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Geodesic Tracking on DTI

Given

A starting point p

A local cost function f(x, v)

min
∫ 1

0
f(x, v)dt

Algorithm:

1 Compute the time-of-arrival function
u by propagating from p

2 Compute ‘∇u’, from any point q
integrate ‘∇u’ backward to p

Output:

Time-of-arrival function u

The geodesics between p and any
other point q
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Inverse Diffusion Tensor as Riemannian Metric

Diffusion Tensor:
D = RΣR−1
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Riemannian Metric:
g = D−1 = RΣ−1R−1
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The corresponding cost function f = 〈T (t), T (t)〉g = T (t)TD−1T (t).
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Our Contribution: Improved Geodesic Tracking

Goal

We want the geodesics closely conform to the principal eigenvector field.

How?

We compute a spatially-varying scalar function,α, that modulates the
inverse tensor field at each point.

g = eαD−1

We call the function eα the metric modulating function.
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Background: Riemannian Manifold and Geodesic

p q
0 1

M

t T(t)
T(t) T(t)T(
t)

On a Riemannian manifold,
M , the geodesic between two
points p, q ∈M is defined by
the minimization of the
energy functional

E(γ) =

∫ 1

0
〈T (t), T (t)〉g dt.

Euler-Lagrange Equation is
∇TT = 0.

The symbol ∇ here is affine connection.
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Background: Affine Connection

Affine connection, ∇TY , is the derivative of a vector field Y in the
direction of a vector field T .

In the special case of Y = T ,

∇TT measures how the vector field T bends along its integral curves.

∇TT = 0 means that tangent vectors, T , remain parallel if they are
transported along the geodesic.
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Background: Affine Connection ∇TT = 0

p q
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Compute the Geodesic by Solving the Eikonal Equation

A geodesic which minimize E(γ(t)) also satisfies the Eikonal equation.

∇uT g−1∇u = 1 (1)

T (t) ∝ g−1∇u (2)

u is the time-of-arrival function from a starting location p.

To compute the all geodesics from a starting point p, we need 2 steps:

1 Choose a starting point p, solve the Eikonal equation(1) for u with
the initial condition u(p) = 0.

2 Compute T (t) from (2) and then integrate T (t) backward to p from
any other points.
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Geodesic Energy Functional

The traditional geodesic energy functional is

E(γ) =

∫ 1

0
〈T (t), T (t)〉 dt.

Now, since we scale the Riemannian metric by a positive function eα(x),
which results in the new geodesic energy functional

Eα(γ) =

∫ 1

0
eα(γ(t)) 〈T (t), T (t)〉 dt.
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Compute the New Geodesic Equation

We take the variational of the energy Eα(γ), results in the new geodesic
equation

gradα · ‖T‖2 = 2∇TT + 2dα(T ) · T,

where gradα is the Riemannian gradient defined as g−1
(
∂α
∂x1 ,

∂α
∂x2 , . . . ,

∂α
∂xn

)
.



Simplify the New Geodesic Equation

The new geodesic equation is

gradα · ‖T‖2 = 2∇TT + 2dα(T ) · T (3)

Without loss of generality, if we assume ‖T‖ = 1, then 〈∇TT, T 〉 = 0.

Now taking the inner product with T on both sides of (3), we obtain

〈gradα, T 〉 = 2dα(T ) = 2〈gradα, T 〉
⇒〈gradα, T 〉 = 0 ⇒ dα(T ) = 0

Therefore, assuming ‖T‖ = 1, dα(T ) must vanish, and we get

gradα = 2∇TT.
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Compute the Metric Modulating Function eα

The simplified geodesic equation is

gradα = 2∇TT.

Our goal is to enforce T follow the principal eigenvector field V .

Satisfying this property directly would result in the equation

gradα = 2∇V V,

which we would need to solve for α.
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Compute the Metric Modulating Function eα

However, given an arbitrary V , there may not exist such a function,α, with
the desired gradient field. Instead we minimize the functional

F (α) =

∫
M
‖gradα− 2∇V V ‖2 dx.

Euler-Lagrange Equation is

∆α = 2 div (∇V V ) ,

which is a Poisson equation on the Riemannian manifold. ∆α is the
Laplace-Beltrami operator on M .

The appropriate boundary conditions for this problem are the Neumann
conditions,

∂α

∂−→n
= 〈gradα,−→n 〉 = 〈2∇V V,−→n 〉.
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Data



Solution α for the Annulus

α(x) = −2 ln r(x) + C gradα = 2∇V V



Comparing T with V

Geodesic Tangent Vectors Principal Eigenvectors

Inverse Tensor Metric Our Modulated Metric
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Geodesics
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Sharpened Diffusion Tensor as Riemannian Metric

D′ = |D|
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Sharpened Tensor Metric

Geodesics using sharpened tensor metric with different β.



Sharpened Tensor Metric

The blue curve is the ideal geodesic.



Summary and Future Work

To summarize, we compute a spatially-varying scalar function,α, that
modulates the inverse tensor metric at each point. The geodesics
computed using our modulated metric can faithfully follow the principal
eigenvector field.

Future Work:

Segment white matter tracts from the computed geodesics.

Speed up the numerical α solver by parallel computing.

Solve the edge-crossing issue.

Extend the proposed method to HARDI.



Summary and Future Work

To summarize, we compute a spatially-varying scalar function,α, that
modulates the inverse tensor metric at each point. The geodesics
computed using our modulated metric can faithfully follow the principal
eigenvector field.

Future Work:

Segment white matter tracts from the computed geodesics.

Speed up the numerical α solver by parallel computing.

Solve the edge-crossing issue.

Extend the proposed method to HARDI.



Thank you!

Xiang Hao, Ross T. Whitaker, and P. Thomas Fletcher

Scientific Computing and Imaging Institute
University of Utah, Salt Lake City, UT


