CS 5150/6150: Assignment 6

Due: Nov 23, 2011

This assignment has 5 questions, for a total of 100 points and 0 bonus points. Unless otherwise specified, complete and reasoned arguments will be expected for all answers.

Question 1: Pebbling a graph	
Question 2: Solving SAT	
Question 3: Binary Search	[20]
 (a) [10] I'm given a collection of numbers X = {x₁,, x_n} that all lie in [0, 1]. I wish to build an structure on these numbers. Specifically, for a query y ∈ [0, 1] I wish to return some x ∈ X su or NONE if no such number exists. Give an algorithm that can process a query correctly in time O(log ¹/_ε). You may preprocess the in a reasonable amount of time. 	$ \text{ uch that } x - y \le \epsilon, $
(b) [10] In the previous example, my search incurred an <i>absolute</i> error. But suppose I want <i>rela</i> now that I'm given a collection X of n numbers in the range [1M]. Given a query y, I'd like $x \in X$ such that $x \le y \le x(1 + \epsilon)$ or NONE if no such point exists. Given an algorithm that query in time $O(\log \log M + f(1/\epsilon))$, for some function f. Again, you may preprocess the in	to return an answer t can process such a
Question 4: Partition	
Question 5: Approximate Graph Coloring	notes/30-approx.