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5.4 Deformable Contours

Having discussed how to fit simple curves, we now move on to the general problem of
fitting a curve of arbitrary shape to a set of image edge points. We shall deal with closed
contours only.

A widely used computer vision model to represent and fit general, closed curves
is the snake, or active contour, or again deformable contour. You can think of a snake
as an elastic band of arbitrary shape, sensitive to the intensity gradient. The snake is
located initially near the image contour of interest, and is attracted towards the target
contour by forces depending on the intensity gradient.
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Section 5.4 Deformable Contours 109

= Notice that the snake is applied to the infensity image, not to an image of edge points as
the line and ellipse detectors of the previous sections.

We start giving a description of the deformable contour model using the notion of
energy functional and continuous image coordinates (no pixelization). We then discuss
a simple, iterative algorithm fitting a deformable contour to a chain of egde points of a
real, pixelized image.

5.4.1 The Energy Functional

The key idea of deformable contours is to associate an energy functional to each possible
contour shape, in such a way that the image contour to be detected corresponds to a
minimum of the functional. Typically, the energy functional used is a sum of several
terms, each corresponding to some force acting on the contour.

Consider a contour, ¢ = ¢(s), parametrized by its arc length,? s. A suitable energy
functional, &, consists of the sum of three terms:

&= / (a(S)Econr + B Ecyry + V(S)Einmge) ds, (510)

where the integral is taken along the contour ¢ and each of the energy terms, Econt, Ecury,
and Ej;q6., 18 a function of ¢ or of the derivatives of ¢ with respect to s. The parameters
o, B and y control the relative influence of the corresponding energy term, and can vary
along ¢. Let us now define more precisely the three energy terms in (5.10).

5.4.2 The Elements of the Energy Functional

Each energy term serves a different purpose. The terms Econe and E,, encourage
continuity and smoothness of the deformable contour, respectively; they can be regarded
as a form of internal energy. E;,,q4. accounts for edge attraction, dragging the contour
toward the closest image edge; it can be regarded as a form of external energy. What
functions can achieve these behaviors?

Continuity Term. We can exploit simple analogies with physical systems to devise
a rather natural form for the continuity term:

v H de|?
cont = || 5
ds

2 Given an arbitrary parametrization of a curve, ¢ = ¢(¢), with ¢ the parameter and 0 <t < T, the arc length s
is defined as
f
s= f
0

In the arc length parametrization, the tangent vector de)ds is always a unit vector (Exercise 5.7).

dc
dt
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In the discrete case, the contour ¢ is replaced by a chain of N image points, p1, . . ., pn,
so that

Econt = |Ipi — pi_1ll*

A better form for E,,,, preventing the formation of clusters of snake points, is

Econt = ((—l - le - pi—1“)2 > (511)

with d the average distance between the pairs (p;, p;i—1). If [p; — pi_1]| >> d, we have

Eeont = |Ipi — pi_1l%,

while for smaller distances (5.11) promotes the formation of equally spaced chains of
points and avoids the formation of point clusters.

Smoothness Term. The aim of the smoothness term is to avoid oscillations of the
deformable contour. This is achieved by introducing an energy term penalizing high
contour curvatures, Since E,,,; encourages equally spaced points on the contour, the
curvature is well approximated by the second derivative of the contour (Exercise 5.8);
hence, we can define E_,;, as

Ecury = ”Pi~1 - 2Pi + Pf+1||2- (512)

Edge Attraction Term, The third term corresponds to the energy associated to
the external force attracting the deformable contour towards the desired image contour.
This can be achieved by a simple function:

Eimage = -—”VI”, (513)

where V1 is the spatial gradient of the intensity image 7, computed at each snake point.
Clearly, Ej;40. becomes very small (negative) wherever the norm of the spatial gradient
is large, (that is, near images edges), making € small and attracting the snake towards
image contours. Note that Ejnuge, unlike Econ and Ecyry, depends only on the contour,
not on its derivatives with respect to the arc length.

5.4.3 A Greedy Algorithm

We are now ready to describe a method for fitting a snake to an image contour. The
method is based on the minimization of the energy functional (5.10). First of all, let us
summarize the assumptions and state the problem.

Assumptions

Let I be an image and py, ..., py the chain of image locations representing the initial position
of the deformable contour, which we assume close to the image contour of interest.
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Problem Statement

Starting from pq, ..., pw, find the deformable contour pi,..., py which fits the target image
contour best, by minimizing the energy functional

N

Z (aiEcont + ,31' Ecurv + Yi Einmge) >
i=1

with o, Bi, ¥ > 0, and Econt, Ecurv, and Ejmage as in (5.11), (5.12), and (5.13) respectively.

Of the many algorithms proposed to fit deformable contours, we have selected a
greedy algorithm. A greedy algorithm makes locally optimal choices, in the hope that
they lead to a globally optimal solution. Among the reasons for selecting the greedy
algorithm instead of other methods, we emphasize its simplicity and low computational
complexity.

The algorithm is conceptually simple because it does not require knowledge of the
calculus of variations. It has a low computational complexity because it converges in a
number of iterations proportional to the number of contour points times the number
of locations in which each point can move at each iteration, whereas other snake
algorithms take much longer. o

The core of a greedy algorithm for the computation of a deformable contour con-
sists of two basic steps. First, at each iteration, each point of the contour is moved within
a small neighborhood to the point which minimizes the energy functional. Second, be-
fore starting a new iteration, the algorithm looks for corners in the contour, and takes
appropriate measures on the parameters 8y, ..., By controlling E.,,. Let us discuss
these two steps in more detail.

Step 1: Greedy Minimization. The neighborhood over which the energy functional is
locally minimized is typically small (for instance, a3 x 3 or 5 x 5 window centered
at each contour point). Keeping the size of the neighborhood small lowers the
computational load of the method (the complexity being linear in the size of the
neighborhood). The local minimization is done by direct comparison of the energy
functional values at each location.

Step 2: Corner Elimination. During the second step, the algorithm searches for corners
as curvature maxima along the contour. If a curvature maximum is found at point
p;, B; is set to zero. Neglecting the contribution of E,,, at p; makes it possible to
keep the deformable contour piecewise smooth.

= For a correct implementation of the method, it is important to normalize the contribution
of each energy term. For the terms E,,,; and E.,,,, it is sufficient to divide by the largest

3The calculus of variations is the mathematical technique for determining the minimum of a functional, in
the same way as calculus provides the tools for determining the minimum of an ordinary function.




Chapter 5 More Image Features

value in the neighborhood in which the point can move. For E;;; 4., instead, it may be useful
to normalize the norm of the spatial gradient, |V I}, as

IVI| —m
M—m

with M and m maximum and minimum of || V/|| over the neighborhood, respectively.

The iterations stop when a predefined fraction of all the points reaches a local
minimum; however, the algorithm’s greed does not guarantee convergence to the global
minimum. It usually works very well as far as the initialization is not too far from the
desired solution. Let us enclose the algorithm details in the usual box.

Algorithm SNAKE

The input is formed by an intensity image, /, which contains a closed contour of interest, and by
a chain of image locations, p1, . . . , pw, defining the initial position and shape of the snake.

Let f be the minimum fraction of snake points that must move in each iteration before
convergence, and U(p) a small neighborhood of point p. In the beginning, p; = p; and d = d
(used in Ecop). N

While a fraction greater than f of the snake points move in an iteration:

1. foreachi=1,..., N, find the location of U (p;) for which the functional € defined in (5.10)
is minimum, and move the snake point p; to that location;

2, foreachi =1,..., N, estimate the curvature k of the snake at p; as

k=[pi—1 —2p; + Pi+1l,

and look for local maxima. Set §; = 0 for all p; at which the curvature has a local maximum
and exceeds a user-defined minimum value;

3. update the value of the average distance, 4.

On output this algorithm returns a chain of points p; that represent a deformable contour.

0 We still have to assign values to «;, i, and y;. One possible choice is to initialize all of
them to 1; another possibility is o; = 8; =1 and y; = 1.2, which gives edges attraction more
relevance in the minimization stage.

e To prevent the formation of noisy corners, it may be useful to add an extra condition: point
p; is a corner if and only if the curvature is locally maximum at p; and the norm of the
intensity gradient at p; is sufficiently large. This ignores corners formed too far away from
image edges.

Examples of the application of SNAKE to synthetic and real images are shown in
Figures 5.7 and 5.8.
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