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Rational use of phosphodiesterase inhibitors represents an ongoing
controversy in contemporary pharmacotherapy for heart failure. In
randomized clinical trials, phosphodiesterase inhibitors increased cardiac
output at the expense of worsening the rates of sudden cardiac death and
cardiovascular mortality. Preliminary findings from ongoing clinical and
preclinical investigations of phosphodiesterase activity suggest that combined
use of phosphodiesterase inhibitors with �-adrenergic antagonists may
prevent these adverse outcomes. Compartmentation of cyclic adenosine 3′,5′-
monophosphate signaling may prove critical in determining myocardial
response to combination therapy.
Key Words: �-adrenergic receptor antagonist, �-blocker, phosphodiesterase
inhibitor, compartmentation, chronic heart failure.
(Pharmacotherapy 2008;28(12):1523–1530)

OUTLINE

Heart Failure Pathophysiology
Role of �1-Adrenergic Receptor Signaling in Heart

Failure
Role of Phosphodiesterases in �1-Adrenergic Receptor

Signaling
Combination Therapy with Phosphodiesterase

Inhibitors and �1-Adrenergic Receptor Antagonists
Compartmentation of Phosphodiesterase and Protein

Kinase A Effects
Future Directions in Phosphodiesterase Research
Conclusion

The advent of phosphodiesterase inhibition in
heart failure was met with early optimism due to
a novel mechanism of inotropic action and

symptomatic improvement in patients with heart
failure.1–4 Subsequent larger clinical trials,
however, noted a consistent increase in mortality
among patients receiving oral phosphodiesterase
inhibitors, primarily due to sudden cardiac death
and cardiovascular mortality.5–8 These negative
findings reduced the clinical role of phospho-
diesterase inhibitors to use in patients with acute
decompensated heart failure requiring short-term
or palliative inotropic support. It is significant to
note, however, that early phosphodiesterase
inhibitor trials occurred before the benefits of �-
adrenergic receptor antagonists in heart failure
were widely established. As �-adrenergic
receptor antagonists exert a significant protective
effect on heart failure mortality, sudden cardiac
death, and proarrhythmia (principal adverse
events in phosphodiesterase inhibitor trials), the
addition of �-adrenergic receptor antagonists to
phosphodiesterase inhibitors may constitute a
valuable contribution to heart failure pharmaco-
therapy.

We examine the evidence, both clinical and
preclinical, for the combined use of �-adrenergic
receptor antagonists and phosphodiesterase
inhibitors in patients with heart failure.
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Although the combined use of an inotropic agent
with a �-adrenergic receptor antagonist may
seem counterintuitive, we also highlight the
distinct, complementary pharmacology of these
agents and propose a mechanism by which their
combination may produce myocardial responses
not attainable with either agent alone.

Heart Failure Pathophysiology

Much of the pathophysiology of heart failure
stems from longstanding overactivation of the
sympathetic nervous system and renin-
angiotensin-aldosterone system.9–11 Elevated
concentrations of norepinephrine and angiotensin
II produce acute increases in cardiac output, but
also cause vasoconstriction, fluid retention, and
increased myocardial oxygen demand.12, 13

Conversely, long-term exposure to elevated
concentrations of norepinephrine and angiotensin
II promotes myocardial inflammation, hypertrophy,
apoptosis, and pathologic remodeling of the
myocardium.9–11 Contemporary pharmacotherapy
for heart failure is designed to interrupt
sympathetic activity through use of �-adrenergic
receptor antagonists14–18 and to interrupt the renin-
angiotensin activity through the use of angiotensin-

converting enzyme (ACE) inhibitors,19–21

angiotensin II receptor blockers,22, 23 and
aldosterone antagonists.24, 25 These strategies work
particularly well in combination.26

Role of ��1-Adrenergic Receptor Signaling in
Heart Failure

The chronotropic and inotropic effects of
norepinephrine result from activation of �1-
adrenergic receptors within the myocardium.27–29

Norepinephrine binding to the extracellular
domain of the �1-adrenergic receptor induces a
conformational change in the cytoplasmic
domain of the �1-adrenergic receptor coupled to
a regulatory G-protein.  Activation of the G-
protein releases a stimulatory α-subunit (Gαs),
which migrates through the sarcolemmal
membrane to activate adenylate cyclase, which,
in turn, catalyzes cytoplasmic hydrolysis of
adenosine 5 ′ -triphosphate (ATP) to cyclic
adenosine 3′,5′-monophosphate (cAMP; Figure
1).28–30

The cAMP generated by adenylate cyclase
floods local regions of the cytoplasm to activate
protein kinase A (PKA), which propagates the
norepinephrine signal through phosphorylation
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Figure 1. Signaling mediated by cyclic adenosine 3′,5′-monophosphate (cAMP) in cardiac myocytes.  AMP = adenosine 5′-
monophosphate; ATP = adenosine 5′-triphosphate; Gαs = stimulatory α-subunit released by the G protein; P = phosphate; PDE =
phosphodiesterase; PKA = protein kinase A.  (Adapted from reference 30.)
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of multiple cytoplasmic targets.  Phosphorylation
of PKA targets largely accounts for the acute
increases in inotropy and chronotropy associated
with norepinephrine administration.30 Among
the many targets of PKA phosphorylation are L-
type calcium ion (Ca2+) channels in the plasma
membrane to increase Ca2+ influx during
systole,31, 32 ryanodine Ca2+ channels on the
sarcoplasmic reticulum to increase Ca2+ release
during systole,33 phospholamban proteins on the
sarcoplasmic reticulum to increase calcium
resequestration into the sarcoplasmic reticulum
during diastole,34, 35 phosphorylase kinase to
stimulate glucose mobilization and glycogen
hydrolysis,36, 37 troponin proteins to regulate
actin-myosin interaction during systole,38, 39 and
cAMP response element-binding protein (CREB)
to regulate gene expression (Figure 2).40, 41

The pathologic effects of norepinephrine in

heart failure may be traceable to overactivity of
adenylate cyclase, cAMP, and the resultant
overphosphorylation of specific PKA targets.30, 42

Although some of these PKA targets must
invariably be responsible for negative heart
failure outcomes, other PKA targets may produce
their intended effects without contributing to
negative heart failure outcomes.  For example,
CREB is a transcription factor that regulates gene
expression upon phosphorylation by PKA.
Transgenic animal models with no CREB activity
exhibit accelerated myocardial apoptosis and
hypertrophy, suggesting a protective effect of
CREB phosphorylation.40, 43 Phospholamban
phosphorylation by PKA increases activity of
ATP-driven pumps to resequester Ca2+ in the
sarcoplasmic reticulum.  Animal models that
mimic hyperphosphorylation of phospholamban
demonstrate improved contractility and reduced
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Figure 2. Actions of cyclic adenosine 3′,5′-monophosphate (cAMP) in cardiac myocytes.  AKAP = A kinase anchoring protein;
ATP = adenosine 5′-triphosphate; Ca2+ = calcium ion; CREB = cAMP response element-binding protein; Gαs = stimulatory α-
subunit released by the G protein; P = phosphate; PLB = phospholamban; PKA = protein kinase A; Ry = ryanodine; SERCA2 =
sarco-endoplasmic reticulum Ca2+–ATPase; TM = tropomyosin; Tn = troponin.  (Adapted from reference 41.)
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development of heart failure symptoms.34, 35, 44 

Unfortunately, there is little possibility of
activating select PKA targets with �-adrenergic
receptor antagonists alone.  All �-adrenergic
receptor antagonists (regardless of �1 or �2
selectivity) reduce cAMP production downstream
from the �-adrenergic receptor and, therefore,
nonspecifically reduce phosphorylation of the
associated PKA targets.  In simpler terms, �-
adrenergic receptor antagonists produce
“blanket” inhibition of all associated PKA targets
(i.e., activating none of them).  Although clinical
trial data with �-adrenergic receptor antagonists
support the generalized benefit of this blanket
PKA inhibition, as few as 40% of patients experi-
ence clinical improvement with �-adrenergic
receptor antagonist treatment.16, 45, 46 This
incomplete response may be due, in part, to
nonselective reduction of PKA activity that masks
the potential benefits of individual PKA targets.
To investigate the potential benefits of PKA
selectivity, a second class of drugs must be used
to activate individual PKA targets in the presence

of �1-adrenergic receptor blockade.  Phospho-
diesterase inhibitors may provide such an
opportunity.

Role of Phosphodiesterases in �1-Adrenergic
Receptor Signaling

Under normal physiologic conditions, the
norepinephrine signal is counterregulated within
the cytoplasm by phosphodiesterase enzymes,
which catalyze the breakdown of cAMP to
inactive AMP.47, 48 Phosphodiesterase activity
lowers cAMP concentration, reduces PKA activity,
and thereby interrupts the norepinephrine signal.
Conversely, phosphodiesterase inhibition reduces
cAMP degradation, increases phosphorylation of
PKA targets, and thereby perpetuates the
norepinephrine signal.  This augmented cAMP
and PKA activity produces the clinically observed
inotropy of phosphodiesterase inhibitors in
patients with acute decompensated heart
failure.48 It is significant to note that the
inotropic mechanism of phosphodiesterase
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Figure 3. Individual phosphodiesterase 3 (PDE3) isoforms may regulate different responses.  AKAP = A kinase anchoring
protein; Ca2+ = calcium ion;  cAMP = cyclic adenosine 3′,5′-monophosphate; CREB = cAMP response element-binding protein;
P = phosphate; PLB = phospholamban; PKA = protein kinase A; Ry = ryanodine; SERCA2 = sarco-endoplasmic reticulum
Ca2+–ATPase. (Adapted from reference 41.)
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inhibitors occurs downstream from the �1-
adrenergic receptor and therefore remains
effective in the presence of �1-blockade.49

Combination Therapy with Phosphodiesterase
Inhibitors and �1-Adrenergic Receptor
Antagonists

With �-adrenergic receptor antagonists now
widely accepted as a cornerstone of contemporary
pharmacotherapy for heart failure, recent
investigations have examined the effects of these
agents when combined with phosphodiesterase
type 3 inhibitors—a family of phosphodiesterases
highly expressed in myocardial tissue.

A series of 30 patients with advanced heart
failure (New York Heart Association [NYHA]
functional class IV) who required intravenous
inotropic agents or were assessed as too unstable
to tolerate �-blockade received oral enoximone
(an investigational oral phosphodiesterase 3
inhibitor) at a mean daily dose of 189 mg,
followed by optimization of other heart failure
pharmacotherapy including ACE inhibitors,
diuretics, and digoxin.50 Patients then received
oral metoprolol with upward titration to a target
dose of 100–200 mg/day.  Twenty-nine patients
(97%) tolerated oral enoximone therapy and 24
patients (80%) tolerated combination therapy
(mean 9.4 mo).  Treatment produced a 1-year
survival rate of 81%, which was significantly
superior to that in patients with NYHA class IV
who received enalapril in the Cooperative North
Scandinavian Enalapril Survival Study
(CONSENSUS)20 (1-yr survival 54%, p=0.01) and
standard therapy in the Prospective Randomized
Milrinone Survival Evaluation (PROMISE) trial6

(1-yr survival 61%, p=0.03).  It should be noted
that survival rates were calculated for all 30
patients in the study—not just those receiving
combination therapy.  Patients also experienced
significant improvements in left ventricular
ejection fraction ([LVEF] baseline 0.18, final
0.28, p<0.01) and NYHA functional class
(baseline 4.0, final 2.8, p<0.0001).  Although the
clinical utility of these intertrial comparisons
may be questioned, these findings do suggest that
combination therapy may improve heart failure
symptoms without adverse effects on mortality
(as seen in previous trials of phosphodiesterase
inhibitors without concomitant �-adrenergic
receptor antagonists). 

In an observational follow-up study of 65
patients with advanced heart failure (NYHA class
IV) who were selected for treatment with

continuous intravenous milrinone (a
phosphodiesterase 3 inhibitor) and �-adrenergic
receptor antagonists on an outpatient basis, 14
patients (22%) were unable to tolerate �-
adrenergic receptor antagonists (i.e., received
milrinone monotherapy) and served as controls
for the 51 patients (78%) who did tolerate
combination therapy.51 Combination therapy
improved 3-year survival (69%) versus milrinone
monotherapy (43%, p<0.0001), although patients
unable to tolerate �-adrenergic receptor
antagonists likely reflected worsened disease
status at baseline.  Patients receiving combination
therapy also experienced no significant change in
QTc interval versus baseline (from 441 to 446
msec, p=0.82), whereas patients receiving
milrinone monotherapy experienced significant
QTc-interval prolongation (from 436 to 469
msec, p=0.002).  Inasmuch as increases in QTc
intervals are associated with increased risk of
high-grade arrhythmias, the reversal of QTc
prolongation with combination therapy indicated
that the addition of �-adrenergic receptor
antagonists to milrinone may protect against
milrinone-induced arrhythmias.

In a similar observational follow-up study of 16
patients with refractory heart failure (NYHA class
IV) treated with continuous intravenous
milrinone on an outpatient basis, 12 patients
(75%) received combination therapy with �-
adrenergic receptor antagonists and 4 patients
(25%) who received no �-adrenergic receptor
antagonists served as controls.52 Combination
therapy improved NYHA functional class in a
higher percentage of patients versus placebo at
6–12 weeks (60% vs 25%) and 12–24 weeks
(62% vs 50%); however, the study was not
powered for statistical comparisons.

The Studies of Oral Enoximone Therapy in
Advanced Heart Failure (ESSENTIAL) trial was
the first randomized trial to test the addition of a
phosphodiesterase inhibitor to a contemporary
heart failure regimen that included the use of �-
adrenergic receptor antagonists.53 Although
completed in 2004, full results of the trial have
not yet been reported.54 The ESSENTIAL trial
enrolled 1854 patients with NYHA class III–IV
symptoms and at least one hospitalization for
worsening heart failure during the previous year.
Over a mean treatment duration of 16.4 months,
enoximone 25–50 mg orally 3 times/day
produced a neutral mortality effect versus
placebo (21.7% vs 22.6%, p=0.73).  Unfortunately,
this dosage of enoximone also produced no
clinical benefits on heart failure measures such as
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6-minute walk and patient-assessed improvement.
Post hoc analyses suggested that patients with
severe disease (LVEF < 0.25) and longer
enoximone treatment duration may have
experienced significant benefits (improved 6-
minute walk test and reduced mortality), but
these stratifications were not included in the
primary end points.  As this study remains the
only randomized trial to assess combination
therapy, much debate has ensued among the
heart failure community.  Critics of the trial note
the lack of efficacy for the primary end points,
whereas proponents note that the addition of
enoximone to a �-adrenergic receptor
antagonist–based regimen did not produce the
mortality increases reported in previous trials
with phosphodiesterase 3 inhibitor monotherapy.
Both perspectives note that the lack of effect may
be attributable to inadequate enoximone dosing
(25–50 mg 3 times/day).50 The larger question to
be answered is whether phosphodiesterase
inhibitors (in combination with �-adrenergic
receptor antagonists) will retain this mortality-
neutral effect when used at doses sufficient to
produce clinical benefits.  In a study already
described, clinical improvement was noted at
higher doses of enoximone (mean daily dose 189
mg).50

Compartmentation of Phosphodiesterase and
Protein Kinase A Effects

With the clinical utility of combination therapy
still in question, other investigators continue to
focus on elucidating the mechanisms by which
phosphodiesterase inhibitors affect sympathetic
signaling within the myocardium.

In an anecdotal sense, the intensity of intra-
cellular norepinephrine signaling depends on the
balance of phosphodiesterase and PKA as they
compete for the cAMP substrate (Figure 341).
Activation of PKA by cAMP increases norepi-
nephrine effects; phosphodiesterase hydrolysis of
cAMP reduces norepinephrine effects.  Specific
intracellular localization of PKA and phospho-
diesterase may, therefore, be pivotal in deter-
mining cellular responses to norepinephrine.
This theory, known as “compartmentation,”
suggests that regional variations in cytoplasmic
concentrations of PKA and phosphodiesterase
determine which PKA targets receive the most
phosphorylation.30 The efficiency of compart-
mented signaling may be increased by anchoring
proteins that bind PKA and phosphodiesterase to
specific locations within the cell.55

The importance of compartmentation was first
documented in studies that compared the effects
of �-adrenergic receptor agonists and
prostaglandin E1 on intracellular cAMP.56–58 Both
agents increased cytosolic cAMP levels, but only
the �1-adrenergic receptor agonists induced an
inotropic response.  The mechanism for such
differing responses was attributed to the
observation that �-adrenergic receptor agonists
produced increases in both cytosolic and
microsomal cAMP, whereas prostaglandin E1
produced increases in only cytosolic cAMP.  This
suggests that changes in cAMP content have
different effects depending on the intracellular
compartments in which they occur.

Phosphodiesterase subtypes may have a
prominent role in compartmentation effects.
Phosphodiesterase 3A1 is expressed as a
membrane-bound enzyme in cardiac myocytes
but is absent from vascular myocytes, whereas
phosphodiesterase 3A2 is both cytosolic and
membrane bound in cardiac and vascular
myocytes; phosphodiesterase 3A3 predominates
in cytosolic fractions of cardiac and vascular
myocytes.59, 60 It was therefore proposed that
phosphodiesterase 3A1 co-localizes with
calcium-handling proteins on the sarcoplasmic
reticulum membrane and mediates the “fine-
tuning” of calcium cycling, whereas phospho-
diesterase 3A3, present in the cytosol, modulates
CREB regulation of gene expression.

Future Directions in Phosphodiesterase
Research

With at least 11 families of phosphodiesterases
identified in humans, multiple targets exist for
future therapeutic intervention.  For example,
phosphodiesterase type 1 was recently identified
in human myocardium and shows similar affinity
for both cAMP and cyclic guanosine 3′ ,5′-
monophosphate (cGMP).61 Whereas phospho-
diesterase 3 remains primarily responsible for
cAMP catalytic activity in microsomal (membrane-
bound) fractions, phosphodiesterase 1 is
localized to Z-lines and M-lines in the sacromere
and constitutes the majority of cAMP catalytic
activity in soluble fractions of the myocardium.
The expression of phospho-diesterase 1 in the
myocardium may allow for both cAMP- and
cGMP-mediated signaling to be modulated by
calcium during systole.  The spatially distinct
activities of phosphodiesterase types 1 and 3
reinforce the significance of myocardial compart-
mentation and may be associated with activation
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of select PKA targets.  Continued research seeks
to characterize the physiologic effects of
phosphodiesterase 1 inhibition by using IC295
(selective phospho-diesterase 1 inhibitor) and the
interplay of cGMP and cAMP on myocardial
calcium signaling. 61, 62

Conclusion

Multiple clinical trials document the benefit of
�1-adrenergic receptor antagonists in patients
with heart failure.  �-Adrenergic receptor
antagonists nonselectively reduce PKA activity
within the myocardium, masking the potential
benefit of some PKA targets.  In contrast with
other inotropic agents, phosphodiesterase
inhibitors may activate select myocardial PKA
targets in the presence of continued �-blockade.
Recent clinical investigations highlight the
potential benefits of phosphodiesterase inhibitors
combined with �-adrenergic receptor antagonists
in patients with heart failure.  Preliminary reports
in the ESSENTIAL trial indicate the combination
of phosphodiesterase inhibitor and �-adrenergic
receptor antagonist to be well tolerated; however,
inadequate dosing may have masked the clinical
benefit and/or toxicity of enoximone.

The only phosphodiesterase 3 inhibitors
approved for use in heart failure pharmaco-
therapy (milrinone and amrinone) exhibit
selectivity for the phosphodiesterase 3 family, but
no selectivity for individual phosphodiesterase 3
subtypes.  Phosphodiesterase 1 inhibition shows
promise in basic science research but may be
years away from clinical development.  Develop-
ment of novel phosphodiesterase inhibitors with
subtype selectivity may reveal a more meaningful
role for phosphodiesterase inhibition as an
addition to �-adrenergic receptor antagonist
therapy in patients with heart failure.
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