Tobias Pfaffelmoser and Matthias Reitinger and Rüdiger Westermann.
Visualizing the Positional and Geometrical Variability of Isosurfaces in Uncertain Scalar Fields.
In Computer Graphics Forum, vol. 30, no. 3, pp. 951--960, 2011.


Links:

Abstract:

We present a novel approach for visualizing the positional and geometrical variability of isosurfaces in uncertain 3D scalar fields. Our approach extends recent work by Pöthkow and Hege [PH10] in that it accounts for correlations in the data to determine more reliable isosurface crossing probabilities. We introduce an incremental update-scheme that allows integrating the probability computation into front-to-back volume ray-casting efficiently. Our method accounts for homogeneous and anisotropic correlations, and it determines for each sampling interval along a ray the probability of crossing an isosurface for the first time. To visualize the positional and geometrical uncertainty even under viewing directions parallel to the surface normal, we propose a new color mapping scheme based on the approximate spatial deviation of possible surface points from the mean surface. The additional use of saturation enables to distinguish between areas of high and low statistical dependence. Experimental results confirm the effectiveness of our approach for the visualization of uncertainty related to position and shape of convex and concave isosurface structures.

Bibtex:

@Article{        pfaffelmoser:2011:VPGV,
  author = 	 {Tobias Pfaffelmoser and Matthias Reitinger and
                  R{\"u}diger Westermann},
  title = 	 {Visualizing the Positional and Geometrical
                  Variability of Isosurfaces in Uncertain Scalar
                  Fields},
  journal = 	 {Computer Graphics Forum},
  year = 	 {2011},
  volume = 	 {30},
  number = 	 {3},
  pages = 	 {951--960},
  month = 	 {June},
}

Images:

References:

[AS64] ABRAMOWITZ M., STEGUN I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover publications, 1964. 8
[BAF08] BOSTROM A., ANSELIN L., FARRIS J.: Visualizing Seismic Risk and Uncertainty. Annals of the New York Academy of Sciences 1128, 1 (2008), 29-40. 2
[Bro04] BROWN R.: Animated visual vibrations as an uncertainty visualisation technique. In GRAPHITE (2004), ACM, pp. 84-89.2
[DKLP02] DJURCILOV S., KIM K., LERMUSIAUX P., PANG A.: Visualizing scalar volumetric data with uncertainty. Computers & Graphics 26, 2 (2002), 239-248. 2
[DMJRM00] DE MAESSCHALCK R., JOUAN-RIMBAUD D., MASSART D.: The mahalanobis distance. Chemometrics and Intelligent Laboratory Systems 50, 1 (2000), 1-18. 3
[DW90] DREZNER Z., WESOLOWSKY G.: On the computation of the bivariate normal integral. Journal of Statistical Computation and Simulation 35, 1 (1990), 101-107. 8
[Eur] EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS: Demeter temperature ensemble. Available online at http://www.ecmwf.int. 7
[GR04] GRIGORYAN G., RHEINGANS P.: Point-based probabilistic surfaces to show surface uncertainty. Visualization and Computer Graphics, IEEE Transactions on 10, 5 (2004), 564-573. 2
[GS06] GRIETHE H., SCHUMANN H.: The visualization of uncertain data: Methods and problems. In Proceedings of SimVis 2006 (2006), pp. 143-156. 2
[Joh04] JOHNSON C.: Top scientific visualization research problems. Computer graphics and applications, IEEE 24, 4 (2004), 13-17. 1
[JS03] JOHNSON C., SANDERSON A.: A next step: Visualizing errors and uncertainty. Computer Graphics and Applications, IEEE 23, 5 (2003), 6-10. 2
[Käu10] KUFL P.: Object-based Probabilistic Full Waveform Tomography. Master's thesis, Geophysics, LMU München, 2010.7
[KVUS05] KNISS J., VAN UITERT R., STEPHENS A., LI G., TASDIZEN T., HANSEN C.: Statistically quantitative volume visualization. 2
[KWTM03] KINDLMANN G., WHITAKER R., TASDIZEN T., MOLLER T.: Curvature-based transfer functions for direct volume rendering: Methods and applications. In Visualization, 2003.VIS 2003. IEEE (2003), IEEE, pp. 513-520. 2
[LFLH07] LI H., FU C., LI Y., HANSON A.: Visualizing largescale uncertainty in astrophysical data. Visualization and Computer Graphics, IEEE Transactions on 13, 6 (2007), 1640-1647.2
[LLPY07] LUNDSTROM C., LJUNG P., PERSSON A., YNNERMAN A.: Uncertainty visualization in medical volume rendering using probabilistic animation. Visualization and Computer Graphics, IEEE Transactions on 13, 6 (2007), 1648-1655. 2
[Mah36] MAHALANOBIS P.: On the generalized distance in statistics. In Proceedings of the National Institute of Science, Calcutta (1936), vol. 12, p. 49. 3
[MRH05] MACEACHREN A., ROBINSON A., HOPPER S., GARDNER S., MURRAY R., GAHEGAN M., HETZLER E.: Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know. Cartography and Geographic Information Science 32, 3 (2005), 139-161. 2
[OGHT10] OTTO M., GERMER T., HEGE H., THEISEL H.: Uncertain 2d vector field topology. In Computer Graphics Forum (2010), vol. 29, Wiley Online Library, pp. 347-356. 2
[PH10] PÖTHKOW K., HEGE H.-C.: Positional uncertainty of isocontours: Condition analysis and probabilistic measures. IEEE Transactions on Visualization and Computer Graphics 99, PrePrints (2010). 1, 2, 3, 7
[PWL97] PANG A., WITTENBRINK C., LODHA S.: Approaches to uncertainty visualization. The Visual Computer 13, 8 (1997), 370-390. 2
[RLBS03] RHODES P., LARAMEE R., BERGERON R., SPARR T.: Uncertainty visualization methods in isosurface rendering. In Eurographics (2003), Citeseer, pp. 83-88. 2
[RN88] RODGERS J., NICEWANDER W.: Thirteen ways to look at the correlation coefficient. American Statistician 42, 1 (1988),59-66. 3
[SZD10] SANYAL J., ZHANG S., DYER J., MERCER A., AMBURN P., MOORHEAD R.: Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty. IEEE Transactions on Visualization and Computer Graphics (2010). 2
[Tar05] TARANTOLA A.: Inverse problem theory and methods for model parameter estimation. Society for Industrial Mathematics,2005. 3
[THM05] THOMSON J., HETZLER E., MACEACHREN A., GAHEGAN M., PAVEL M.: A typology for visualizing uncertainty. In Proc. SPIE (2005), vol. 5669, Citeseer, pp. 146-157. 2
[Wei05] WEILER M.: Hardware-beschleunigte Volumenvisualisierung auf adaptiven Datenstrukturen. PhD thesis, Universitätsbibliothek der Universität Stuttgart, 2005. 8
[WPL02] WITTENBRINK C., PANG A., LODHA S.: Glyphs for visualizing uncertainty in vector fields. Visualization and Computer Graphics, IEEE Transactions on 2, 3 (2002), 266-279. 2
[ZWK10] ZEHNER B., WATANABE N., KOLDITZ O.: Visualization of gridded scalar data with uncertainty in geosciences. Computers & Geosciences (2010). 2, 3, 6