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Some ldentities to Remember
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Fourier Spec’rrum

Image Fourier spectrum

Origin in corners

Retiled with origin Log of spectrum
In center
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Fourier Spectrum-Rotation
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Phase vs Spectrum

Reconstruction from Reconstruction from
phase map spectrum
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Low-Pass Filter

+ Reduce/eliminate high frequencies

* Applications
- Noise reduction
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Ideal LP Filter - Box, Rect
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Extending Filters to 20 (or higher)

* Two options
- Separable o - n
- Rotate n
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Ideal LP Filter - Box, Rect
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Ideal Low-Pass
Rectangle With Cutoff of 2/3

Image Filtered Filtered + HE
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|deal LP - 1/3
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|deal LP - 2/3

Univ of Utah, S6640 2009 13



Butterworth Filter

Lowpass filters. Dy is the cutoff frequency and # is the order of the Butterworth filter.

Ideal Butterworth Gaussian
_J1 itD@.v) = Dy _ 1 Dy
H{u,v) {0 it D(u, v) > D, HW. %) = D vy Do) H(u,v) =e
Control of cutoff and slope
Can control ringing
H(u, v)
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=D(u, v)
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Butterworth - 1/3
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Butterworth vs ldeal LP
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Butterworth - 2/3
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F1

Gaussian LP Filtering

ILPF

BLPF

GLPF
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High Pass Filtering

+ HP=1-1P
- All the same filters as HP apply
* Applications
- Visvalization of high-freq data (accentuate)

* High boost filtering
-HB=(1-a)l+all -1P)=1 - a*LP
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High-Pass Filters
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FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.
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High-Pass Filters in Spatial Domain
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FIGURE 4.53 Spatial representation of typical (a) ideal. (b) Butterworth, and (¢) Gaussian frequency domain
highpass filters, and corresponding intensity profiles through their centers.
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High-Pass Filtering with IHPF
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FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with Dy = 30, 60, and 160.
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FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with D, = 30, 60.
and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained
with an [HPF.
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GHPF
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FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with D, = 30,60, and [60.
corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.
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HP, 1P, HE
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High Boost with GLPF
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Band-Pass Filters

+ Shift LP filter in Fourier domain by convolution

with delta

Lp

Typically 2-3 parameters
-Width
-Slope
-Band valve

d(s — sg) +d(s+ so)

A

A

74

/

Univ Of U"an, VIUVUTV 4LUVJ

23



Band Pass - Two Dimensions

g T_wzoi;r::\’regies } /1

- Translate in 20

* Note:

- Convolution with delta-pair in FD is multiplication
with cosine in spatial domain
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Band Bass Filtering
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Radial Band Pass/Reject

Ideal Butterworth Gaussian
1
‘ W W Huwv) =
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Band Reject Filtering
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Band Reject Filtering
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Band Reject Filtering
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Discrete Sampling and Aliasing

* Digital signals and images are discrete representations
of the real world
- Which is continuous

* What happens to signals/images when we sample
thewm?

- Can we quantify the effects?
- (Can we understand the artifacts and can we limit them?

- Can we reconstruct the original image from the discrete
data?
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A Mathewmatical Model of Piscrete Samples

Pelta functional

8(x — xp)

I | L
0 X

Shah functional 527

sar(t) = i 5(t — kAT)

k=—o0

¢
<+« =3AT =2AT —-AT 0 AT 2AT 3AT .-
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A Mathewmatical Model of Piscrete Samples

1@

Goal
~- To be able to do a continuous Fourier transform
on a signal before and after sampling

0

Discrete signal sar®)
fi k=0,%£1,...
| | |“|2A‘T|ATO ATZJT ‘l | |
Sawples from continvous function o fssr
fr = f(KAT) H \[ -
AT D T
Representation as a function of 1 Y ahan
* Multiplication of f(1) wi’rh Shah
f(t): ()SATt) kat kAT) |.||| ?|\|T|
e =2 -1 0 1 2
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Fourier Series of A Shah Functional
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Fourier Transform of A Discrete Sampling

ft) = f(t)s(t) *+—> F(u)=F(u)*S(u)

..o =3AT =2AT -—-AT 0 T 2AT 3AT ...

Univ of Utah, S6640 2009 39




Fourier Transform of A Discrete Sampling

Frequencies get mixed. - .
The original signal is F(u) = F(u) * 5(u)

not recoverable.

/ N\ '
s _2z _ 1 1 2 3
AT AT AT AT AT AT
Energy from higher freqs

gets folded back down into
lower freqs - Aliasing
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What if Flu) is Narrower in the Fourier Domain?
* No aliasing!
» How could we recover the original signal?
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What Comes Qut of This Model

» Sawmpling criterion for complete recovery

* An understanding of the effects of sampling
- Aliasing and how to avoid it

+ Reconstruction of signals from discrete samples
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Shannon Sampling Theorem

+ Assuming a signal that is band limited:

f(t) <=—>F(u) |F(u)| =0V |ul >B
+ Given set of samples from that signal
fr = f(KAT) AT < o

+ Sawmples can be used to generate the original
signal
- Samples and continvous signal are equivalent
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Sampling Theorem

» Quantifies the amount of information in a
sighal
- Discrete signal contains limited frequencies

- Band-limited signals contain no more information
then their discrete equivalents

» Reconstruction by cutting away the repeated
signals in the Fourier dowmain

- Convolution with sinc function in space/time
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Reconstruction

+ (Convolution with sine function
f(t) = ft)«F? [rect (ﬁ)]

- (zk: frd(t — kAT)) xsinc (ﬁ) = ) fi sinc
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Sinc Interpolation Issues

» Must functions are not band limited

» Foreing functions to be band-limited can cause
artifacts (ringing)

il 40 a0 =] 0 005 IR 01a nz 025 03 035
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Sinc Interpolation Issues

Ringing - Gibbs phenomenon
Other issues:
Sinc is infinite - must be fruncated
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Aliasing

+ High frequencies appear as low frequencies
when undersampled
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Aliasinq
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Overcoming Aliasing

* Filter data prior to sampling

- |deally - band limit the data (conv with sine
function)

- In practice - limit effects with fuzzy/soft low pass

Vil
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Antialiasing in Graphics

* Screen resolution produces aliasing on
underlying geometry

Multiple high-res samples
get averaged to create one
screen sample

® ©

allased antialiased
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Antialiasing
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Interpolation as Convolution

+ Any discrete set of samples can be considered
as a functional

f@) = D fud(t — KAT)
k

* Any linear interpolant can be considered as a
convolution

- Nearest neighbor - rect(t)

- Linear - tri(t) {t+1 ~1<t<0 /\
trit) =¢ 1—¢t 0<t<t
0 otherwise
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Convolution-Based lnterpolation

Can be studied in terms of Fourier Domain
Issues

- Pass energy (=1) in band

- Low energy out of band

- Reduce hard cut off (Gibbs, ringing)

Univ of Utah, S6640 2009

54



Tomography
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Tomography Formulation

Attenvation I = [lexp (— flu(:r, y) ds)
Loo gives line integral ~— p(r,0) = In(I/1y) = — f p(x,y) ds

Line with angle theta rcosf 4 ysinfl = r

Voluwe integral p(r,0) =

f ] flz,y)d(xcosl + ysin @ — r) dz dy
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Fourier Slice Theorem

Pro;ecﬂon to 1D 1 0 Slice

10 FT /2/ 20 FT
F 1 P = 1 = 5 1 F y /
y # ky #
projection p(x) S slice s(ky) S/
Fourier
>
Transform
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