The "Guide to the expression of uncertainty in measurement" (GUM) [JCGM 100:2008] is mainly concerned with univariate measurement models, namely models having a single scalar output quantity. However, mod- els with more than one output quantity arise across metrology. The GUM includes examples, from electrical metrology, with three output quantities [JCGM 100:2008 H.2], and thermal metrology, with two output quan- tities [JCGM 100:2008 H.3]. This Supplement to the GUM treats multivariate measurement models, namely models with any number of output quantities. Such quantities are generally mutually correlated because they depend on common input quantities. A generalization of the GUM uncertainty framework [JCGM 100:2008 5] is used to provide estimates of the output quantities, the standard uncertainties associated with the estimates, and covariances associated with pairs of estimates. The input or output quantities in the measurement model may be real or complex. Supplement 1 to the GUM [JCGM 101:2008] is concerned with the propagation of probability distributions [JCGM 101:2008 5] through a measurement model as a basis for the evaluation of measurement uncertainty, and its implementation by a Monte Carlo method [JCGM 101:2008 7]. Like the GUM, it is only concerned with models having a single scalar output quantity [JCGM 101:2008 1]. This Supplement describes a generalization of that Monte Carlo method to obtain a discrete representation of the joint probability distribution for the output quantities of a multivariate model. The discrete representation is then used to provide estimates of the output quantities, and standard uncertainties and covariances associated with those estimates. Appropriate use of the Monte Carlo method would be expected to provide valid results when the applicability of the GUM uncertainty framework is questionable, namely when (a) linearization of the model provides an inadequate representation, or (b) the probability distribution for the output quantity (or quantities) departs appreciably from a (multivariate) Gaussian distribution. Guidance is also given on the determination of a coverage region for the output quantities of a multivariate model, the counterpart of a coverage interval for a single scalar output quantity, corresponding to a stipulated coverage probability. The guidance includes the provision of coverage regions that take the form of hyper- ellipsoids and hyper-rectangles. A calculation procedure that uses results provided by the Monte Carlo method is also described for obtaining an approximation to the smallest coverage region.
@TechReport{ jcgm:2011:ANOQ, author = {Joint Committee for Guides in Metrology}, title = {JCGM 102: Evaluation of Measurement Data - Supplement 2 to the "Guide to the Expression of Uncertainty in Measurement" - Extension to Any Number of Output Quantities}, institution = {JCGM}, year = {2011}, }