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Geometric Transformations 
•  Greyscale transformations -> operate on range/

output 
•  Geometric transformations -> operate on image 

domain 
–  Coordinate transformations 
–  Moving image content from one place to another 

•  Two parts: 
–  Define transformation 
–  Resample greyscale image in new coordinates 
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Geom Trans: Distortion From 
Optics 

Barrel Distortion Pincushion Distortion 



Univ of Utah, CS6640 2009 4 

Geom Trans: Distortion From 
Optics 
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Geom. Trans.: Brain Template/
Atlas 



Univ of Utah, CS6640 2009 6 

Geom. Trans.: Mosaicing 
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Domain Mappings Formulation 

New image from old one 

Coordinate transformation 
Two parts – vector valued 

g is the same image as f, but 
sampled on these new 
coordinates 
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Domain Mappings Formulation 

Vector notation is convenient.  
Bar used some times, depends 
on context. 

T may or may not have an 
inverse.  If not, it means that 
information was lost.   
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Domain Mappings 

f g 

f g 
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No Inverse? 

f g 

f g 
Not “one to 
one” 

Not “onto” - 
doesn’t cover 
f 
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Implementation – Two 
Approaches 

1.  Pixel filling – backward mapping 
•  T() takes you from coords in g() to coords in f() 
•  Need random access to pixels in f() 
•  Sample grid for g(), interpolate f() as needed 

f g 

Interpolate 
from 
nearby grid 
points 
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Interpolation: Binlinear 

•  Successive application of linear 
interpolation along each axis 

Source: WIkipedia 
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Binlinear Interpolation 

•  Not linear in x, y 
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Binlinear Interpolation 

•  Convenient form 
– Normalize to unit grid [0,1]x[0,1] 
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Implementation – Two 
Approaches 

2.  Splatting – backward mapping 
•  T-1() takes you from coords in f() to coords in g() 
•  You have f() on grid, but you need g() on grid 
•  Push grid samples onto g() grid and do interpolation 

from unorganized data (kernel) 

f g 

Nearby points 
are not 
organized 
– ”scattered” 

? 
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Scattered Data Interpolation With Kernels�
Shepard’s method 

•  Define kernel 
–  Falls off with distance, radially symmetric 

g 

? 

Kernel examples 
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Shepard’s Method 
Implementation 

•  If points are dense enough 
–  Truncate kernel 
–  For each point in f() 

•  Form a small box around it in g() – beyond 
which truncate 

•  Put weights and data onto grid in g() 
–  Divide total data by total weights: B/A g 

Data and weights 
accumulated here 
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Transformation Examples 

•  Linear 

•  Homogeneous coordinates 
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Special Cases of Linear 
•  Translation 

•  Rotation 

•  Rigid = rotation + translation 

•  Scaling 
–  Include forward and backward 

rotation for arbitary axis 

•  Skew 

•  Reflection 

p, q < 1 : expand 
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Linear Transformations 

•  Also called “affine” 
– 6 parameters 

•  Rigid -> 3 parameters 
•  Invertability 

–  Invert matrix 
•  What does it mean if A is not invertible?  
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Other Transformations 
•  All polynomials of (x,y) 
•  Any vector valued function with 2 inputs 
•  How to construct transformations 

–  Define form or class of a transformation 
–  Choose parameters within that class 

•  Rigid - 3 parameters 
•  Affine - 6 parameters 
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Correspondences 

•  Also called “landmarks” or “fiducials” 
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Transformations/Control Points�
Strategy 

1.  Define a functional representation for T 
with k parameters (B) 

2.  Define (pick) N correspondences 
3.  Find B so that 

4.  If overconstrained (K < 2N) then solve  
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Example: Quadratic 
Transformation 

Denote 

Correspondences must match 

Note: these equations are linear in the unkowns 
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Write As Linear System 

A – matrix that depends on the (unprimed) 
correspondences and the transformation 

x – unknown parameters of the 
transformation 

b – the primed correspondences 
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Linear Algebra Background 

Simple case: A is sqaure (M=N) and invertable (det[A] not zero) 

Numerics: Don’t find A inverse.  Use Gaussian elimination or 
some kind of decomposition of A 
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Linear Systems – Other Cases 

•  M<N or M = N and the equations are 
degenerate or singular 
–  System is underconstrained – lots of solutions 

•  Approach 
–  Impose some extra criterion on the solution 
–  Find the one solution that optimizes that 

criterion 
– Regularizing the problem 
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Linear Systems – Other Cases 

•  M > N  
–  System is overconstrained 
– No solution 

•  Approach 
–  Find solution that is best compromise  
– Minimize squared error (least squares) 
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Solving Least Squares Systems 

•  Psuedoinverse (normal equations) 

–  Issue: often not well conditioned (nearly 
singular) 

•  Alternative: singular value decomposition 
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Singular Value Decomposition 

Invert matrix A with SVD 
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SVD for Singular Systems 

•  If a system is singular, some of the w’s will 
be zero 

•  Properties: 
– Underconstrained: solution with shortest 

overall length 
– Overconstrained: least squares solution 
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Warping Application: Lens 
Distortion 

•  Radial transformation – lenses are 
generally circularly symmetric 
– Optical center is known 
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Correspondences 
•  Take picture of known grid –  crossings 
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Image Mosaicing 
•  Piecing together images to create a larger mosaic 
•  Doing it the old fashioned way 

–  Paper pictures and tape 
–  Things don’t line up 
–  Translation is not enough 

•  Need some kind of warp 
•  Constraints 

–  Warping/matching two regions of two different 
images only works when… 
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Special Cases 

•  Nothing new in the scene is uncovered in 
one view vs another 
– No ray from the camera gets behind another 

1) Pure rotations–arbitrary scene 2) Arbitrary views of planar surfaces 
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3D Perspective and Projection 

•  Camera model 

z 

x 
y 

f 

Image 
coordinates  
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Perspective Projection 
Properties 

•  Lines to lines (linear) 

•  Conic sections to conic sections 

•  Convex shapes to convex shapes 

•  Foreshortening 
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Image Homologies 

•  Images taken under cases 1,2 are 
perspectively equivalent to within a linear 
transformation 
–  Projective relationships – equivalence is  
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Transforming Images To Make Mosaics 
Linear transformation with matrix P 

Perspective equivalence Multiply by denominator and reorganize terms 

Linear system, solve for P 
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Image Mosaicing 
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4 Correspondences 
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5 Correspondences 
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6 Correspondences 
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Mosaicing Issues 

•  Need a canvas (adjust coordinates/origin) 
•  Blending at edges of images (avoid sharp 

transitions) 
•  Adjusting brightnesses 
•  Cascading transformations 
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Specifying Warps – Another Strategy 

•  Let the # DOFs in the warp equal the # of 
control points (x1/2) 
–  Interpolate with some grid-based interpolation 

•  E.g. binlinear, splines 
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Landmarks Not On Grid 

•  Landmark positions driven by application 
•  Interpolate transformation at unorganized 

correspondences 
–  Scattered data interpolation 

•  How do we do scattered data interpolation? 
–  Idea: use kernels! 

•  Radial basis functions 
–  Radially symmetric functions of distance to landmark 
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•  Represent f as weighted sum of basis functions 

•  Need interpolation for vector-valued function, T: 

RBFs – Formulation 

Sum of radial basis functions 
Basis functions centered 
at positions of data 
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Solve For k’s With Landmarks as Constraints 
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Issue: RBFs Do Not Easily Model 
Linear Trends 

f(x) 

x 

f1 

f2 

f3 

x1 x2 x3 
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•  Represent f as weighted sum of basis functions and 
linear part 

•  Need interpolation for vector-valued function, T: 

RBFs – Formulation w/Linear 
Term 

Sum of radial basis functions 
Linear part of transformation Basis functions centered 

at positions of data 
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RBFs – Solution Strategy 

•  Find the k’s and p’s so that f() fits at data points 
–  The k’s can have no linear trend (force it into the p’s) 

•  Constraints -> linear system 
Corresponden
ces must 
match 

Keep linear 
part separate 
from 
deformation 
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RBFs – Linear System 
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RBF Warp – Example 
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What Kernel Should We Use 

•  Gaussian 
– Variance is free parameter – controls 

smoothness of warp 

σ = 2.5 σ = 2.0 σ = 1.5

From: Arad et al. 1994  
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RBFs – Aligning Faces 

Mona Lisa – Target Venus – Source Venus – Warped 



Univ of Utah, CS6640 2009 56 

RBFs – Special Case: Thin Plate Splines 

•  A special class of kernels 

•  Minimizes the distortion function (bending 
energy) 

– No scale parameter.  Gives smoothest results 
– Bookstein, 1989 
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Application: Image Morphing 

•  Combine shape and intensity with time 
parameter t 
–  Just blending with amounts t produces “fade” 

– Use control points with interpolation in t 

– Use c1, c(t) landmarks to define T1, and 
c2,c(t) landmarks to define T2 
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Image Morphing 

•  Create from blend of two warped images 

T2 
T1 

I1 It I2 
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Image Morphing 
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Application:  Image Templates/
Atlases 

•  Build image templates that capture statistics of 
class of images 
–  Accounts for shape and intensity 
–  Mean and variability 

•  Purpose 
–  Establish common coordinate system (for 

comparisons) 
–  Understand how a particular case compares to the 

general population 
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Templates – Formulation 

•  N landmarks over M different subjects/samples 

Images 

Correspondences 

Mean of correspondences 
(template) 

Transformations from mean to subjects Templated image 
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Cars 
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Car Landmarks and Warp 
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Car Landmarks and Warp 
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Car Mean 
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Cars 
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Cats 
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Brains 
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Brain Template 


