Adriano Lopes and Ken Brodlie.
Accuracy in 3D Particle Tracing.
In Hans-Christian Hege and Konrad Polthier (Eds.), Mathematical Visualization: Algorithms, Applications and Numerics, Springer Berlin Heidelberg, pp. 329--341, 1998.


Links:

Abstract:

This paper presents a novel way of identifying and illustrating the accuracy in the particle tracing method for flow visualization. We make use of explicit Runge-Kutta methods for particle tracing in steady velocity fields, and describe three approaches to estimate the accuracy of the calculated path. These approaches are: re-integration (with smaller tolerance or in a backward direction), global error estimators and residuals in the velocity field. Visualization paradigms are also presented to convey data accuracy information and these ideas are implemented in an Open Inventor / IRIS Explorer environment.

Bibtex:

@InCollection{   lopes:1998:AIPT,
  author = 	 {Adriano Lopes and Ken Brodlie},
  editor =       {Hans-Christian Hege and Konrad Polthier},
  booktitle = 	 {Mathematical Visualization: Algorithms, Applications and Numerics},
  title = 	 {Accuracy in 3D Particle Tracing},
  publisher =    {Springer Berlin Heidelberg},
  year = 	 {1998},
  pages = 	 {329--341},
}

Images:

References:

R. Brankin, I. Gladwell, and L. Shampine, Rksuite: a suite of explicit runge-kutta codes for the initial value problem for odes softreport 91-s1, Tech. report, Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA, 1991.
K. Brodlie, A typology for scientific visualization, Visualization in Geographical Information Systems (H. Hearnshaw and D. Unwin, eds. ), John Wiley & Sons, 1994, pp. 34-41.
P. Buning, Sources of error in the graphical analysis of cfd results, Journal of Scientific Computing 3: 2 (1988), 149-164. CrossRef
D. Darmofal and R. Haimes, An analysis of 3-d particle path integration algorithms, Journal of Computational Physics 123 (1995), 182-195. CrossRef
M. Goodchild, B. Buttenfield, and J. Wood, Introduction to visualizing data validity, Visualization in Geographical Information Systems (H. Hearnshaw and D. Unwin, eds. ), John Wiley & Sons, 1994, pp. 141-149.
R. Haber and D. Mcnabb, Visualization idioms: A conceptual model for scientific visualization systems, Visualization in Scientific Computing (G. Nielson, B. Shriver, and L. Rosenblum, eds. ), IEEE Computer Society Press, 1990, pp. 75-93.
D. Knight and G. Mallinson, Visualizing unstructured flow data using dual stream functions, IEEE Transaction on Visualization and Computer Graphics 2: 4 (1996), 355-363. CrossRef
S. Lodha, A. Pang, R. Sheehan, and C. Wittenbrink, Uflow: Visualizing uncertainty in fluid flow, Proceedings Visualization '86 (R. Yagel and G. Nielson, eds. ), ACM Press, 1996, pp. 249-254.
NAG, Iris explorer, URL http://www.nag.co.uk.
F. Post and T. van Walsum, Fluid flow visualization, Focus on Scientific Visualization, Springer Verlag, 1993, pp. 1-40.
L. Shampine and I. Gladwell, The next generation of runge-kutta codes, Computational Ordinary Differential Equations (J. Cash and I. Gladwell, eds. ), Oxford University Press, 1992, pp. 145-164.
L. Shampine and H. Watts, Global error estimation for ordinary differential equations, ACM Transactions on Mathematical Software 2: 2 (1976), 172-186. CrossRef
J. Walton, Visualization benchmarking: A practical application of 3d publishing, 14th Eurographics UK Chapter Conference Proceedings, vol. 2, Imperial College of London, March 1996, pp. 339-351.
F. V. D. Wel, R. Hootsmans, and F. Ormeling, Visualization of data quality, Visualization in Modern Cartography (A. Maceachren and D. Taylor, eds.), Modern Cartography, vol. 2, Elsevier Science Ltd, 1994, pp. 313-331.
C. Wittenbrink, E. Saxon, J. Furman, A. Pang, and S. Lodha, Glyphs for visualizing uncertainty in environmental vector fields, SPIE & IS&T Conference Proceedings on Electronic Imaging: Visual Data Exploration and Analysis, vol. 2410, SPIE, February 1995, pp. 87-100.