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Intensity transformation example

g(x,y) = log(f(x,y))

ml) = log Wm

f(X1,y1) g(X1,y1)

f(Xz,yN ' [(CA)

g(x2,y2) = log ( f(x2,y2) )

*\We can drop the (x,y) and represent this kind of filter as an intensity
transformation s=T(r). In this case s=log(r)
-S: output intensity

-r: input intensity Univ of Utah, C$6640 2009




Intensity transformation
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Gamma
correction

Original image

Gamma-corrected image
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Original image as viewed
on monitor

Gamma-corrected image as
viewed on the same monitor

Output intensity level, s
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Gamma transformations
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FIGURE 3.9

(a) Aerial image.
(b)-(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ = 1and

v = 3.0,4.0,and
5.0, respectively.
(Original image
for this example

courtesy of
NASA.)
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amwa fransformations
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FIGURE 3.8

(a) Magnetic
resonance

image (MRI) of a
fractured human
spine.

(b)-(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ = 1land

v = 0.6,04,and
0.3, respectively.
(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)



Piecewise linear intensity
transformation

More control =
*But also more oL e o
parameters for = /-

User tO SpeCIfy ok L/4' L/? L4 L—1
*Graphical user inputnensit eve,
interface can be
useful
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More intensity transformations

| | L L,
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Histogram of Image Intensities

* (reate bins of intensities and count number of
pixels at each level

- Normalize or not (absolution vs Z frequency)

|H

Frequency

Grey level value
niv of Utah, (36640 2009



Histograms and Noise

+ What happens to the histogram if we add
noise?
- g(X, Y) = ﬂX, V) + VI(X, Y) Threshold data and

assign fo classes

\AAA

Univ of Utah, ($6640 2009 10



* Probabilities

Sample Spaces

» § = Set of possible outcomes of a random event

* Toy examples _ ___ | ol Y
- Dice '- N 3.,""
- Cards \

P(S) =1 AeS:>P(A)>O
PUM A —ZP A;) where A;NA; =0

1=1 11



Conditional Probabilities

Multiple events

- $2 = §x§ Cartesian produce - sets

- Dice - (2, 4)

- Urn - (black, black)

P(AIB) - probability of A in second experiment
knowledge of outcome of first experiment

- This quantifies the effect of the first experiment on the
second

P(A.B) - probability of A in second experiment and B in
first experiment

P(A.B) = P(AIBIP(B)

Univ of Utah, ($6640 2009 12



Independence

P(AIB) = P(A)

- The outcome of one experiment does not affect the other
Independence -> P(AB) = P(AIP(B)
Dice

- Each roll is unaffected by the previous (or history)

Urn
- Independence -> put the stone back after each experiment

Cards
- Put each card back after it is picked

Univ of Utah, €$6640 2009
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Randowm Variable (RV)

Variable (number) associated with the outcome of an
random experiment

Dice
- E.g. Assign 1-6 to the faces of die

Urn
- Assign 0 to black and 1 to white (or vise versa)

Cards
- Lots of different schemes - depends on application

A function of a randowm variable is also a randowm
variable

Univ of Utah, ($6640 2009
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Cumvlative Pistribution Function (cdf)

* Flx), where x is a RV
+ Fl-infty) = 0, Flinfty) = 1
* F(x) non decreasing

F(z) = .Z P()

ot L0

19



Continvous Random Variables

» Example: spin a wheel and associate value with

angle

* Fx) - cdf continvous
- => X is a continvous RV

/ flodg

F(a) _ @)

\%iv of Utah, 56640 2009
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Probability Density Functions

+ fx) is called a probability dewnsity function (pdf)

/_oof(w)=1 f(z) >0V a

* A probability density is not the same as a probability

* The probability of a specific value as an outcome of
continuous experiment is (generally) zero

- To get meaningful numbers you must specify a range

b
Pla <z <b)= / f(g)dg = F(b) — F(a)



Expected Value of a RV

Bls] = Y in(i)

1=—00

oo

Elz] = /_ q f(q) dq

» Expectation is linear
- Elax] = akLx] for a scalar (not random)
- Elx +y1 = Elx] + Ely]

+ (Other properties

-tzZd=2z---—-- if z is not random
Univ of Utah, 36640 2009
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Mean of a PUF

» Mean: Elx] = m
- also called “pn”

- The wmean is not a random variable-it is a fixed
valve for any PDF

» Variance: EL(x - m)2] = Elx2] - 2ELwmx] +
ELlmZ] = Elx2] - m2 = Elx2] - Elx]2
- also called “o2”
- Standard deviation is o
- |If a distribution has zero mean then: ELxZ] = o2

Univ of Utah, €$6640 2009 19



Sample Mean

* Run an experiments

- Take N samples from a pdf (RV)
- Suwm thewm up and divide by N

* let M be the result of that experiment
-Misa random variable

20



Sample Mean

*  How close can we expect o be with a sample mean to the frue mean?

*  Define a new randowm variable: P = (M - wm)?
- Assume independence of sampling process

1 1 0 ) )
D= 2 Z T Z T; — sz z; T; +m Independence -> ELxy1 = ELx]ELy]
Nuwber of terms off
e[D] = =zE[X; sz zj] — %2mE[Y", z;] + m? diagonal

E[Z ;i )25 —m’

E[szZwyl N22E o1+ 2 2.3 Flaiw) = > m

E[z?] — m?) = la2

E[D] = ~Ez?2+ W =D N ~

N N2 N2 N(

Root mean squared difference between true mean and sample wmean is stdev/sqrt(N)
As number of samples -> infty, sample mean -> frue mean

Univ of Utah, CS6640 2009
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Application: Noisy Images

* |magine N images of the same scene with
randow, independent, zero-mean noise added to
each one

- Nuclear medicine-radioactive events are random
- Noise in sensors/electronics

* Pixel value is s*n

—

Randow noise:
‘[ndependent from one image to the next

True pixel value Univ of Utaly0$8640,2009 22



Application: Noisy Images

* |If you take multiple images of the same scene you have
- Si =8 + “i
- §=(1/N) =g;= s + (1/N) =n,
- EL(S - )21 = (1/N) ELn, 21 = (1/N) ELn, 21 - (1/N) ELn32 -

(1/N)o? 2
- Expected root mean squared error is o/sqri(N)
* Application:
- Digital cameras with large gain (high 1S0, light sensitivity)

- Not necessarily random from one image to next
+ Sensors CCP irregularity

- How would this principle apply

Zero wiean

Univ of Utah, €$6640 2009 23



Averaging Noisy Images Can Improve Quality

abc

de f
FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)—(f) Results of 24
averaging 5, 10, 20, 50, and 100 noisy images, respectively. (Original image courtesy of NASA.)



What is image seqmentation?
» lmage segmentation is the process of subdividing

an image into its constituent regions or objects.
+ Example segmentation with two regions:

___)

Input image Segmentation output

intensities 0-255 0 (background)

1 (foreground)
Univ of Utah, C$6640 2009 25




Thresholding

_J 1 if flzy)>T
g(may)_{ 0 ’Lf f(il’) y <T

d—Rd

Input image f(x,y) Segmentation output g(X,y)

intensities 0-255 0 (background)
1 (foreground)

How can we choose T7
- Trial and error

- Use the histogram gf f1%.¥)uessz0 2000

26



Choosing a threshold

Univ of Utah, ($6640 2009

/

T=100

" Histogram
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Role of noise

Univ of Utah, ($6640 2009

100 150 200

T=120
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Low signal-to-noise ratio

Univ of Utah, ($6640 2009

140
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Effect of noise on image histogram

Images

Histograms

No noise With noise More noise

Univ of Utah, €$6640 2009 30
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Effect of illumination on histogram

Images

Histograms | ' '
0 63 127 101 259 [0 0.2 04 0.6 0.8 1] [0 3 ' 127 191 255,
h

f X g =
Original lllumination Final
Image Image Image
Univ of Utah, 0$6640 2009 31
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Sowe Extra Things

+ Gaussian/normal distribution
» Weighted means

Univ of Utah, ($6640 2009
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Gaussian Distribution

* “Norwmal” or “bell curve”
* Two parameters: 1 - mean, o - standard deviation

Gaussian or
"normal”
distribution

fo(x)

| ! I
00135 11359 | .3413 | .3413 ' 11359
I -.ér Elcr 5‘10
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Gavussian Properties

+ Best fitting Guassian to some data is gotten by
mean and standard deviation of the samples

* (ceurrence

- Central limit theorewm: result from lots of random
variables
- Nature (approximate)

» Measurement error, physical characteristic, physical
phenomenon

* Diffusion of heat or chemicals

Univ of Utah, €$6640 2009 34



Weighted Expectation from Samples

» Suppose

- We want to compute the sample mean of a “class”
of things (or we want to reduce it’s influence)

- We are not sure if the Ah item belongs to this class
or hot - “partially belongs”
* probability w; random variable r;

Sample mean (no weights) Weighted sample mean
N

Elr] = % Z T; Er] = Z W;T;

=1 z—l W; =1
Univ of Utah, CS6640 2009 35




Gaussian Mixture Modeling of Image

Histograms

+ Kclasses, N samples

Class probability

A

Class 1

D

Class 2

Class 2

Intensity

Univ of Utah, S6640 2009 36



Problem Statement

* Goal: assign pixels o classes based on intensities (label
image)

* Problem: can we simultaneously learn the class
structure and assign the class labels?

Histogram of image samples

g

D

Intensity

Univ of Ufah, 036640 2009 > 37



Hard vs Soft Assign

* If we knew the probabilities for the classes
(Gaussians) we could assign classes to each data
point/pixel

- Assume equal overall probabilities of classes
Hard Assign

Find class that has max probability
C; = argmax. P;(r;) for given intensity r at pixel .
Assign that class label to that pixel

Soft Assign

1 For each pixel and each class, assign
P;(7i)  a (conditional) probability that that

w] = P(C; = jlri) = =x
> _1=1 Pi(rs) 9 pixel belongs fo that class %%

1




Simultaneous Estimate of Class Probabilities
and Pixel Labels - Hterative Algorithwm

Start with initial estimate of class models

u?,a?forjzl...K

Compute matrix of soft assignments

1
w; = Pj r;
COYE P o

Use soft assignments to compute new weighted mean
and standard deviation for each class ~;j,;

Use new wmean and standard deviation to compute
new soft assignments and repeat (until change in

parameters is very,small)essso 2000 0




EM Algorithm - Example

Univ of Utah, €$6640 2009
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MRI Brain Example

41



Histogram Processing and
Equalization
* Notes

Univ of Utah, ($6640 2009
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Histograms

* hird = ng

- Histogram: number of
times intensity level
rc appears in the
image

* plri)= n/NM
- normalized histogram

- also a probability of
occurence

Univ of Utah, 0$664

I I I
Histogram of dark image

Histogram of low-contrast image

L !

I I I
Histogram of high-contrast image




Histogram
equalization

+ Automatic
process of
enhancing the
confrast of any
given image

Univ of |




Histogram Equalization

Univ of Utah, ($6640 2009 495



Tuning it Pown

» Transformation is weighted combination of COF and identity
with parameter alpha  t(s) = (1 — a)s + aA(s)

a=0.0




Adaptive Histogram Equalization

Univ of Utah, ($6640 2009

47



AHE Gone Bad...
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Effect of Window Size
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AHE Application: Cell Segmentation

AHE

Adaptive Filtering

T EARE [ TR
Threshold CC Analysis/Morphology 19

cC AnalysiWafefsheds 50



