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Overview

* (orrelation and convolution

* Linear filtering
- Swoothing, kernels, models
- Petection
- Perivatives
* Nonlinear filtering
- Median filtering
- Bilateral filtering
- Neighborhood stafistics and nonlocal filtering
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Cross Correlation

* (Operation on image neighborhood and swall ...
- “mask”, “filter”, “stencil”, “kernel”

* Linear operations within a moving window
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Cross Correlation
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Correlation: Technical Petails

* Boundary condifions
- Pad image with amount (a,h)

- Cyclical boundary conditions

PPP ddd
P PP |PPP
PPP ddd

Univ of Utah, S6640 2009




Correlation: Technical Petails

* Boundaries
- Can also modify kernel - no long correlation

* For analysis
- lmage domains infinite
- Data compact (goes to zero far away frowm origin)

glz,y)= DY > w(st)f(z+sy+1)

§=—00 =—00
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Correlation: Properties

+ Shift invariant

g=wof 9(z,y) = w(z,y) o f(z,y)

w(z, y)of (@—zo,y—vo) = D> Y w(s,t)f(z—zo+s,y—yo+t) = g(z—z0, y—yo)

s=—o0 t=—00

. l.ihear wo (ae+ Bf) =awoe+ pwo f

Compact notation
C wf — WO f
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Filters: Considerations

* Norwalize
- Sums to one
- Sums to zero (some cases, later)

+ Symwetry
- Left, right, up, down
- Rotational

» Special case: auto correlation
Crp=1Ffof
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Examples 1 }




Examples 2
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Smoothing and Noise

Noisy image 5x9 box fitter
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Noise Analysis

+ (onsider an a simple image I() with additive,
uncorrelated, zero-mean noise of variance s

» What is the expected rms error of the
corrupted image?

+ |f we process the image with a box filter of size
2a+1 what is the expected error of the filtered
image?

1 ~ 2 :
RMSE = (W (X%:GD (I(X, y) — I(x, }’)> ) [
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Cross Correlation Continvous Case

+ £ w wust be “integrable”
- Must die off fast enough so that integral is finite

9(z,y) / / w(s,t)f(x+ s,y +t)dsdt

+ Same properties as discretfe case
- Linear
- Shift invariant
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Other Filters
+ Disk

- Circularly symwetric, jagged in discrete case
+ Gaussians

- CGircularly symwetrie, smooth for large enough
stdev

- Must normalize in order to sum fo one

» Perivatives - discrete/finite differences
- Operators
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Pattern Matching/Detection

* The optimal (highest) response from a filter is
the autocorrelation evalvated at position zero

max Cy () = Cgs(0) = [ £(9)f(s)ds

+ A filter responds best when it matches a
pattern that looks itself

+ Strateqy

- Petect objects in images by correlation with
“matched” filter
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Match Filter Example




Match Filter Example




Match Filter Example




Derivatives: Finite Differences

of 1

o ~ o7 (f(z+1y) — f(z—1,9))

~ _ 1

1

of 2
Yy 1
2
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Derivative Example

o OO




Convolution

Discrete o
g(xay) — w(x7y) * f(x’y) — Z Z w(s,t)f(a: —5Y— t)
s=—at=-b
Continvous

s@y) = w@ ) S = [ [ wls st sy tdsd

Sawme as cross correlation with kernel transposed around each
axis

The two operations (correlation and convolution) are the same
if the kernel is symwetric about axes

g=wof=w"xf w™ reflection of w
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Convolution: Properties

Shift invariant, linear
Cummutative

fxg=gxf
Associative
fx(gxh)=(fxg)*h

Others (discussed later):
- Perivatives, convolution theorem, spectrum...
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Computing Convolution

* Compute time

- MxM wask

- NxN image
» Special case: separable

Two 1D kernels
f_%

W = Wy * Wy w*f:(wm*wy)*f:wm*(wy*f)
)

~

~  0(M2N2) “for” loops are nested 4 deep

Y Y
0(M2N2) 0(MN?)

\ J \
H
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Separable Kernels

* Examples
- Box/rectangle
- Bilinear interpolation
- Combinations of partial
derivatives
« d2f/dxdy

- Gaussian

* Only filter that is both
circularly symwetric and
separable

* (ounter examples
- Disk
- Cone
- Pyrawid
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Nonlinear Methods For Filtering

* Median filtering
+ Bilateral filtering
* Neighborhood stafistics and nonlocal filtering
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Median Filtering

For each neighborhood in image
- Sliding window
- Usually odd size (symwmetric) 5x9, 7x7....

Sort the greyscale valves
Set the center pixel to the median

Important: use “Jacobi” updates
- Separate input and output buffers
- All stafistics on the original image old

new

Univ of Utah, S6640 2009
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Median Filter

+ |ssues

- Poundaries
* Compute on pixels that fall within window

- Computational efficiency
» What is the best algorithm?

* Properties
- Rewmoves outliers (replacement noise - salt and pepper)

- Window size controls size of structures
- Preserves straight edges, but rounds corners and features
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Median vs Gaussian

| Test . Test

+ Gaussian
Noise

%x3 Median

23



Replacement Noise

*  Also: “shot noise”, “saltépepper”
+ Replace certain Z of pixels with samples from pdf
+ Best strategy: filter to avoid outliers




Swoothing of S&P Noise

* [t’s not zero mean (locally)
* Averaging produces local biases
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Median Filtering

Median 3x3 Median 5x9
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Median Filtering

Median 3x3 Median 5x9
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Median Filtering

+ |terate

Median 3x3 2x Median 3x3
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Median Filtering

+ lmage model: piecewise constant (flat)
OOQ@O.’%..

Y Y

¥ ~ Y

Ordering Ordering

X JOXOAQ, X X XOAQ@

! !
ot~ O ot~ @)
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Order Statistics

+ Median is special case of order-statistics filters

* |nstead of weights based on neighborhoods, weights are based
on ordering of data

Neighborhood Ordering
XUX?!"':XN X(l] < X(z] < ---SX(N]

F“Tel' F(Xh Xg, anm .,XN) = [11X(1] + ﬂgX(g) + = + CIENX(N]

Neighborhood average (box) Median filter
a; = 1/N 1 i=(N+1)/2
=10 otherwise

Trimmed average (outlier removal)

a.:{ /M (N—-M+1)/2<i<(N+M+1)/2

0 otherwise

Univ of Utah, S6640 2009
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Piecewise Flat Image Models

+ |mage piecewise flat -> average only within
similar regions

* Problem: don’t know region boundaries
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36



Piecewise-Flat Image Models

+ Assign probabilities to other pixels in the image
belonging to the same region

* Two considerations

- Distance: far away pixels are less likely to be same
region

- lntensity: pixels with different intensities are less
likely o be same region
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Piecewise-Flat Images and Pixel Averaging

Distance (kernel/pdf) Distance (pdf)
G(x; — x;) H(fi — [;)
A A
Prob pixel Prob pixel
belongs to belongs to
same same
region as i region as i
position intensity
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Bilateral Filter

Neighborhood - sliding window
Weight contribution of neighbors according to:

fi kit ) fiGxi — x)H(fi — f5)
jeN

ki =) G(x; — )

JEN
G is a Gaussian (or lowpass), as is #, N is neighborhood,

- Often use Glr,) where r; is distance between pixels

- Update must be normallzed for the samples used in this (particular)
summation

Spatial Gaussian with extra weighting for intensity

- Weighted average in neighborhood with downgrading of intensity
outliers

Univ of Utah, S6640 2009
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Bilateral Filtering

Gaussian Blurring Bilateral

Univ of Utah, S6640 2009

40



Bilateral Filtering

Gaussian Blurring Bilateral
Univ of Utah, ($6640 2009 41



Nonlocal Averaging

+ Recent algorithm
- NL-means, Bavdes et al., 2009
- UINTA, Awate & Whitaker, 2009

+ Different model
- No need for piecewise-flat

- Images consist of pixels with similar neighborhoods

+ Scattered around
- General area of a pixel
- All around

* |dea
- Average pixels with similar neighborhoods

Univ of Utah, CS6640 2009
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Nonlocal Averaging

+ Strategy:

- Average pixels to alleviate noise

- Cowmbine pixels with similar neighborhoods
* Formulation

- ;; - vector of pixels values, indexed by j, from
neighborhood around pixel i

— = Mi,j

T - vector
Univ of Utah, ($6640 2009 43




Nonlocal Averaging Formulation

+ DPistance between neighborhoods
dik = d(ni,ng) = ||ni — nk|| = (i(m,j - nk,j)2>

=1

+ Kernel weights based on distances

d2 .
Y]

wi,; = K(dij) = e 22
+ Pixel values: f.

Univ of Utah, S6640 2009
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Averaging Pixels Based on Weights

* For each pixel, i, choose a set of pixel locations
-j=1, ..M

- Average them together based on neighborhood
weights

gi * M Zwi,jfj

Zj:l Wi,j j=1
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Nonlocal Averaging
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Some Details

» Window sizes: good range is 9x5->11x11

* How to choose samples:

- Random samples from around the image
+ UINTA, AwatesWhitaker

- Block around pixel (bigger than window, e.g.
51x51)

+ NL-wmeans

+ [terate
- UNITA: swmaller updates and iterate

Univ of Utah, CS6640 2009
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NL-Means Algorithm

* For each pixel, p
- Loop over set of pixels nearby

- Compare the neighorhoods of those pixels to the
neighborhood of p and construct a set of weights

- Replace the value of p with a weighted combination
of values of other pixels

+ Repeat... but 1 iteration is pretty good
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Noisy image (range 0.0-1.0) Bilateral fitter (3.0, 0.1)
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Bilateral filter (3.0, 0.1) NL weans (7, 31, 1.0)
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Bilateral filter (3.0, 0.1) NL eans (7,31,1.0)
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Less Noisy Example
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Less Noisy Example

19,
19,9
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Checkerboard With Noise
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Quality of Penoising

+ g, joint entropy, and RMS- error vs. number of
iterations

Effect of UINTA

100 . . ; .
\ — Gaussian Standard-Deviation

\ --=- Joint Entropy
N -~~~ RMS Error

80r

% Decrease From Initial

0 20 40 60 80 100
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MRI Head
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Fingerprint
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Filtered

Original
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Filtered

Results
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Results
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Fractal
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Piecewise Constant

+ Several 10s of Herations
* Tends to obliterate rare events
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