Fangxiang Jiao and Jeff M. Phillips and Jeroen Stinstra and Jens Krüger and Raj Varma and Edward Hsu and Julie Korenberg and Chris R. Johnson.
Metrics for Uncertainty Analysis and Visualization of Diffusion Tensor Images.
In Lecture Notes in Computer Science, vol. 6326(2010), pp. 179-190, 2010.


Links:

Abstract:

In this paper, we propose three metrics to quantify the differences between the results of diffusion tensor magnetic resonance imaging (DT-MRI) fiber tracking algorithms: the area between corresponding fibers of each bundle, the Earth Mover's Distance (EMD) between two fiber bundle volumes, and the current distance between two fiber bundle volumes. We also discuss an interactive fiber track comparison visualization toolkit we have developed based on the three proposed fiber difference metrics and have tested on six widely-used fiber tracking algorithms. To show the effectiveness and robustness of our metrics and visualization toolkit, we present results on both synthetic data and high resolution monkey brain DT-MRI data. Our toolkit can be used for testing the noise effects on fiber tracking analysis and visualization and to quantify the difference between any pair of DT-MRI techniques, compare single subjects within an image atlas.

Bibtex:

@Article{        jiao:2010:MUAV,
  author = 	 {Fangxiang Jiao and Jeff M. Phillips and Jeroen
                  Stinstra and Jens Kr{\"u}ger and Raj Varma and
                  Edward Hsu and Julie Korenberg and Chris R. Johnson},
  title = 	 {Metrics for Uncertainty Analysis and Visualization
                  of Diffusion Tensor Images},
  journal = 	 {Lecture Notes in Computer Science},
  year = 	 {2010},
  volume = 	 {6326(2010)},
  pages = 	 {179-190},
}

Images:

References:

1. Basser, P., Mattiello, J., Lebihan, D.: Estimation of the effective self-diffusion tensor from the nmr spin echo. Journal of Magnetic Resonance, Series B 103, 247-254 (1994)
2. Basser, P., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using dt-mri data. Magnetic Resonance in Medicine 44, 625-632 (2000)
3. Weinstein, D., Kindlmann, G., Lundberg, E.: Tensorlines: Advection-diffusion based propagation through diffusion tensor fields, pp. 249-253 (1999)
4. Lazar, M., Weinstein, D., Tsuruda, J., Hasan, K., Arfanakis, K., Meyerand, M., Badie, B., Rowley, H., Haughton, V., Field, A., Alexander, A.: White matter tractography using diffusion tensor deflection. Human Brain Mapping 18, 306-321 (2003)
5. Parker, G., Wheeler-Kingshott, C., Barker, G.: Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Transactions on Medical Imaging 21, 505-512 (2002)
6. Cheng, P., Magnotta, V.A., Wu, D., Nopoulos, P., Moser, D.J., Paulsen, J., Jorge, R., Andreasen, N.C.: Evaluation of the gtract diffusion tensor tractography algorithm: A validation and reliability study. NeuroImage 31, 1075-1085 (2006)
7. Friman, O., Farneback, G., Westin, C.F.: A bayesian approach for stochastic white matter tractography. IEEE Transactions on Medical Imaging 25, 965-978 (2006)
8. Corouge, I., Fletcher, P.T., Joshi, S., Gouttard, S., Gerig, G.: Fiber tract-oriented statistics for quantitative diffusion tensor mri analysis. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 131-139. Springer, Heidelberg (2005)
9. Goodlett, C.: Computation of statistics for populations of diffusion tensor images. In: Computation of Statistics for Populations of Diffusion Tensor Images (2009)
10. Wassermann, D., Bloy, L., Verma, R., Deriche, R.: A gaussian process based framework for white matter fiber tracts and bundles, applications to fiber clustering. In: Proceedings Medical Image Computing and Computer Aided Intervention (MICCAI Workshop), London, pp. 200-214 (2009)
11. Johnson, C.: Top scientific visualization research problems. IEEE Transactions on Computer Graphics and Applications 24, 13-17 (2004)
12. Brecheisen, R., Vilanova, A., Platel, B., Ter Haar Romeny, B.: Parameter sensitivity visualization for dti fiber tracking. IEEE Transactions on Visualization and Computer Graphics 15, 1441-1448 (2009)
13. Close, T., Tournier, J.D., Calamante, F., Johnston, L., Mareels, I., Connelly, A.: A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms. NeuroImage 47, 1288-1300 (2009)
14. Eiter, T., Mannila, H.: Computing discrete Fr`echet distance. Technical Report CD-TR94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria (1994)
15. Kantorovich, L.: On a problem of monge. Uspekhi Mat. Nauk. 3, 225-226 (1948)
16. Vaillant, M., Glaun`es, J.: Surface matching via currents. In: Proc. Information Processing in Medical Imaging, vol. 19, pp. 381-392 (2005)
17. Durrleman, S.: Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. Th`ese de sciences (phd thesis), Universite de NiceSophia Antipolis (2010)
18. Joshi, S., Kommaraju, R.V., Phillips, J.M., Venkatasubramanian, S.: Matching shapes using the current distance (Manuscript: arXiv:1001.0591)