Filtering in the Fourier Domain

Ross Whitaker SCI Institute, School of Computing University of Utah

Fourier Filtering

- Low-pass filtering
- High-pass filtering
- Band-pass filtering
- Sampling and aliasing
- Tomography
- Optimal filtering and match filters

Some Identities to Remember

Discrete unit impulse	$\delta(x, y) \Leftrightarrow 1$
Rectangle	$\operatorname{rect}[a,b] \Leftrightarrow ab \frac{\sin(\pi ua)}{(\pi ua)} \frac{\sin(\pi vb)}{(\pi vb)} e^{-j\pi(ua+vb)}$
Sine	$\sin(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow$
	$j\frac{1}{2}\left[\delta(u+Mu_0,v+Nv_0)-\delta(u-Mu_0,v-Nv_0)\right]$
Cosine	$\cos(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow$
	$\frac{1}{2} \Big[\delta(\boldsymbol{u} + \boldsymbol{M} \boldsymbol{u}_0, \boldsymbol{v} + \boldsymbol{N} \boldsymbol{v}_0) + \delta(\boldsymbol{u} - \boldsymbol{M} \boldsymbol{u}_0, \boldsymbol{v} - \boldsymbol{N} \boldsymbol{v}_0) \Big]$
Gaussian	$A2\pi\sigma^2 e^{-2\pi^2\sigma^2(t^2+z^2)} \Leftrightarrow Ae^{-(\mu^2+\nu^2)/2\sigma^2} \ (A \text{ is a constant})$

Fourier Spectrum-Rotation

Phase vs Spectrum

Image

Reconstruction from phase map Reconstruction from <u>spectrum</u>

Low-Pass Filter

- Reduce/eliminate high frequencies
- Applications
 - Noise reduction
 - uncorrelated noise is <u>broad band</u>
 - Images have sprectrum that focus on low frequencies

Ideal LP Filter - Box, Rect

Extending Filters to 2D (or higher)

- Two options
 - Separable
 - H(s) -> H(u)H(v)
 - Easy, analysis
 - Rotate
 - H(s) -> H((u² + v²)^{1/2})
 - Rotationally invariant

Ideal LP Filter - Box, Rect

Ideal Low-Pass Rectangle With Cutoff of 2/3

Ideal LP - 1/3

Ideal LP - 2/3

Butterworth Filter

Lowpass filters. D_0 is the cutoff frequency and *n* is the order of the Butterworth filter.

Butterworth - 1/3

Butterworth vs Ideal LP

Butterworth - 2/3

Gaussian LP Filtering BLPF

ILPF

GLPF

F1

F2

High Pass Filtering

- HP = 1 LP
 - All the same filters as HP apply
- Applications
 - Visualization of high-freq data (accentuate)
- High boost filtering

-HB = (1 - a) + a(1 - LP) = 1 - a*LP

High-Pass Filters

FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

High-Pass Filters in Spatial Domain

a b c

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain highpass filters, and corresponding intensity profiles through their centers.

High-Pass Filtering with IHPF

FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with $D_0 = 30, 60, \text{ and } 160$.

аbс

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with $D_0 = 30, 60$, and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained with an IHPF.

GHPF

аbс

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with $D_0 = 30, 60, \text{ and } 160, \text{ corresponding to the circles in Fig. 4.41(b)}$. Compare with Figs. 4.54 and 4.55.

Univ of Utah, CS6640 2009

High Boost with GLPF

High-Boost Filtering

Band-Pass Filters

 Shift LP filter in Fourier domain by convolution with delta

Univ of Utar, USUUTU ZUUJ

Band Pass - Two Dimensions

- Two strategies
 - Rotate
 - Radially symmetric
 - Translate in 2D
 - Oriented filters

- Note:
 - Convolution with delta-pair in FD is multiplication with cosine in spatial domain

Band Bass Filtering

Radial Band Pass/Reject

Band Reject Filtering

Band Reject Filtering

Band Reject Filtering

Discrete Sampling and Aliasing

- Digital signals and images are discrete representations of the real world
 - Which is continuous
- What happens to signals/images when we sample them?
 - Can we quantify the effects?
 - Can we understand the artifacts and can we limit them?
 - Can we reconstruct the original image from the discrete data?

A Mathematical Model of Discrete Samples

Delta functional

A Mathematical Model of Discrete Samples

• Goal

 To be able to do a continuous Fourier transform on a signal before and after sampling

Discrete signal

 $f_k \quad k=0,\pm 1,\ldots$

Samples from continuous function

 $f_k = f(k\Delta T)$

Representation as a function of t • Multiplication of f(t) with Shah $\tilde{f}(t) = f(t)s_{\Delta T}(t) = \sum_{k=-\infty}^{\infty} f_k \delta(t - k\Delta T)$

Fourier Series of A Shah Functional

38

Fourier Transform of A Discrete Sampling

$$\tilde{f}(t) = f(t)s(t)$$
 \checkmark $\tilde{F}(u) = F(u) * S(u)$

Fourier Transform of A Discrete Sampling

What if F(u) is Narrower in the Fourier Domain?

- No aliasing!
- How could we recover the original signal?

What Comes Out of This Model

- Sampling criterion for complete recovery
- An understanding of the effects of sampling
 - Aliasing and how to avoid it
- Reconstruction of signals from discrete samples

Shannon Sampling Theorem

Assuming a signal that is band limited:

 $f(t) \longleftarrow F(u) \qquad |F(u)| = 0 \ \forall \ |u| > B$

- Given set of samples from that signal $f_k = f(k\Delta T)$ $\Delta T \leq \frac{1}{2B}$
- Samples can be used to generate the original signal
 - Samples and continuous signal are equivalent

Sampling Theorem

- Quantifies the amount of information in a signal
 - Discrete signal contains limited frequencies
 - Band-limited signals contain no more information then their discrete equivalents
- Reconstruction by cutting away the repeated signals in the Fourier domain
 - Convolution with sinc function in space/time

Reconstruction

Convolution with sinc function

 $f(t) = \tilde{f}(t) * \mathbb{I} \mathbb{F}^{-1} \left[\operatorname{rect} \left(\frac{\mathbf{u}}{\Delta \mathbf{T}} \right) \right]$ $= \left(\sum_{k} f_k \delta(t - k\Delta T)\right) * \operatorname{sinc}\left(\frac{\mathrm{t}}{\Delta \mathrm{T}}\right) = \sum_{k} f_k \operatorname{sinc}\left(\frac{\mathrm{t} - \mathrm{k}\Delta \mathrm{T}}{\Delta \mathrm{T}}\right)$ 0 -10 5

Sinc Interpolation Issues

- Must functions are not band limited
- Forcing functions to be band-limited can cause artifacts (ringing)

Univ of Utah, CS6640 2009

Ringing - Gibbs phenomenon Other issues:

Sinc is infinite - must be truncated

Aliasing

 High frequencies appear as low frequencies when undersampled

Aliasing

Overcoming Aliasing

- Filter data prior to sampling
 - Ideally band limit the data (conv with sinc function)
 - In practice limit effects with fuzzy/soft low pass

Antialiasing in Graphics

 Screen resolution produces aliasing on underlying geometry

Antialiasing

Interpolation as Convolution

 Any discrete set of samples can be considered as a functional

$$\tilde{f}(t) = \sum_{k} f_k \delta(t - k\Delta T)$$

- Any linear interpolant can be considered as a convolution
 - Nearest neighbor rect(t)

$$\operatorname{tri}(t) = \begin{cases} t+1 & -1 \leq t \leq 0\\ 1-t & 0 \leq t \leq t\\ 0 & \text{otherwise} \end{cases}$$

Convolution-Based Interpolation

- Can be studied in terms of Fourier Domain
- Issues
 - Pass energy (=1) in band
 - Low energy out of band
 - Reduce hard cut off (Gibbs, ringing)

Tomography Formulation

Attenuation

$$I = I_0 \exp\left(-\int \mu(x, y) \, ds\right)$$

 $p(r, \theta) = \ln(I/I_0) = -\int \mu(x, y) \, ds$

Log gives line integral

Line with angle theta

$$x\cos\theta + y\sin\theta = r$$

Volume integral

$$p(r,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(x\cos\theta + y\sin\theta - r) \, dx \, dy$$

