Diffusion tensor MRI (DT-MRI) permits determination of the dominant orientation of structured tissue within an image voxel. This has led to the development of 2D graphical methods for representing fiber orientation and DT-MRI "tractography," which aims to reconstruct the 3D trajectories of white matter fasciculi. Most contemporary fiber orientation mapping schemes and tractography algorithms employ the directional information contained in the eigenvectors of the diffusion tensor to approximate white matter fiber orientation. However, while the uncertainty associated with every estimate of an eigenvector has long been recognized, no attempts to quantify this uncertainty in vivo have been reported. Here, a method is proposed for determining confidence intervals in fiber orientation from real DT-MRI data using the bootstrap method. This is used to construct maps of the "cone of uncertainty," allowing simultaneous viewing of fiber orientation and its uncertainty, and to examine the relationship between orientation uncertainty and tissue anisotropy.
@Article{ jones:2003:UDTI, author = {Derek K. Jones}, title = {Determining and Visualizing Uncertainty in Estimates of Fiber Orientation from Diffusion Tensor MRI}, journal = {Magnetic Resonance in Medicine}, year = {2003}, volume = {49}, pages = {7-12}, }