W. Berger and H. Piringer and P. Filzmoser and E. Gröller.
Uncertainty-Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction.
In Computer Graphics Forum, vol. 30, no. 3, pp. 911 - 920, 2011.


Links:

Abstract:

Systems projecting a continuous n-dimensional parameter space to a continuous m-dimensional target space play an important role in science and engineering. If evaluating the system is expensive, however, an analysis is often limited to a small number of sample points. The main contribution of this paper is an interactive approach to enable a continuous analysis of a sampled parameter space with respect to multiple target values. We employ methods from statistical learning to predict results in real-time at any user-defined point and its neighborhood. In particular, we describe techniques to guide the user to potentially interesting parameter regions, and we visualize the inherent uncertainty of predictions in 2D scatterplots and parallel coordinates. An evaluation describes a realworld scenario in the application context of car engine design and reports feedback of domain experts. The results indicate that our approach is suitable to accelerate a local sensitivity analysis of multiple target dimensions, and to determine a sufficient local sampling density for interesting parameter regions.

Bibtex:

@Article{        berger:2011:UAPS,
  author = 	 {W. Berger and H. Piringer and P. Filzmoser and
                  E. Gr{\"o}ller},
  title = 	 {Uncertainty-Aware Exploration of Continuous
                  Parameter Spaces Using Multivariate Prediction},
  journal = 	 {Computer Graphics Forum},
  year = 	 {2011},
  volume = 	 {30},
  number = 	 {3},
  pages = 	 {911 - 920},
}

Images:

References:


[BP10] BE R G E R W., PI R I N G E R H.: Interactive Visual Analysis of Multiobjective Optimizations. In Proc. of the IEEE Conference on VAST 2010 (2010), pp. 215-216. 1, 7, 9
[BW08] BAC H T H A L E R S. , WE I S KO P F D.: Continuous Scatterplots. IEEE Trans. on Visualization and Computer Graphics 14, 6 (2008), 1428-1435. 2
[CCM10] CH A N Y. -H. , CO R R E A C. D. , MA K. -L.: Flow-based Scatterplots for Sensitivity Analysis. In Proc. of the IEEE Conference on VAST 2010 (2010), pp. 43-50. 2
[CDW96] CU M BU S C. , DA M I E N P., WA L K E R S.: Uniform Sampling in the Hypersphere via Latent Variables and the Gibbs Sampler. 1996. 4
[CL] CH A N G C. -C. , LI N C.-J.: LIB-SVM. http://www.csie.ntu.edu.tw/~cjlin/libsvm/, Last visited on Mar. 3rd 2011. 7
[CR00] CE D I L N I K A. , RH E I N G A N S P.: Procedural Annotation of Uncertain Information. In Proc. of the IEEE Conference on Visualization 2000 (2000), pp. 77-83. 3
[FB90] FE I N E R S. K. , BE S H E R S C.: Worlds Within Worlds: Metaphors for Exploring N-Dimensional Virtual Worlds. In Proc. of the 3rd annual ACM SIGGRAPH Symposium on User Interface Software and Technology (1990), pp. 76-83. 2
[GBPW10] GE R B E R S. , BR E M E R P.- T., PA S C U C C I V. , WH I TA K E R R.: Visual Exploration of High Dimensional Scalar Functions. IEEE Trans. on Visualization and Computer Graphics 16, 6 (2010), 1271-1280. 2
[Ger92] GE R S H O N N. D.: Visualization of Fuzzy Data Using Generalized Animation. In Proc. of the IEEE Conference on Visualization 1992 (1992), pp. 268-273. 3
[Ger98] GE R S H O N N. D.: Visualization of an Imperfect World. IEEE Computer Graphics and Applications 18, 4 (1998), 43-45.3
[GR04] GR I G O RYA N G. , RH E I N G A N S P.: Point-Based Probabilistic Surfaces to Show Surface Uncertainty. IEEE Trans. on Visualization and Computer Graphics 10, 5 (2004), 564-573. 3
[GWR09] GU O Z. , WA R D M. O. , RU N D E N S T E I N E R E. A.: Model Space Visualization for Multivariate Linear Trend Discovery. In Proc. of the IEEE Symposium on VAST 2009 (2009),pp. 75-82. 2
[HTF09] HA S T I E T., TI B S H I R A N I R. , FR I E D M A N J .: The Elements of Statistical Learning, 2nd ed. Springer, 2009. 6
[HW09] HE I N R I C H J . , WE I S KO P F D.: Continuous Parallel Coordinates. IEEE Trans. on Visualization and Computer Graphics 15, 6 (2009), 1531-1538. 2
[HW10] HA RV E Y W., WA N G Y.: Topological Landscape Ensembles for Visualization of Scalar-Valued Functions. Computer Graphics Forum 29, 3 (2010), 993-1002. 2
[JN02] JAYA R A M A N S. , NO RT H C.: A Radial Focus + Context Visualization for Multi-Dimensional Functions. In Proc. of the IEEE Conference on Visualization 2002 (2002), pp. 443-450. 2
[Joh04] JO H N S O N C.: Top Scientific Visualization Research Problems. IEEE Computer Graphics and Applications 24, 4 (2004), 13-17. 2
[LPSW96] LO D H A S. K. , PA N G A. , SH E E H A N R. E. , WI T T E NB R I N K C. M.: UFLOW: Visualizing Uncertainty in Fluid Flow. In Proc. of the IEEE Conference on Visualization 1996 (1996), pp. 249-254. 3
[MGJH08] MATKOVIC´ K. , GR AC A N I N D. , JE L OV IC´ M. , HAUSER H.: Interactive Visual Steering - Rapid Visual Prototyping of a Common Rail Injection System. IEEE Trans. on Visualization and Computer Graphics 14, 6 (2008), 1699-1706. 2
[MJJ*05] MATKOVIC´ K. , JE L OV IC´ M. , JU R IC´J . , KO N Y H A Z. ,GR AC A N I N ˇ D.: Interactive Visual Analysis and Exploration of Injection Systems Simulations. In Proc. of the IEEE Conference on Visualization 2005 (2005), pp. 391-398. 1, 2
[MRH*05] MACEACHREN A. M. , RO B I N S O N A. , HO P P E R S. , GA R D N E R S. , MU R R AY R. , GA H E G A N M. , HE T Z L E R E.: Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know. Cartography and Geographic Information Science 32, 3 (July 2005), 139-160. 3
[OM02] OL S TO N C. , MAC K I N L AY J.: Visualizing Data with Bounded Uncertainty. In Proc. of the IEEE Symposium on Information Visualization 2002 (2002), pp. 37-40. 3
[PBK10] PI R I N G E R H. , BE R G E R W., KR A S S E R J.: HyperMoVal: Interactive Visual Validation of Regression Models for Real-Time Simulation. Computer Graphics Forum 29, 3 (2010), 983-992. 1, 2, 3, 6
[PKRJ10] POT T E R K. , KN I S S J . , RI E S E N F E L D R. , JO H N S O N C. R.: Visualizing Summary Statistics and Uncertainty. Computer Graphics Forum 29, 3 (2010), 823-832.
[PTMB09] PI R I N G E R H. , TO M I N S K I C. , MU I G G P., BE R G E R W.: A Multi-Threading Architecture to Support Interactive Visual Exploration. IEEE Trans. on Visualization and Computer Graphics 15, 6 (2009), 1113-1120. 7
[PWL97] PA N G A. T. , WI T T E N B R I N K C. M. , LO D H A S. K.: Approaches to Uncertainty Visualization. The Visual Computer 13, 8 (Nov. 1997), 370-390. 3
[Ree46] RE E B G.: Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique. Comptes Rendus Acad. Sciences 222 (1946), 847-849. 2
[SH10] SA N T U C C I G. , HAUSER H.: Data Management - Challenges and Opportunities. In Mastering the Information Age Solving Problems with Visual Analytics, Keim D., Kohlhammer J., Ellis G., Mansmann F., (Eds.). Eurographics Association, 2010, pp. 32-36. 2
[SKW98] SH A FF E R C. A. , KN I L L D. L. , WATSON L. T.: Visualization for Multiparameter Aircraft Designs. In Proc. of the IEEE Conference on Visualization 1998 (1998), pp. 491-494. 2
[SLSR10] SK E E L S M. , LE E B. , SM I T H G. , RO B E RT S O N G. G.: Revealing Uncertainty for Information Visualization. Information Visualization 9, 1 (2010), 70-81. 3
[TSDS96] TW E E D I E L. , SP E N C E R. , DAWKES H. , SU H.: Externalising Abstract Mathematical Models. In Proc. of the SIGCHI Conference on Human Factors in Computing Systems (1996), pp. 406-412. 1, 2
[War04] WA R E C .: Information Visualization: Perception for Design, 2nd ed. Morgan Kaufmann Publishers Inc., 2004. 9
[WBD00] WR I G H T H. , BRO D L I E K. , DAV I D T.: Navigating High-Dimensional Spaces to Support Design Steering. In Proc. of the IEEE Conference on Visualization 2000 (2000), pp. 291-296. 2
[WBP07] WE B E R G. , BR E M E R P.- T., PA S C U C C I V.: Topological Landscapes: A Terrain Metaphor for Scientific Data. IEEE Trans. on Visualization and Computer Graphics 13, 6 (2007), 1416-1423. 2
[WL93] WI J K J . J . V. , LI E R E R. V.: HyperSlice: Visualization of Scalar Functions of Many Variables. In Proc. of the IEEE Conference on Visualization 1993 (1993), pp. 119-125. 2, 3