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Abstract. We present a new geodesic approach for studying white mat-
ter connectivity from diffusion tensor imaging (DTI). Previous approaches
have used the inverse diffusion tensor field as a Riemannian metric and
constructed white matter tracts as geodesics on the resulting manifold.
These geodesics have the desirable property that they tend to follow the
main eigenvectors of the tensors, yet still have the flexibility to deviate
from these directions when it results in lower costs. While this makes
such methods more robust to noise, it also has the serious drawback that
geodesics tend to deviate from the major eigenvectors in high-curvature
areas in order to achieve the shortest path. In this paper we formu-
late a modification of the Riemannian metric that results in geodesics
adapted to follow the principal eigendirection of the tensor even in high-
curvature regions. We show that this correction can be formulated as
a simple scalar field modulation of the metric and that the appropriate
variational problem results in a Poisson’s equation on the Riemannian
manifold. We demonstrate that the proposed method results in improved
geodesics using both synthetic and real DTI data.

1 Introduction

Front-propagation approaches [11, 10, 4, 8, 13, 3] in diffusion tensor imaging (DTI)
infer the pathways of white matter by evolving a level set representing the time-
of-arrival of paths emanating from some starting region. The direction and speed
of this evolving front at each point is determined by some cost function derived
from the diffusion tensor data. One such method, first proposed by O’Donnell et
al. [10], is to treat the inverse of the diffusion tensor as a Riemannian metric, and
the paths in the propagating front as geodesics, i.e., shortest paths, under this
metric. This makes intuitive sense: traveling along the large axis of the diffusion
tensor results in shorter distances, while traveling in the direction of the small
axes results in longer distances. Therefore, shortest paths will tend to prefer to
remain tangent to major principal eigenvector of the diffusion tensor. While this
is a powerful framework for computing white matter pathways, these geodesics
have the serious deficiency that in high-curvature tracts they tend to deviate
from the eigenvector directions and take straighter trajectories than is desired.
That is, in high-curvature regions, the incremental cost of following the tensor
field is overcome by the cost associated with the longer (more curved) path. In
this paper we develop a new Riemannian metric, that relies on diffusion tensor
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data but resolves this problem by adapting to high-curvature tracts, resulting in
geodesic paths that more faithfully follow the principal eigenvectors.

1.1 Background

Front-propagation methods offer several advantages over conventional tractog-
raphy [9, 1], in which streamlines (sometimes called tracts) are computed by for-
ward integration of the principal eigenvector of the tensor. One major problem
with tractography is that imaging noise causes errors in the principal eigenvec-
tor direction, and these errors accumulate in the integration of the streamlines.
The front-propagation algorithms are more robust to noise than tractography
because the wavefront is not constrained to exactly follow the principal eigen-
vector of the tensors. Although the principal eigenvector of the tensor is the
preferred direction for paths to travel, the minimal-cost paths may deviate from
these directions if it decreases the overall cost.

Another disadvantage to tractography is that it has difficulty in cases where
the goal is to find pathways between two regions. In this scenario, streamlines
begin in one of the regions and are accepted only if they eventually pass through
the desired ending region. However, several factors conspire to often result in
only a small fraction of fibers being accepted. These factors include accumu-
lated errors in the streamlines throwing off the final destination and stopping
criteria being triggered, either by low anisotropy tensors, due to noise or partial
voluming, or sudden direction changes caused by noise. As shown by Fletcher et
al. [3], front propagation methods can be used to segment white matter tracts
by solving the geodesic flow from both regions and combining the resulting cost
functions. This has the advantage that the solution will not get stuck in regions
of noisy data or low anisotropy. This type of analysis is only appropriate if the
endpoint regions are well known to be connected by a white matter tract be-
cause a white matter path will always be found. Although, if a “false positive”
connection is found, this should be detectable as an unusually high cost function
incurred by that pathway.

An alternative approach that deals with the problems arising from image
noise is probabilistic tractography [6, 2, 12, 7], in which large numbers of stream-
lines are initiated from each seed voxel and are integrated along directions deter-
mined stochastically at each point. However, this is a computationally-intensive
procedure (typically requiring several to many hours), whereas efficient imple-
mentations of front-propagation solvers are much faster (typically requiring sev-
eral seconds). The graphics processing unit (GPU) implementation by Jeong et
al. [5] even runs at near real-time speeds. Also, probabilistic tractography suf-
fers from the same problems with streamlines stopping in noisy or low-anisotropy
regions, leading to artificially low (or even zero) probabilities of connection.

1.2 Properties of Front-Propagation

Despite the advantages that front-propagation methods have over tractography,
there is one serious drawback. Figure 1 shows a diagram illustrating the prob-
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Fig. 1. Diagram of various pathways between two points in a curved tensor field: the
desired path following the principal eigenvectors (blue), the shortest path under the
Euclidean metric (red), and the compromise path taken when using the inverse tensor
field as metric (magenta).

lem. In a curved tensor field, one would typically prefer a path that follows,
to whatever extent possible, the major eigenvectors of the tensors (shown in
blue). The shortest path, using a Euclidean metric (i.e., ignoring the tensors)
follows a straight line, except at constraints (shown in red). The typical geodesic
with a local, anisotropic metric (e.g., using the inverse tensors as metric), will
find a compromise between these two (shown in magenta). Although the ma-
genta geodesic is taking infinitesimally higher-cost steps than the blue curve, its
overall length under the inverse-tensor metric is shorter.

This issue has been addressed previously [3] by “sharpening” the tensor, i.e.,
increasing the anisotropy by taking the eigenvalues to some power and renor-
malizing them. This increases the cost of moving in directions other than the
principal eigenvector. In fact, the first front-propagation algorithm proposed by
Parker et al. [11] essentially takes this sharpening strategy to its limit, which
results in a cost function that is the dot product of the level set velocity with
the principal eigenvector. However, the amount of sharpening is an ad hoc pa-
rameter, and sharpening is applied equally across the image, rather than taking
the curvature of the tract into account. Sharpening that increases with the cur-
vature of the tract could be more effective. Another downside of sharpening is
that it changes the shape of the tensor and reduces the ability to deviate from
the principal direction, thus decreasing the desired robustness to noise. It is not
clear how to set the amount of sharpening to find the best balance between
robustness to noise versus faithful following of the eigenvectors.

Our proposed solution to this problem is to develop a new Riemannian met-
ric that is a modulated version of the inverse diffusion tensor field. This metric
is able to adaptively correct the geometry of geodesic curves in high-curvature
regions so that they more closely follow the principal eigenvectors of the ten-
sors. The resulting algorithm requires solving for an unknown scalar field, which
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requires solving a Poisson equation on the Riemannian manifold—however it
does not require any arbitrary choice of parameters. We show that this solution
is sufficient to eliminate the problem with geodesics in high-curvature regions
described above and illustrated in Figure 1, and we demonstrate the corrected
behavior of geodesics on both synthetic and real DTI data.

2 Adaptive Riemannian Metrics

In this section we derive a procedure for computing geodesic flows in diffusion
tensor data that resolves the major drawback of front-propagation approaches
outlined above. Namely, the geodesics generated by our method more closely
conform to the principal eigenvector field. Rather than directly using the inverse
of the diffusion tensor as the Riemannian metric, as is typically done, we compute
a spatially-varying scalar function that modulates the inverse tensor field at each
point and use this as our metric. We show that this scalar field can be chosen
in such a way that the resulting geodesic flows have the desired property of
following the eigenvector directions. This entails solving the classical variational
problem for geodesic curves, with the exception that the Riemannian metric
is scaled by a positive function. In the resulting Euler-Lagrange equation, we
then solve for the particular scaling function that causes geodesics to follow the
desired directions. In the end, we see that the appropriate function is computed
by solving a Poisson equation on the Riemannian manifold.

2.1 The Metric Modulating Function

On a Riemannian manifold, M , the geodesic between two points p, q ∈ M is
defined by the minimization of the energy functional

E(γ) =

∫ 1

0

〈T (t), T (t)〉 dt,

where γ : [0, 1] → M is a curve with fixed endpoints, γ(0) = p, γ(1) = q,
T = dγ/dt, and the inner product is given by the Riemannian metric. In our
case the manifold M ⊂ R3 is the image domain, and the Riemannian metric can
be equated with a smoothly-varying, positive-definite matrix g(x) defined at each
point x ∈M . Letting TxM denote the tangent space at a point x ∈M , the inner
product between two tangent vectors u, v ∈ TxM is given by 〈u, v〉 = utg(x)v.
As mentioned above, previous front-propagation approaches to DTI have used
the inverse of the diffusion tensor field as a metric, i.e., g(x) = D(x)−1 (or
a sharpened or modified version), and this choice of metric leads to geodesics
that bend inwards around curves. To rectify this problem, we will scale the
Riemannian metric by a positive function eα(x), which results in the new geodesic
energy functional

Eα(γ) =

∫ 1

0

eα(γ(t)) 〈T (t), T (t)〉 dt. (1)
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We call the function eα the metric modulating function because it scales the
Riemannian metric at each point. The exponentiation of α is to both ensure that
this scaling factor is positive and to make the solution to the variational problem
comes out simpler in the end. While it is possible to envision more complicated
modifications of the metric tensor, there are two reasons why we choose to mod-
ify the metric in this fashion. First, the shape of the diffusion tensor provides
information about the relative preference in diffusion directions, and a scaling
operation allows us to keep this information intact. Second, the modification in
(1) is sufficient to correct for the effects of curvature. In other words, if the ten-
sors are following a curved path, but not changing shape, the metric modulating
function can be chosen in such a way that the resulting geodesics perfectly fol-
low the principal eigenvector. We demonstrate this property empirically using a
synthetic example in Section 3.

2.2 Computing the Geodesic Equation

To minimize the new geodesic energy functional given in (1), we use two tools
of Riemannian geometry. The first is the affine connection ∇XY , which is the
derivative of a vector field Y in the direction of a vector field X. We’ll write
the vector fields X,Y in terms of a coordinate system (x1, x2, . . . , xn); note that
superscripts here are indices, not exponentiation. We write X =

∑
aiEi and

Y =
∑
bjEj , where Ei = ∂

∂xi are the coordinate basis vectors, and ai and bj are
smooth coefficients functions. Then the affine connection is given by

∇XY =
∑
k

(∑
i

ai
∂bk

∂xi
+
∑
i,j

Γ kija
ibj

)
Ek.

The terms Γ kij are the Christoffel symbols, which are defined as

Γ kij =
1

2

n∑
l=1

gkl
(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
,

where gij denotes the entries of the Riemannian metric, g, and gij denotes the
entries of the inverse metric, g−1. Again, the intuition behind this affine connec-
tion is that it is like a directional derivative of vector fields. In the special case of
Y = X, ∇XX measures how the vector field X bends along its integral curves.

The second tool that we employ is the Riemannian gradient of a smooth
function f , which we denote grad f . The gradient of a function on a Riemannian
manifold looks like the standard Euclidean gradient, except with a multiplication
by the inverse of the metric, i.e.,

grad f = g−1

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
.

The gradient is defined in this way so that the inner product with a unit vector
u results in the usual directional derivative, ∇uf = 〈grad f, u〉.
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Using the affine connection and Riemannian gradient, we take the variational
of the energy (1). LetW be a vector field defined along the curve γ that represents
an arbitrary perturbation of γ, keeping the endpoints fixed, i.e., W (0) = W (1) =
0. To simplify notation, we will suppress the parameter t in most of the following.
Then the variational of the energy functional is

∇WEα(γ) = ∇W
∫ 1

0

eα 〈T, T 〉 dt

=

∫ 1

0

∇W eα · 〈T, T 〉+ eα∇W 〈T, T 〉 dt

=

∫ 1

0

〈W, grad eα〉 · 〈T, T 〉+ 2 〈∇WT, eαT 〉 dt

=

∫ 1

0

〈
W, eα‖T‖2 gradα

〉
− 2 〈W,∇T (eαT )〉 dt

=

∫ 1

0

〈
W, eα‖T‖2 gradα− 2eαdα(T ) · T − 2eα∇TT

〉
dt.

Now, setting this last line to zero and dividing through by eα, results in the
geodesic equation

gradα · ‖T‖2 = 2∇TT + 2dα(T ) · T. (2)

If we assume, without loss of generality, that geodesics have unit-speed param-
eterization, i.e., ‖T‖ = 1, then ∇TT will be normal to T . Now, assuming this
parameterization and taking the inner product with T on both sides of (2), we
obtain

〈gradα, T 〉 = 2dα(T ) = 2〈gradα, T 〉.

This can only hold if the tangential component, 〈gradα, T 〉 = 0. Therefore, the
last term in (2) must vanish, and we get the final, simplified geodesic equation

gradα = 2∇TT. (3)

2.3 Computing the Metric Modulating Function

Now that we have the geodesic equation for the modulated Riemannian metric,
we introduce the property that we would like to enforce: that the tangent vectors
T follow the unit principal eigenvector directions, V . Satisfying this property
directly would result in the equation gradα = 2∇V V , which we would need to
solve for α. However, given an arbitrary unit vector field V , there may not exist
such a function with the desired gradient field.

Instead we minimize the squared error between the two vector fields, i.e., we
minimize the functional

F (α) =

∫
M

‖gradα− 2∇V V ‖2 dx. (4)
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As before, the norm here is given by the Riemannian metric. The Euler-Lagrange
solution to this problem is derived similarly to the classical Poisson equation,
with the exception that the div and grad operators used are the Riemannian
versions. The divergence of X on M is defined in coordinates as

div(X) =
1√
|g|

∑
i

∂

∂xi

(√
|g|ai

)
,

where |g| is the determinant of the Riemannian metric, which represents the ap-
propriate volume element. Finally, the equation of the metric modulating func-
tion that minimizes (4) is given by

∆α = 2 div (∇V V ) , (5)

where ∆α = div(gradα) is the Laplace-Beltrami operator on M . The appropri-
ate boundary conditions for this problem are the Neumann conditions,

∂α

∂−→n
= 〈gradα,−→n 〉 = 〈2∇V V,−→n 〉.

A closer look at (5) reveals that it is nothing but an anisotropic Poisson
equation on the image domain. The right-hand side is constant in α, and the
Laplace-Beltrami operator on the left-hand side can be expressed as ∇· (A∇α),
where A is a symmetric positive-definite matrix and ∇· and ∇ are the usual
Euclidean divergence and gradient operators in the image domain. We solve
this equation using a finite-difference scheme with a Jacobi iteration. There are
more efficient solvers, such as conjugate gradient or multigrid methods, but the
application of these methods to the proposed anisotropic operator with irregular
boundary conditions remains an area of future development.

3 Results

In this section we demonstrate the improvement of geodesic flows generated by
our metric modulating method compared to those computed with the inverse-
tensor metric using both synthetic and real DTI data (Figure 2). Our measure
of quality is how well the geodesics from the two methods follow the principal
eigenvectors of the tensors. However, front-propagation methods do not explicitly
compute the geodesic curves, but instead compute a function u(x), which is the
time-of-arrival of the geodesic flow at the point x. The characteristic vectors
of u(x) give the tangent vectors along the geodesic. In the case of the inverse-
tensor metric, the characteristic vectors are given by T (x) = D(x)−1∇u(x).
In the case of our modulated metric, the characteristic vectors are given by
T (x) = eα(x)D(x)−1∇u(x). Here ∇u(x) indicates the Euclidean gradient, which
we approximate with finite differences, as described in [4].

We compute u(x) by solving a Hamilton-Jacobi equation using the Fast It-
erative Method, as described in [3]. For visualization purposes, we compute the
geodesics from both methods by integrating their characteristic vectors. Because
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Fig. 2. A slice of the synthetic curved tensor field (left). We subsample the tensor field
by a factor of 4 both horizontally and vertically in order to visualize it. A slice of
the color-coded principal eigenvector image (right). The area inside the red box is the
region of interest used in the experiments.

these vectors always point away from the source region, we compute geodesic
curves by integrating the characteristic vectors backward from any target point
in the tensor field. These integral curves of the negative characteristic vectors
are guaranteed to end up in the source region.

3.1 Synthetic Data

To test our method, we generate a synthetic curved tensor field which has similar
properties to many white matter tracts in the brain. The synthetic data is the
top half of a solid torus, where the tensors rotate along the large circle of the
torus. The torus has smaller radius of 16 voxels and larger radius of 48 voxels.
Each tensor in the tensor field has the same eigenvalues (3,1,1). A middle slice
of the tensor field is shown in Figure 2. The source region for the geodesic front-
propagation is shown in white.

In Figure 3, we compare the characteristic vector field (shown in blue) with
the principal eigenvector field (shown in red). On the left, the characteristic
vector field is computed using the inverse-tensor metric without modulation. On
the right, the characteristic vector field is computed using the metric scaled by
our computed metric modulating function. Comparing the two pictures, we can
clearly see the characteristic vectors T follow the principal eigenvectors V much
better in the right picture. Around the boundary, some characteristic vectors
are pointing outwards in both cases. This is caused by aliasing: geodesics at the
boundary must take sharp turns around voxel corners.

In this synthetic example, we can compute the analytic solution of α(x),
which is α(x) = −2 ln r(x) + C, where r(x) is the distance from x to the center
of the torus, and C is some constant. We computed the difference between our



Adaptive Riemannian Metrics for Tracking White Matter 9

Fig. 3. Tangent vectors of the geodesics (blue) under the inverse-tensor metric with-
out modulation (left) and with modulation (right). The red vectors are the principal
eigenvectors of the diffusion tensors. We subsample the vector field by a factor of 4
both horizontally and vertically in order to visualize it.

Fig. 4. The geodesics emanating from the targets points (right side of the torus) to the
source region (white). We subsample the tensor field by a factor of 4 both horizontally
and vertically in order to visualize it.

numerical solution and the analytic α(x), and the result is within numerical error.
We also compute the root mean square error (RMSE) of the angle between the
geodesic tangent vectors and principal eigenvectors. The RMSE with modulation
is 10.6 degrees compared to 54.0 degrees without modulation. Most of the RMSE
with modulation is caused by the aliasing artifacts at the boundary.

In Figure 4 we visualize the integrated geodesics between some target points
(on the right side of the torus) and the source region (shown in white). The left
picture shows the geodesics under the metric as the inverse diffusion tensor field.
The right picture shows the geodesics under our modulated metric. Under the
modulated metric, the geodesics follow the principal eigenvectors of the tensor
field and arrive at a point inside the source region. In contrast, the geodesics
under the inverse-tensor metric without modulation, starting from the same
target points, take a shortcut and end up at the closest point inside the source
region by closely following the boundary constraints.
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Fig. 5. Tangent vectors of the geodesics (blue) under the inverse-tensor metric without
modulation (left) and with modulation (right) for a part of the corpus callosum. The red
vectors are the principal eigenvectors of the diffusion tensors. The fractional anisotropy
(FA) image is shown in the background.

3.2 Real Data

We now show the results of our method applied to a corpus callosum tract from a
DTI of a healthy volunteer. DTI data were acquired on a Siemens Trio 3.0 Tesla
Scanner with an 8-channel, receive-only head coil. DTI was performed using a
single-shot, spin-echo, EPI pulse sequence and SENSE parallel imaging (under-
sampling factor of 2). Diffusion-weighted images were acquired in twelve non-
collinear diffusion encoding directions with diffusion weighting factor b=1000
s/mm2 in addition to a single reference image (b 0). Data acquisition parameters
included the following: contiguous (no-gap) fifty 2.5mm thick axial slices with
an acquisition matrix of 128 x 128 over a FOV of 256 mm (2 x 2 mm2 in-plane
resolution), 4 averages, repetition time (TR) = 7000 ms, and echo time (TE) =
84 ms. Eddy current distortion and head motion of each data set were corrected
using an automatic image registration program [14]. Distortion-corrected DW
images were interpolated to 1 x 1 x 1.25 mm3 voxels, and six tensor elements
were calculated using least squares. The tensor upsampling is done only for the
purposes of numerical computations on the voxel grid; a finer grid results in
higher numerical accuracy.

In Figure 5, we compare the characteristic vector field T (shown in blue) with
the principal eigenvector field V (shown in red) of the corpus callosum. In the
left picture, the characteristic vector field is computed using the inverse-tensor
metric. In the right picture, the characteristic vector field is computed using
our modulated metric. After the modulation, the characteristic vectors tend to
follow the main eigendirections. As in the synthetic example, some characteristic
vectors are pointing outwards near the boundary, which is caused by aliasing.
Again, we compute the root mean square error (RMSE) of the angle between the
geodesic tangent vectors and principal eigenvectors. The RMSE with modulation
is 23.0 degrees compared to 37.3 degrees without modulation. Much of the RMSE
with modulation is caused by the aliasing artifacts at the boundary.

In Figure 6, as in the synthetic example, we track backward from the target
points, which are in the middle of corpus callosum in this case to the source region
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Fig. 6. The geodesic flow in the corpus callosum from the target points (genu of the
corpus callosum) to the source region (in the right frontal forcep). The background
images are the FA image and the diffusion tensor field.

on the upper-left of the pictures. Again, the geodesics under the inverse-tensor
metric take a shortcut and merge into the closest point in the source region.
In contrast, the geodesics under our modulated metric more faithfully follow
the tensor directions. In the latter case, geodesics are drawn together slightly
because the tensor field is thinner around the corner of the corpus callosum.

4 Conclusion and Future Work

We presented a new geodesic front-propagation method for computing white
matter pathways in DTI and showed that it results in geodesics that more faith-
fully follow the principal eigenvectors of the diffusion tensor field, especially in
tracts with high curvature. There are two areas we have identified as potential
future work. First, the aliasing artifacts along the white matter boundary de-
scribed in Section 3 have, to the best of our knowledge, not been addressed in
the literature. One possible solution to this problem would be to use a fuzzy
boundary where the cost function increases to infinity along the normal di-
rection. Currently the cost function changes instantaneously to infinity at the
boundary (i.e., moving outside the boundary is infinite cost). Another issue is
that the geodesics in front-propagation techniques can, in some cases, cross an
edge between two adjacent tracts. We can envision a modification to our metric
modulating function, eα, that would increase the penalty for passing across such
edges. This could be achieved by scaling the metric by a larger amount at edges,
i.e., increasing the distances in these directions.
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