BIOEN 6330 Principles of Magnetic Resonance Imaging Homework #2 Due Tuesday, February 9, 2010

Textbook reference: Chapters 2 – 4. *Show all work and attach MATLAB code used.*

- 1. Compute the proton magnetization density (i.e., M_o for 1 ml) at 3.0 T for a tissue (in a live person) that is 80% water.
- 2. Derive the equilibrium magnetization for N spin-3/2 nuclei placed inside a magnetic field B_0 . Do *not* simply plug numbers in the general formula.
- 3. (a) Derive the expression for the steady-state longitudinal magnetization M_z^{ss} (ignoring T_2 effects) for a "train" of α pulses as a function of TR and T_1 .
 - (b) For given TR and T_1 , what α should be used to maximize the *observed* signal?
 - (c) It takes several RF pulses before the steady state condition is achieved. However, variable flip angles can be used to obtain constant signal. Suppose a TR of 0.5 sec is used for a tissue having T_1 of 1.0 sec, compute the flip angles for the first 3 RF pulses that would yield the same *observed* signal as in the steady state condition.
- 4. In a spin-echo T_2 measurement experiment, the following *magnitude* signals (arbitrary units) were observed for two tissues:

TE (msec)	10	20	30	60	120
tissue 1	467	351	197	67.9	3.24
tissue 2	1213	1058	974	641	354

- (a) Use an appropriate curve-fitting technique to estimate the M_o and T_2 of each tissue. Plot the signal against *TE*, showing both the measurement points and fitted results.
- (b) Solve analytically for the *TE* to obtain maximum contrast between the two tissues.
- 5. In a *separate* inversion-recovery T_1 measurement experiment, the following *magnitude* signals (arbitrary units) were observed for two tissues:

TI (msec)	100	200	400	800	1600	3200
tissue 1	889	684	461	99.4	385	780
tissue 2	261	217	108	118	254	339

- (a) Use an appropriate curve-fitting technique to estimate the M_o and T_I of each tissue. Plot the signal against *TI*, showing both the measurement points and fitted results.
- (b) Solve analytically for the inversion times that can be used to eliminate (or "null") the signal from each tissue.

Extra Credit (10 points, all 3 parts required to qualify):

- (a) Transform the Bloch equations into the rotating reference frame that rotates *clockwise* about the z-axis at a frequency ω , writing the rate equations separately for M_x , M_y , and M_z . (Hint: Refer to Section 3.1 of the text.)
- (b) Solve numerically and plot (e.g., use MATLAB's ODE solver and plot3 commands) the rotating-frame trajectory of the magnetization vector with initial condition $\vec{M} = M_0 \vec{z}$ subject to B_0 of 1.5 T and the excitation pulse $\vec{B}_1(t) = B_1 \cos \omega t \vec{x} B_1 \sin \omega t \vec{y}$, where $B_1 = 0.05$ G, $0 \le t \le 1.0$ ms, and ω is on resonance.
- (c) Repeat part (b) for the case when ω is 1.0 kHz off-resonance.