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Fourier Filtering

• Low-pass filtering

• High-pass filtering

• Band-pass filtering

• Sampling and aliasing

• Tomography

• Optimal filtering and match filters
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Some Identities to Remember
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Fourier Spectrum

Fourier spectrum
Origin in corners

Retiled with origin
In center

Log of spectrum

Image
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Fourier Spectrum–Rotation
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Phase vs Spectrum

Image Reconstruction from
phase map

Reconstruction from
spectrum
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Low-Pass Filter
• Reduce/eliminate high frequencies

• Applications
– Noise reduction

• uncorrelated noise is broad band

• Images have sprectrum that focus on low frequencies
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Ideal LP Filter – Box, Rect

Cutoff freq Ringing – Gibbs phenomenon
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Extending Filters to 2D (or higher)

• Two options
– Separable

• H(s) -> H(u)H(v)

• Easy, analysis

– Rotate
• H(s) -> H((u2 + v2)1/2)

• Rotationally invariant
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Ideal LP Filter – Box, Rect
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Ideal Low-Pass
Rectangle With Cutoff of 2/3

Image Filtered Filtered + HE
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Ideal LP – 1/3



Univ of Utah, CS6640 2009 13

Ideal LP – 2/3
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Butterworth Filter

Control of cutoff and slope
Can control ringing
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Butterworth - 1/3
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Butterworth vs Ideal LP
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Butterworth – 2/3
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Gaussian LP Filtering
ILPF BLPF GLPF

F1

F2
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High Pass Filtering

• HP = 1 - LP
– All the same filters as HP apply

• Applications
– Visualization of high-freq data (accentuate)

• High boost filtering
– HB = (1- a) + a(1 - LP) = 1 - a*LP
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High-Pass Filters
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High-Pass Filters in Spatial Domain
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High-Pass Filtering with IHPF
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BHPF
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GHPF
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HP, HB, HE
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High Boost with GLPF
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High-Boost Filtering
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Band-Pass Filters

• Shift LP filter in Fourier domain by convolution
with delta

LP

BPTypically 2-3 parameters
-Width
-Slope
-Band value
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Band Pass - Two Dimensions

• Two strategies
– Rotate

• Radially symmetric

– Translate in 2D
• Oriented filters

• Note:
– Convolution with delta-pair in FD is multiplication

with cosine in spatial domain
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Band Bass Filtering
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Radial Band Pass/Reject
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Band Reject Filtering
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Band Reject Filtering
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Band Reject Filtering
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Discrete Sampling and Aliasing

• Digital signals and images are discrete representations
of the real world
– Which is continuous

• What happens to signals/images when we sample
them?
– Can we quantify the effects?

– Can we understand the artifacts and can we limit them?

– Can we reconstruct the original image from the discrete
data?
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A Mathematical Model of Discrete Samples

Delta functional

Shah functional
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A Mathematical Model of Discrete Samples

Discrete signal

Samples from continuous function

Representation as a function of t
• Multiplication of f(t) with Shah

• Goal
– To be able to do a continuous Fourier transform

on a signal before and after sampling
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Fourier Series of A Shah Functional

u
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Fourier Transform of A Discrete Sampling

u
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Fourier Transform of A Discrete Sampling

u

Energy from higher freqs
gets folded back down into
lower freqs – Aliasing

Frequencies get mixed.
The original signal is
not recoverable.
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What if F(u) is Narrower in the Fourier Domain?

u

• No aliasing!

• How could we recover the original signal?
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What Comes Out of This Model

• Sampling criterion for complete recovery

• An understanding of the effects of sampling
– Aliasing and how to avoid it

• Reconstruction of signals from discrete samples
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Shannon Sampling Theorem

• Assuming a signal that is band limited:

• Given set of samples from that signal

• Samples can be used to generate the original
signal
– Samples and continuous signal are equivalent
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Sampling Theorem

• Quantifies the amount of information in a
signal
– Discrete signal contains limited frequencies

– Band-limited signals contain no more information
then their discrete equivalents

• Reconstruction by cutting away the repeated
signals in the Fourier domain
– Convolution with sinc function in space/time
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Reconstruction

• Convolution with sinc function
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Sinc Interpolation Issues

• Must functions are not band limited

• Forcing functions to be band-limited can cause
artifacts (ringing)

f(t) |F(s)|
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Sinc Interpolation Issues

Ringing - Gibbs phenomenon
Other issues:

Sinc is infinite - must be truncated
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Aliasing
• High frequencies appear as low frequencies

when undersampled
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Aliasing

16 pixels
8 pixels

0.9174
pixels

0.4798
pixels
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Overcoming Aliasing

• Filter data prior to sampling
– Ideally - band limit the data (conv with sinc

function)

– In practice - limit effects with fuzzy/soft low pass
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Antialiasing in Graphics

• Screen resolution produces aliasing on
underlying geometry

Multiple high-res samples
get averaged to create one
screen sample
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Antialiasing
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Interpolation as Convolution

• Any discrete set of samples can be considered
as a functional

• Any linear interpolant can be considered as a
convolution
– Nearest neighbor - rect(t)
– Linear - tri(t)
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Convolution-Based Interpolation
• Can be studied in terms of Fourier Domain

• Issues
– Pass energy (=1) in band

– Low energy out of band

– Reduce hard cut off (Gibbs, ringing)
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Tomography
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Tomography Formulation

Attenuation

Log gives line integral

Line with angle theta

Volume integral
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Fourier Slice Theorem
1D FT

Projection to 1D 1D Slice
2D FT


