant for building a

resolution hierarchy out of the DC coefficients. We showed that the algorithm scales perfectly to
64K processes on the Mira supercomputer.

=)
=)
&=
e
g

Mmlevel 0 [Hlevell ([@level2 [Clevel3 E=iLevel 0 EiLevel 1 Silevel 2 ilevel 3
Clevel 4 Clevel 5 —Level 0 =-=Level 5 ! {CLevel 4 Clevel 5 —Level 0 --Level 5 =

Time (seconds)
o
o
]

e
o
=~
Time (seconds)

0.01

K2 4K 8K 16K 3K 6K WA a s e s

Number of processes Number of processes
Figure 24. Weak scaling results of wavelet computation on Mira and Shaheen. Per-process load:
64x64x64xfloat32 (1 MB). Total amount of data varies from 1 GB at 1024 processes (512x512x512) to 64 GB
at 65536 processes (4096x2048x2048). Number of wavelet levels in each dimension varies from 1 to 6. At
each core count, the time taken to compute wavelet coefficients becomes larger with increasing levels,
however, with a diminishing rate of growth. This is because total amount of stencil data needed by any
process decreases inversely with the square of the level and the computation involved decreases inversely
to the cube of the level. Also, Mira exhibits perfect scaling as opposed to Shaheen where total time taken to

compute a wavelet level increases with core counts. We note that the parallel wavelet transform is rougly
150 times faster that actual I/O on both Mira and Shaheen.

15

Linear-lifting based extrapolation at the boundary

In the lifting scheme for the wavelet transform, the w-lift phase predicts the values at odd-indexed
vertices. When the length of the (1D) input signal is even, the wavelet coefficient at the last vertex
cannot be predicted correctly since an adjacent neighbor is missing. Common solutions to this
limitation include assuming the adjacent neighbor to be zero, or mirroring the function by
duplicating the penultimate value. However, both these approaches result in functions that are
discontinuous or nonsmooth at the boundary, exaggerating the magnitude of the last wavelet
coefficient, which result in unnecessary refinement in and significantly (and needlessly) inflate the
memory footprint.

We introduced linear-lifting approach to extend the input function at the boundary. In particular,
in the w-lift step if the function length is even, we extrapolate the data linearly at the boundary, to
maintain smoothness across the boundary, because the last wavelet coefficient (in place of b)
becomes zero. Our linear-lifting approach intersperses the linear extrapolation steps (introducing
at most one extrapolated value at each step) with the lifting steps across hierarchy and across
spatial dimensions.

(a) Zero padding (b) Linear extrapolation (c) Linear-lifting
(7997, 9918, 4664) (6263, 34742, 19007) (6263, 6342, 2965)

Figure 25. Comparison of different extrapolation modes for a function defined on [256x1024] domain to
[1025%x1025] (denoted by marks on the horizontal line). The data is colored with respect to the hierarchy
levels of cells. Zero padding introduces artificial discontinuities at the boundary of the input domain (notice
the red streak of finest-level cells), resulting in unnecessary refinement. Linear extrapolation maintains
smoothness near the boundary, but may create discontinuities farther out from the original domain. Linear-
lifting ensures smoothness in the entire domain, preserves the wavelet coefficients inside the original
domain, and suppresses their values in the extrapolated region. The associated metrics are number of (cells,
leaf nodes, internal nodes).

Wavelet compression using zfp

We compared the performance of zfp and EBCOT (the JPEG2000 wavelet encoder) in both speed and
compression ratio. We carefully augmented the source code of OpenJPEG to measure only the
relevant pieces of code for its encoder/decoder, to ensure as much as possible an apple-to-apple
comparison with zfp.

The results show that zfp is about 10x to 20x faster than EBCOT for both encoding and decoding
wavelet coefficients. Furthermore, the compressed data size is about 10% smaller with zfp. These
results help justify our decision for using zfp as the compressor of choice for our file format.

-- Velocityz (384 x 384 x floatsd)
JP2K: 131,529 | 54 | 21
ZFP : 188,562 | & | 5

== Diffusivity (384 x 384 x floated)

-- Velocityz (384 x 384 x 256 x floaté4)
IP2K: 24,188,387 | 18,787 | 9,756
ZFP : 17,442,531 | 735 | 525

-- Diffusivity (384 x 384 x 256 x floatéd)

IP2K: 132,622 | 32 | 19 JP2K: 14,558,35¢ | 7,879 | 6,973
ZFP : 114,782 | 7|] IZFP : 15,236,876 | 768 | 429
-- Density (384 x 384 x floated) -- Density (384 x 384 x 256 x floatéd)
IP2K: 116,727 | 29 | 20 IP2K: 18,324,131 | 9,368 | 8,149
ZFP 97,481 | 6 | 5 ZFP : 16,848,121 | 685 | 499

== Pressure (384 x 384 x floated)
IP2K: 149,048 | 3e |
ZFP: 125,522 | 12 |

e
6

-=- Viscosity (384 x 3B4 x floats4)

-- Pressure (384 x 384 X 256 x floated)
JP2K: 19,989,981 | 9,917 | 9,148
ZFP: 16,834,358 | 727 | 485

-- Viscosity (384 x 384 x 256 x floaté4d)

IP2K: 132,486 | 27 | 11 IP2K: 14,544,463 | 7,690 | 6,886
ZFP 114,572 | 6 | 5 ZFP : 15,226,242 | 649 | 414
-- Flame (256 x 256 x floaté4) -- Flame (512 x 256 x 256 x float64)
IP2K: 18,567 | 13 | 10 JP2K: 16,943,701 | 8,329 | 7,881
ZFP 19,243 | 5| 2 ZFP : 14,924,359 | 577 | 416

== Turbulence (256 x 256 x float32)
IP2K: 58,364 | 12 | 9
ZFP : 53,414 | 3| 2

== Turbulence (256 x 256 x 256 x float3z2)
JP2K: 25,633,403 | 9,393 | 8,772
IFP : 22,368,699 | 442 | 4@5

-- Magnetic reconnection (512 x 512 x float -- Magnetic reconnection (512 x 512 ¥ 512 x float32)
IP2K: 310,117 | 60 | a6 IP2K: 252,801,471 | 77,294 | 67,874

ZFP : 278,220 | 11 | 1@ ZFP : 217,135,898 | 2,614 | 2,949

-- NEURONS (512 x 512 x uintilé) -- MEURONS (512 x 512 x 512 x UIntls)

IP2K: 360,350 | 1e4 | 63 JP2K: 176,348,188 | 62,718 | 55,873

ZFP 339,052 | 12 | 11 ZFP : 142,812,486 | 2,168 | 2,281

Figure 26. zfp versus JPEG2000 as wavelet encoders in (left) 2D and (right) 3D. The first column is the size of
the compressed data, the column is the encoding time, and the third column is the decoding time.

Fast zfp decoding with AVX2 instructions

We made the serial bit transposer of zfp faster with the use of AVX2 instructions. This results in 2x
improvement in speed for the decoder. We later learned of another approach to transposing the bit
matrix, using recursion, which is even faster. We are investigating the potential use of SIMD
instructions to improve the recursive bit transposer.

17

Pressure Viscosity

15 1

I Ll

= €08

0 o

g 1]

a © 06

v CD

E . I I E o I

L] L 0.2 I

= p=]

o o
4 8 16 32 4 8 16 32
Number of bit planes Number of bit planes

B with avx2 mzfp B with avx2 mzfp

Figure 27. Timing comparison of serial zfp decoder vs AVX2 variant.

File format supporting local queries that
improve resolution and/or data precision

Compact in-memory adaptive-resolution data
structure

We have devised a compact in-memory representation for adaptive-resolution and adaptive-
precision data. It consists of a grid of blocks, where the blocks can have different resolutions. At the
finest resolution, every block will occupy a fixed-size region (e.g. 64x64x64 samples). New samples
are added in the same way that a wavelet hierarchy works: an "odd" sample will be inserted
between two "even" samples, doubling the size of the grid in each dimension.

To accommodate adaptive precision, we assume that samples within a block share the same
precision, but across blocks the precision can vary. As a result, we store per-block samples
compressed using zfp in fixed precision mode. We keep pointers to all compressed blocks, and
allow a block to be totally empty, for example, to represent empty space in the volume.

We have implemented a visualization prototype for this structure in 2D, as shown below.

18

@ e o []
Figure 28. Four neighboring blocks are shown, of size 4x4 (top-left), 8x8 (top-right), 16x8 (bottom-left), and
4x2 (bottom-right) respectively. Note that we only store blue samples in green regions; the pink, purple, and
orange regions are "bridges" between blocks, and are reconstructed on the fly as needed. Red samples are
not stored, they are interpolated from blue ones as needed. Samples within a block (and within a colored
region) always form a regular grid.

Compared to a fully adaptive grid, our block-based data structure has limited spatial adaptivity. If a
block is too big, we will waste memory when representing fine-scale features. On the other hand, a
too-small block size will be less efficient in representing large but coarse structures, as well as limit
our freedom in resolution reduction. We choose 64x64x64 as the ideal block size.

File format schematic

To allow multi-resolution data reading, we transform the original data using linear B-spline
wavelets. This transform partition the domain into a set of subbands, each corresponds to a
resolution level. We further partition each subband into a set of non-overlapping, fixed-size tiles.
For example, each tile can be of size 32 x 32 x32. We compress each tile independently using zfp,
with a modification to allow interleaving of compressed bits across zfp blocks (which are of size 4 x
4 x 4). Higher-order bits are compressed before lower-order ones. Compressed bits are stored in
chunks of the same size. For example, a chunk can be 4KB in size. The chunks are our smallest unit
of I/O, to amortize disk access overheads. In this way, each tile is compressed into potentially
several chunks. The following figure demonstrates our compression and chunking scheme.

19

Bitplanes: 3 -2 -1 -0

One tile = 4 zfp blocks e

- THEO 0@
-7 . D Compress

olt)als| | l-t-4--"""7

23|62

819|213

10 11415 8-bit chunks [eeeee1ei|...[ee111601]....|11110000|

Chunks-o Chunks-2 Chunks-4

Two levels of transform

Figure 29. The forming of data chunks.

The chunks are further grouped into files. Our research has shown that having either too few or too
many files result in scaling issues on today supercomputers. Therefore we let the user choose the
number of tiles to be grouped together in a file. Tiles are first grouped into groups of seven, across
all subbands, the rationale being the seven tiles all cover the same spatial region when transformed
from the wavelet back to the original domain. In 2D, tiles are processes in groups of three instead of
seven (see the figure below, noting that tiles 4, 8, and 12 form a group, as do tiles 5, 9, and 13, etc).

Two levels of transform Tiles Chunks 8 (2x4) tiles per file, but capped at 4
; -y [0|1]2 i
B mEa) 5 ke o OSMIETISIIES
2 (3|67 Tile1|--> |3 ‘
— = Tile 2 Interleave chunks every four tiles
12,13 = (eight in 3D)
14 15

6 (2x3) tiles per file

e 1 [o oS eI 7B
Interleave chunks every three tiles
(seven in 3D)

Figure 30. Grouping of chunks into files.

A file will consist of all the chunks belonging to K groups of 7 tiles. An exception is for the coarsest
subband (tiles 0, 1, 2 and 3 in the figure), a tile group consists of 8 tiles (4 in 2D) instead of 7 tiles (3
in 2D). If K x 7 is more than N, the total number of tiles in the coarsest subband, the first file will
only contain N tiles. Within a tile group, chunks are interleaved so that higher-order chunks (in
precision) are stored before lower-order ones (see the figure above).

Beside the chunks, each file contains a header with some metadata about the chunks. Each header
corresponds to a tile group, and is 20 bytes in size. The 20 bytes consists of several parts: two 16-bit
floating-point numbers, storing the minimum and maximum values of all samples in the tile
groups, a 37-bit pointer, pointing to the chunk-aligned address of the first chunk in the tile group,
an 11-bit integer storing the maximum exponent among all wavelet coefficients in the tile group,
and eight 10-bit values, each specifies the number of chunks for a tile in the tile group.

20

T~ = "~ =
File: |.... Header; Headeriyy ... |.... |9 [iB[1a[10fi8]15]11 16 [i8]21]178]:8]

Tiles are arranged

in groups of three —— —
(seven in 3D) Tie 5 B _:
-

- -
- ==
- - - -

Metadata (pointers) Data (chunks)
,» 16 + 16 min-max bits

AHeaderis 37 pointer bits
20 bytes 11 max exponent bits

“~. 80(8x10) occupancy bits

Figure 31. File headers.

We have implemented a prototype that converts raw binary volumes into our file format. Once
fully functional, our proposed file format has the following capabilities:

Lossy compression should be comparable to zfp: the overheads in the form of file headers
should be minimal.

The user can specify an error tolerance during compression and decompression. This capability
is inherited from zfp.

Reading of low-resolution data without touching the high-resolution bits is achieved by storing
the coarser-subband tiles before finer-subband ones.

Reading of low-precision data without touching the high-precision bits is achieved by reading
data in chunks instead of tiles (which contain all precision bits).

Incremental reading in any combination of precision and resolution is achieved by allowing
random access to the chunks.

Random access at block level, supporting region-of-interest reading is supported with pointers
to the tile groups.

Reading more important data blocks before less important ones is achieved through estimating
the energy contribution of a tile group using the stored maximum exponent in the header.

Skipping of irrelevant data blocks (e.g., during isocontour extraction) is achieved by using the
stored minimum and maximum values in the tile group headers. Furthermore, since the tiles
form a spatial hierarchy, this "empty space skipping" capability works in a hierarchial manner,
allowing to scale to very large domains.

Binomial coding for compression of particle
positions

We implemented for binomial coding and tested it on a few particle data sets. A kd-tree is built on
the particles where the splitting plane is always the midpoint of a node’s extent. We encode the
number of particles in the left children in compressed form, taking advantage of the fact that this

21

number follows the binomial distribution with regard to the number of particles in the parent node
(if the particles are assumed to be uniformly distributed). The binomial distribution is
approximated with a Gaussian, and we use an arithmetic coder for compression. With this method
we could compress 14% better than the state-of-the-art methods which do not make use of the
binomial distribution.

Lastly, we rendered particles at reduced levels of details (reduced precision in positions), and tried
to match the rendering results with ones where the particles are rendered at full precision in their
positions. We have found that in many cases, a saving of approximately 7x in data size is possible
without compromising the rendering quality.

Table 1. Our implementation most of the time can achieve 12% to 14% saving compared to the state of the
art. One exception is the cosmology data set, where the distribution of n is far from Binomial.

data sets state-of-the-art (bytes) ours (bytes)

alfredo 5,579 4,834

nanosphere 244,311 211,461

priya 1,730,378 1,538,745

vis contest 576,138 492,427

cosmo 32,277,741 37,784,143

e | o ° > e
=1 O e Bl > EES
[] ® | e :El_ o e s 4: 15 0004620 010001

| ® gl T h 0 n 3,17 0.001087 0100001

|] J 2,18 0000181 01000001
® o ¢ sl | AP 1,19 0.000019 010000001
; - : v " - 0,20 0.000001 010000000

1. We partition the space using a 2. After reaching one particle per 2. In each tree node, we store 4. Given n particles in a parent node, if we assume 5. Compression is achieved by

kd-tree that splits in the middle leaf node, each leaf node can be the number of particles in the particles are uniformly distributed in space, then the assigning shorter codes to more
divided further to reach 3 desired spatial region spanned by the number of particles in its {left) child node follows the frequent symbols, vis eg.,
accuracy node binomial distribution (1) x 0.5" Huffman or arithmetic coding

Figure 32. Particle compression pipeline.

Nanosphere, original Nanosphere, 6.5x compressed

Figure 33. Rendering of compressed particles.

Binomial coding for Lorenzo predicted residuals

We have been investigating the use of binomial coding to compress residuals of the Lorenzo

22

predictor which is used by the FPZIP compression library. The idea was that if a binary tree based
on the sum operator (instead of max) is build on the residuals, according to the Central Limit
Theorem, the values on upper levels will tend to a Gaussian, which can be approximated well with
a binomial distribution. We learned soon after that this idea overlooked the fact that the
distribution of a child needs to be conditioned on the value of its parent. In the case that the child
follows the Exponential distribution, this conditional distribution turns out to be uniform, which
cannot be easily exploited in coding. We then shifted to investigating using the max operator and
encoding the (left-right) differences, conditioned on the max.

Assuming the unsigned residuals follow the exponential distribution with parameter A (which can
be approximated using the Maximum Likelihood estimator), and X and Y are i.i.d random variables
~Exponential(d), then the pdf of (n=X-Y|Om=max00(X,Y)) is (A expO(A|n|))/(2(expl(Am)-1)). More
general results have also been derived, where X and Y are the max and sum of more than one
random variables.

However, the distribution of Lorenzo residuals can be far from an exponential distribution, leading
to the analytically-computed distribution being very far from the actual distribution for the (left-
right) differences, conditioned on the max. We are experimenting with other, more general
distributions such as Gamma and Lomax. Another issue with this approach is that in order for the
statistics to work, residuals must be independent, which is not the case in practice. We have
observed that transforming the residuals using linear wavelets help reduce the spatial correlation
significantly.

I

Figure 34. Distribution of (left child - right child), conditioned on the max, on each level (with shuffling),
using 10th most frequent parent (Diffusivity).

PoE § = £ 3 ¥ & ¥ &
- i
g E s
3
L &
“ ¥
%

23

0.200 -

0.175 4

0.150 A

0.125 A

0.100 4

0.075 4

0.050 A

0.025 A

8 6 -4 -2 0 2 2 6 8
Figure 35. Distributions of (left-right), conditioned on the max (=8), on the leaf level. Orange: analytical
distribution, Blue: actual distribution.

—— actual data
—— gamma
—— exponential

0.4

0.3 A

0.2 4

0.1 4

0.0

T y T T T T T T
0 1000 2000 3000 4000 5000 6000 7000

Figure 36. Approximating distribution of Lorenzo residuals using Gamma and Exponential distrbutions.

References

[1] S. Kumar, D. Hoang, S. Petruzza, V. Pascucci, J. Edwards. Reducing network congestion and
synchronization overhead during aggregation of hierarchical data. 24th IEEE International
Conference on High Performance Computing, Data, and Analytics (HiPC 2018).

[2] (Poster) S. Kumar, S. Petruzza, D. Hoang, V. Pascucci. Accelerating In-situ Feature Extraction of
Large-Scale Combustion simulation with Subsampling. The 26th International Symposium on High
Performance Parallel and Distributed Computing (HPDC 2017).

[3] D. Hoang, P. Klacansky, H. Bhatia, P.T. Bremer, P. Lindstrom, V. Pascucci. A Study of the Trade-off
Between Reducing Precision and Reducing Resolution for Data Analysis and Visualization. IEEE
Transaction on Visualization and Computer Graphics, January 2019.

24

	LDRD Report - Variable precision computing
	Combining IDX and zfp
	Scaling I/O and in-situ analysis with reduced-resolution and compressed data
	Resolution-precision tradeoffs for data analytics
	Mixed-resolution and mixed-precision bit streaming in the wavelet domain
	Resolution-precision tradeoffs in the wavelet domain
	Resolution-precision tradeoffs for IDX-based hierarchies

	Improvements in wavelet transform and wavelet compression
	Tile-based wavelet transform
	Distributed wavelet transform
	Linear-lifting based extrapolation at the boundary
	Wavelet compression using zfp
	Fast zfp decoding with AVX2 instructions

	File format supporting local queries that improve resolution and/or data precision
	Compact in-memory adaptive-resolution data structure
	File format schematic

	Binomial coding for compression of particle positions
	Binomial coding for Lorenzo predicted residuals

	References

