
CS6640 – Project 2
Assigned Sept. 22, 2010

Due Oct. 6 (Just before midnight)
Instructor: Guido Gerig
TA: Miaomiao Zhang

Goals

The purpose of this assignment is to get familiar with implementatin and application of spatial filters for
image smoothing, edge detection and template matching.

1 Image Smoothing

Implement a spatial filtering schemes for quadratic, symmetric filters. For simplification, do not filter the
boundary as discussed in the course. Two schemes have to be implemented, one for 2D k*k-size kernels and
one for separable filtering with 1D kernels of size k in horizontal and vertical directions.

1.1 k*k smoothing kernel with equal weights

Implement a 2D scheme for 2D square filters of size k*k, and design a filter with equal weights (remember
to normalize to 1). Use a k*k smoothing kernel (3*3, 5*5) to reduce noise and smooth input image. Apply
a 3*3 and 5*5 smoothing to your favorite black and white images.

1.2 Separable Filtering Scheme

Implement a filtering scheme for separable filters (see course slides) where 1D filtering in horizontal followed
by vertical is applied. Use this separable scheme to achieve the same effect of smoothing filtering (3*3,
5*5) by applying 1D smoothing filters with 3 and 5 pixel width. Again, normalization of the filter masks is
required.

1.3 Separable Gaussian Filter

Use the separable filtering scheme for 2D Gaussian filters. We will the standard equation of a 1D Gaussian
filter G(x, σ) = 1√

(2π∗σ2)
exp (− 1

2 (x−µσ)2) to construct 1D filters with weights that fall off with distance from

the center. By choosing a specific filter of width σ pixels, you can estimate mask weights for a symmetric
filter in the range of ±3σ. For example, a filter of width σ = 2 extends 6 pixels to both sides from the center
and thus forms a symmetric mask of size (2*6+1) pixels. Please note that the 1D filter weights need to be
normalized to sum up to 1. This 1-D filter can then be applied in horizontal followed by vertical direction,
which results in an efficient 2D filtering scheme.

Apply the Gaussian filtering to the same image(s) as before and compare results.

2 Edge Detection

Objects in images can be segmented by detection of object contours (edges) followed by description of these
contours and classification.

2.1 Local Edge Filtering

As discussed in class, edge detection can be implemented as a horizontal and vertical differentiation filtering.
Common practice are 3*3 masks as shown in class. Application of these masks for vertical and horizontal

1

filering results in estimates of image derivatives Ix = ∂
xI(x, y) and Iy = ∂

y I(x, y). These derivatives can be

displayed as images (note that you get positive and negative values and that for display, it is best to map
those into a positive range.

The two partial derivatives from a gradient (Ix, Iy)T , which is a vector. The vector norm
√
I2x + I2y is

calculated to result in an edge map. The gradient orientation is calculated as α = tan−1(Ix/Iy) and this
local edge orientation forms another important information for subsequent processing of edge maps.

Implement rhe calculation of partial derivatives and calculation of the edge map. You can also display
the edge orientation by assigning an orientation angle to each pixel and displaying the image in the range of
0 to 360 degrees. Display the three results as 4 images and discuss.

2.2 Edge filtering at specific scales

Whereas the previous section applies edge detection directly on the noisy images, a common approach is
edge detection at a specific scale, i.e. estimation of edges after Gaussian filtering.

You can easily do that by first filtering images with a Gaussian filter (implementation above) and then
applying local edge detection. Test this procedure by filtering with a specific filter width (e.g. σ = 2)
followed by gradient calculation. Please note that due to the 2D Gaussian filtering, you can reduce the
gradient calculation to simple 1D filters with length 3 (1

2 [−1, 0, 1]) applied in horizontal and also vertical
direction.

3 Template Matching

Spatial filtering is also used for finding specific objects in images by template matching. Given a template
of a sought object, the template acts as a filter, and the maximum correlation indicates the position of the
object.

Use the 2D spatial filtering technique implemented before to find/segment image objects. Now, the filter
weights are not a user-defined mask but a mask that is represented as a small image template.

Steps:

• Select an image presented a repeated pattern of same size/orientation objects where the task is to
find the position of objects (e.g., similar cars in a parking lot, specific letter in an image of a text
document). Best is to start with a text image that can be easily binarized to implement the algorithm.

• Select a template, i.e. a very small subimage containing your object. These image can be binarized via
thresholding, and you can assign negative weights to background and positive weights to foreground
(-0.5, 0.5).

• Binarize the original image to a range of [0, 1] via thresholding.

• Use the template as a mask m*n, and filter the image with this mask to obtain a correlation image.

• Apply thresholding to the image to get the set of correlation peaks.

• For more advanced experts: Try to develop a procedure that finds these peaks and creates a list of
their posion. Then, put the template at each of those positions to generate a resulting image that
shows the segmentation result.

4 Instructions, Requirements, and Restrictions

1. Please use your name “NAME” in all reportts and submitted materials to uniquely identify your
projects.

2. Write your project code in a single directory, called project1-NAME.

2

Figure 1: The following are test images that can be used for illustrating your solutions. Please feel free to
use your own images. Filtering and edges: captitol.jpg , hand-bw.jpg. Ttemplate matching: shapes-bw.jpg
, keys-bw.jpg, cars-bw.jpg, text.png.

3

3. For Matlab each individual function (including functions you define) should be a “.m” file, and your
functions should call one another as necessary.

4. We do not allow to use Matlab toolbox functions (e.g. Imaging Toolbox) or other existing image
processing libraries in order to give all students the same conditions for code development 1.

5. You should have in your report a short description of each algorithm you used and documentation on
how your code is organized. Failure to do this will result in a loss of points. Please remmember to add
your name to the report title.

6. Your project report will be in the form of an html file called index.html, contained in that directory.
All links from that file must be relative and all other files necessary to read your report must be in
that directory (or subdirectories).

7. You should use examples of images in your report. They should be viewable in the browser when we
open your html file.

8. You will submit a single tar file created from from your project directory with the unix command tar
-czf project1-NAME.tgz./project1-NAME.

9. Please remember or look-up the honor code and requirement to provide your own solution as discussed
in the syllabus.

10. Please look up the late policy as defined in the syllabus

1The core MATLAB package comes with several rudimentary functions that can be used to load, save, and perform custom
functions on images. Taken from wikibooks

4

