
Univ of Utah, CS6640 2009 1

Probabilities, Greyscales, and
Histograms

Ross Whitaker

SCI Institute, School of Computing

University of Utah



Univ of Utah, CS6640 2009 2

Intensity transformation example
g(x,y) = log(f(x,y))

f(x1,y1) g(x1,y1)

g(x1,y1) = log ( f(x1,y1)  )

f(x2,y2) g(x2,y2)

g(x2,y2) = log ( f(x2,y2)  )

•We can drop the (x,y) and represent this kind of filter as an intensity
transformation s=T(r). In this case s=log(r)
-s: output intensity
-r: input intensity
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Intensity transformation

s = T (r)

© 1992–2008  R. C. Gonzalez & R. E. Woods 
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Gamma correction

s = cr
!

© 1992–2008  R. C. Gonzalez & R. E. Woods 
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Gamma transformations

© 1992–2008  R. C. Gonzalez & R. E. Woods 
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Gamma transformations

© 1992–2008  R. C. Gonzalez & R. E. Woods 
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Piecewise linear intensity
transformation

© 1992–2008  R. C. Gonzalez & R. E. Woods 

•More control
•But also more
parameters for
user to specify
•Graphical user
interface can be
useful
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More intensity transformations

© 1992–2008  R. C. Gonzalez & R. E. Woods 
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Histogram of Image Intensities

• Create bins of intensities and count number of
pixels at each level
– Normalize or not (absolution vs % frequency)

Grey level value
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Histograms and Noise

• What happens to the histogram if we add
noise?
– g(x, y) = f(x, y) + n(x, y) Threshold data and

assign to classes
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• S = Set of possible outcomes of a random event

• Toy examples
– Dice

– Urn

– Cards

• Probabilities

Sample Spaces
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Conditional Probabilities

• Multiple events
– S2 = SxS Cartesian produce - sets
– Dice - (2, 4)
– Urn - (black, black)

• P(A|B) - probability of A in second experiment
knowledge of outcome of first experiment
– This quantifies the effect of the first experiment on the

second

• P(A,B) - probability of A in second experiment and B in
first experiment

• P(A,B) = P(A|B)P(B)
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Independence

• P(A|B) = P(A)
– The outcome of one experiment does not affect the other

• Independence -> P(A,B) = P(A)P(B)
• Dice

– Each roll is unaffected by the previous (or history)

• Urn
– Independence -> put the stone back after each experiment

• Cards
– Put each card back after it is picked
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Random Variable (RV)

• Variable (number) associated with the outcome of an
random experiment

• Dice
– E.g. Assign 1-6 to the faces of die

• Urn
– Assign 0 to black and 1 to white (or vise versa)

• Cards
– Lots of different schemes - depends on application

• A function of a random variable is also a random
variable
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Cumulative Distribution Function (cdf)

• F(x), where x is a RV

• F(-infty) = 0, F(infty) = 1

• F(x) non decreasing
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Continuous Random Variables

• Example: spin a wheel and associate value with
angle

• F(x) –  cdf continuous
– –> x is a continuous RV

0

1
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Probability Density Functions

• f(x) is called a probability density function (pdf)

• A probability density is not the same as a probability
• The probability of a specific value as an outcome of

continuous experiment is (generally) zero
– To get meaningful numbers you must specify a range
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Expected Value of a RV

• Expectation is linear
– E[ax] = aE[x] for a scalar (not random)
– E[x + y] = E[x] + E[y]

• Other properties
– E[z] = z –––––– if z is not random
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Mean of a PDF

• Mean: E[x] = m
– also called “µ”

– The mean is not a random variable–it is a fixed
value for any PDF

• Variance: E[(x - m)2] = E[x2] - 2E[mx] +
E[m2] = E[x2] - m2 = E[x2] - E[x]2

– also called “σ2”

– Standard deviation is σ

– If a distribution has zero mean then: E[x2] = σ2
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Sample Mean

• Run an experiments
– Take N samples from a pdf (RV)

– Sum them up and divide by N

• Let M be the result of that experiment
– M is a random variable
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Sample Mean
• How close can we expect to be with a sample mean to the true mean?

• Define a new random variable: D = (M - m)2

– Assume independence of sampling process

Root mean squared difference between true mean and sample mean is stdev/sqrt(N)
As number of samples –> infty, sample mean –> true mean

Independence –> E[xy] = E[x]E[y]

Number of terms off
diagonal
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Application: Noisy Images

• Imagine N images of the same scene with
random, independent, zero-mean noise added to
each one
– Nuclear medicine–radioactive events are random

– Noise in sensors/electronics

• Pixel value is s+n

True pixel value

Random noise:
•Independent from one image to the next

•Variance = σ
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Application: Noisy Images

• If you take multiple images of the same scene you have
– si = s + ni

– S = (1/N) Σsi = s + (1/N) Σni

– E[(S - s)2] = (1/N) E[ni 
2] = (1/N) E[ni 

2] - (1/N) E[ni]2 =
(1/N)σ2

– Expected root mean squared error is σ/sqrt(N)

• Application:
– Digital cameras with large gain (high ISO, light sensitivity)
– Not necessarily random from one image to next

• Sensors CCD irregularity

– How would this principle apply

Zero mean
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Averaging Noisy Images Can Improve Quality
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What is image segmentation?
• Image segmentation is the process of subdividing

an image into its constituent regions or objects.

• Example segmentation with two regions:

Input image
intensities 0-255

Segmentation output
0 (background)
1 (foreground)
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Thresholding

• How can we choose T?
– Trial and error
– Use the histogram of f(x,y)

Input image f(x,y)
intensities 0-255

Segmentation output g(x,y)
0 (background)
1 (foreground)
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Choosing a threshold

T=100

Histogram
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Role of noise

T=120
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Low signal-to-noise ratio

T=140
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Effect of noise on image histogram

Images

Histograms

No noise         With noise        More noise 

© 1992–2008  R. C. Gonzalez & R. E. Woods 
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Effect of illumination on histogram

Images

Histograms

f             x          g             =          h

Original           Illumination             Final
 image    image       image

© 1992–2008  R. C. Gonzalez & R. E. Woods 
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Some Extra Things

• Gaussian/normal distribution

• Weighted means



Univ of Utah, CS6640 2009 33

Gaussian Distribution

• “Normal”  or “bell curve”

• Two parameters: µ - mean,  σ – standard deviation
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Gaussian Properties

• Best fitting Guassian to some data is gotten by
mean and standard deviation of the samples

• Occurrence
– Central limit theorem: result from lots of random

variables

– Nature (approximate)
• Measurement error, physical characteristic, physical

phenomenon

•  Diffusion of heat or chemicals



Univ of Utah, CS6640 2009 35

Weighted Expectation from Samples

• Suppose
– We want to compute the sample mean of a “class”

of things (or we want to reduce it’s influence)

– We are not sure if the ith item belongs to this class
or not - “partially belongs”

• probability wi, random variable ri

Sample mean (no weights) Weighted sample mean
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Gaussian Mixture Modeling of Image
Histograms

• K classes, N samples

Class 1

Class 2

Class 3

Intensity

Cl
as

s 
pr

ob
ab

ili
ty



Univ of Utah, CS6640 2009 37

Problem Statement
• Goal: assign pixels to classes based on intensities (label

image)

• Problem: can we simultaneously learn the class
structure and assign the class labels?

Intensity

Histogram of image samples
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Hard vs Soft Assign

• If we knew the probabilities for the classes
(Gaussians) we could assign classes to each data
point/pixel
– Assume equal overall probabilities of classes

Find class that has max probability
for given intensity r at pixel I.
Assign that class label to that pixel

Hard Assign

For each pixel and each class, assign
a (conditional) probability that that
pixel belongs to that class

Soft Assign
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Simultaneous Estimate of Class Probabilities
and Pixel Labels – Iterative Algorithm

• Start with initial estimate of class models

• Compute matrix of soft assignments

• Use soft assignments to compute new weighted mean
and standard deviation for each class

• Use new mean and standard deviation to compute
new soft assignments and repeat (until change in
parameters is very small)
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EM Algorithm – Example
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MRI Brain Example
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Histogram Processing and
Equalization

• Notes
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Histograms

• h(rk) = nk

– Histogram: number of
times intensity level
rk appears in the
image

• p(rk)= nk/NM
– normalized histogram
– also a probability of

occurence
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Histogram
equalization
• Automatic

process of
enhancing the
contrast of any
given image
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Histogram Equalization
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Tuning It Down
• Transformation is weighted combination of CDF and identity

with parameter alpha
α = 0.0 α = 0.2 α = 0.4

α = 0.6 α = 0.8 α = 1.0
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Adaptive Histogram Equalization
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AHE Gone Bad…



Univ of Utah, CS6640 2009 49

Effect of Window Size

10x10 25x25 50x50Orig
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AHE Application: Cell Segmentation
Original AHE Adaptive Filtering

Threshold CC Analysis/Morphology CC Analysis/Watersheds


