Fourier Transforms

CS 6640

Krithika Iyer

- Fourier Series and Fourier Transforms
- 1D Discrete Fourier Transforms(DFT)
- Fast Fourier Transform(FFT)
- Properties of Fourier Transforms
- 2D DFT for Images

Hi, Dr. Elizabeth? Yeah, vh... I accidentally took the Fourier transform of my cat... Meow

https://xkcd.com/26/

1D Fourier Transform

• Reminder transform pair – definition

$$\begin{split} F(u) &= \int_{-\infty}^{\infty} f(x) e^{-j2\pi u x} \, dx, \\ f(x) &= \int_{-\infty}^{\infty} F(u) e^{j2\pi u x} \, du \end{split}$$

• Example

$$f(x) = \begin{cases} 1, |x| < \frac{X}{2}, \\ 0, |x| \ge \frac{X}{2}. \end{cases}$$

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux}dx$$

$$= \int_{-X/2}^{X/2} e^{-j2\pi ux}dx$$

$$= \frac{1}{-j2\pi u} [e^{-j2\pi uX/2} - e^{j2\pi uX/2}]$$

$$= X \frac{\sin(\pi X u)}{(\pi X u)} = X \operatorname{sinc}(\pi X u).$$

$$f(x)$$

$$F(u)$$

2D DFT

• Image can be thought of as 2D function f that can be expressed as a sum of a sines and cosines along 2 dimensions

$$\begin{split} e^{\mathrm{i}2\pi\left(\frac{mu}{M}+\frac{nv}{N}\right)} &= e^{\mathrm{i}(\omega_m u+\omega_n v)} \\ &= \underbrace{\cos\left[2\pi\left(\frac{mu}{M}+\frac{nv}{N}\right)\right]}_{C_{m,n}^{M,N}(u,v)} + \mathrm{i}\cdot \underbrace{\sin\left[2\pi\left(\frac{mu}{M}+\frac{nv}{N}\right)\right]}_{S_{m,n}^{M,N}(u,v)} \\ F(u,v) &= \underbrace{\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)\exp\left[-2\pi i\left(\frac{xu}{M}+\frac{yv}{N}\right)\right]}_{f(x,y)} \\ f(x,y) &= \frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)\exp\left[2\pi i\left(\frac{xu}{M}+\frac{yv}{N}\right)\right]. \end{split}$$

- x indices go from $0 \dots M 1$ (x cycles over distance M)
- *y* indices go from $\theta \dots N 1$ (y cycles over distance *N*)
- All properties of 1D Fourier transform apply + additional properties

2D Cosines Functions

Properties of 2D DFT

• Separability

$$\exp\left[2\pi i\left(\frac{xu}{M} + \frac{yv}{N}\right)\right] = \exp\left[2\pi i\frac{xu}{M}\right] \exp\left[2\pi i\frac{yv}{N}\right]$$
2D DFT 1D DFT (row) 1D DFT (column)

• Using their separability property, can use 1D DFTs to calculate rows then columns of 2D Fourier Transform

Properties of 2D DFT

Rotation

- Let $F(\mu, v)$ denote the Fourier transform of f(x, y), then the (2D) Fourier rotation theorem says that the Fourier transform of a rotated function $f(x\cos\theta+y\sin\theta,-x\sin\theta+y\cos\theta)$ is $F(\mu\cos\theta+v\sin\theta,-\mu\sin\theta+v\cos\theta)$
- $F(\mu \cos\theta + \nu \sin\theta, -\mu \sin\theta + \nu \cos\theta)$ is the rotated version of $F(\mu, \nu)$ by the same angle θ .

Illustration of a rotation in coordinates.

Centering: Looking at DFTs

Centering: Looking at DFTs

2D DFT Shift

FT Example: A Box

FT

FT Example: Rotated Box

Rotated Box

FT

FT Example: Lines

The FTs also tend to have bright lines that are perpendicular to lines in the original letter. If the letter has circular segments, then so does the FT.

FT Example: A Circle

Note: Ringing caused by sharp cutoff of circle Ringing does not occur if circle cutoff is gentle

Circle

2D Fourier Transform Examples: Scaling

Stretching image => Spectrum contracts

And vice versa

2D Fourier Transform Examples: Periodic Patterns

Repetitive periodic patterns appear as distinct peaks at corresponding positions in spectrum

Enlarging image (c) causes Spectrum to contract (f)

2D Fourier Transform Examples: Rotation

Rotating image => Rotates spectra by same angle/amount

(e)

(f)

(d)

2D Fourier Transform Examples: oriented, elongated structures

Man-made elongated regular patterns in image => appear dominant in spectrum

2D Fourier Transform Examples: Natural Images

Repetitions in natural scenes => less dominant than manmade ones, less obvious in spectra

2D Fourier Transform Examples: Natural Images

Natural scenes with repetitive patterns but no dominant orientation => do not stand out in spectra

2D Fourier Transform: Convolution Theorem

- FT provides alternate method to do convolution of image M with spatial filter S
 - 1. Pad S to make it same size as M, yielding S'
 - 2. Form FTs of both M and S'
 - 3. Multiply M and S' element by element
- $\mathcal{F}(M) \cdot \mathcal{F}(S')$
- 4. Take inverse transform of result $\mathcal{F}^{-1}(\mathcal{F}(M) \cdot \mathcal{F}(S'))$.

$$M * S = \mathcal{F}^{-1}(\mathcal{F}(M) \cdot \mathcal{F}(S'))$$

$$\mathcal{F}(M \ast S) = \mathcal{F}(M) \cdot \mathcal{F}(S')$$

2D Fourier Transform: Convolution Theorem

- A general linear convolution of $N_1 x N_1$ image with $N_2 x N_2$ convolving function (e.g., smoothing filter) requires in the image domain of order $N_1^2 N_2^2$ operations.
- Instead using DFT, multiplication, inverse DFT one needs $4N^2\log(2N)$ operations. Here N is the smallest 2^n number greater or equal to $N_1 + N_2 - 1$.

2D Fourier Transform: Convolution Theorem

References

- Digital Image Processing (CS/ECE 545) Lecture 10: Discrete Fourier Transform, Prof Emmanuel Agu
- Lecture 2: 2D Fourier transforms and applications, B14 Image Analysis Michaelmas 2014 A. Zisserman
- EE 524, Fall 2004, # 5 http://home.eng.iastate.edu/~julied/classes/ee524/LectureNotes/15.pdf
- https://www.di.univr.it/documenti/OccorrenzaIns/matdid/matdid816049.pdf
- http://fy.chalmers.se/~romeo/RRY025/notes/E1.pdf