Suzana Djurcilov and Kwansik Kim and Pierre Lermusiaux and Alex Pang.
Visualizing Scalar Volumetric Data with Uncertainty.
In Computers and Graphics, vol. 26, pp. 239--248, 2002.


Links:

Abstract:

Increasingly, more importance is placed on the uncertainty information of data being displayed. This paper focuses on techniques for visualizing 3D scalar data sets with corresponding uncertainty information at each point which is also represented as a scalar value. In Djurcilov (in: D. Ebert, J.M. Favre, R. Peikert (Eds.), Data Visualization 2001, Springer, Berlin, 2001), we presented two general methods (inline DVR approach and a post-processing approach) for carrying out this task. The first method involves incorporating the uncertainty information directly into the volume rendering equation. The second method involves post-processing information of volume rendered images to composite uncertainty information. Here, we provide further improvements to those techniques primarily by showing the depth cues for the uncertainty, and also better transfer function selections.

Bibtex:

@Article{        djurcilov:2002:VSVU,
  author = 	 {Suzana Djurcilov and Kwansik Kim and Pierre
                  Lermusiaux and Alex Pang},
  title = 	 {Visualizing Scalar Volumetric Data with Uncertainty},
  journal = 	 {Computers and Graphics},
  year = 	 {2002},
  volume = 	 {26},
  pages = 	 {239--248},
}

Images:

References:

Djurcilov S, Kim K, Lermusiaux P, Pang A. Volume rendering data with uncertainty information, In: Ebert D, Favre JM, Peikert R, editors. Data visualization 2001. Berlin: Springer, 2001. p. 243-52, 355-6. www.cse.ucsc.e- du/research/avis/uvolren.html.
Beard MK, Buttenfield BP, Clapham SB. NCGIA research initiative 7: visualization of spatial data quality. Technical Paper 91-26, National center for geographic information and analysis, available through ftp: ncgia.ucsb.edu. Octo- ber 1991 59pp.
Goodchild M, Buttenfield B, Wood J. On introduction to visualizing data validity. In: Hearnshaw H, Unwin D, editors. Visualization in geographical information systems. New York: Wiley, 1994. p. 141-9.
Klir G, Wierman M. Uncertainty-based information: elements of generalized information theory, 2nd ed. Wurzburg: Physica-Verlag, 1999. 168pp.
Moellering H. The proposed standard for digital carto- graphic data: report of the digital cartographic data stan- dards task force. The American Cartographer 15(1): 11-31.
Mowrer HT, Congalton R editors. Quantifying spatial uncertainty in natural resources: theory and applications for GIS and Remote Sensing. Ann Arbor, MI: Ann Arbor Press, 2000.
Taylor BN, Kuyatt CE. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. Technical Report, National Institute of Standards and Technology Technical Note 1297, Gaithersburg, MD, January 1993.
Pang A. Visualizing uncertainty in geo-spatial data. In: Workshop on the Intersections between Geospatial In- formation and Information Technology, prepared for the National Academies committee of the Computer Science and Telecommunications Board, 2001.
Cedilnik A, Rheingans P. Procedural annotation of uncertain information. In: Proceedings of Visualization 00, Silver Spring, MD: IEEE Computer Society Press, 2000. p. 77-84.
Interrante V. Harnessing natural textures for multivariate visualization. IEEE Computer Graphics and Applications 2000;20(6):6-11.
Djurcilov S, Pang A. Visualizing sparse gridded data- sets. IEEE Computer Graphics and Applications 2000;20(5):52-7.
Wittenbrink CM, Pang AT, Lodha SK. Glyphs for visualizing uncertainty in vector fields. IEEE Transactions on Visualization and Computer Graphics 1996;2(3):266-79 short version in SPIE Proceeding on Visual Data Exploration and Analysis, 1995. p. 87-100.
Pang A, Wittenbrink C, Lodha SK. Approaches to uncertainty visualization. The Visual Computer 1997;13(8):370-90.
Robinson A. Physical processes, field estimation and an approach to interdisciplinary ocean modeling. Earth- Science Review 1996;40:3-54.
Lermusiaux P. Data assimilation via error subspace statistical estimation, Part ii: middle Atlantic Bight shelfbreak front simulations and ESSE validation. Monthly Weather Review 1999;127(7):1408-32.
Tarantola A. Inverse problem theory. Methods for data fitting and model parameter estimation. Amsterdam: Elsevier Science Publishers, 1987.
Kindlmann G, Durkin J. Semi-automatic generation of transfer functions for direct volume rendering. In: IEEE Symposium on Volume Visualization. New York: IEEE, 1998. p. 79-86, 170.
Wittenbrink CM. IFS fractal interpolation for 2D and 3D visualization. In: IEEE Visualization '95, IEEE, Atlanta, GA, 1995. p. 77-84. S. Djurcilov et al. / Computers & Graphics 26 (2002) 239-248 248