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Overview: Week 2

Membrane structure
Membrane transport, esp. diffusion

“Electrodiffusion” of a charged particle in an
electric field

Electrodiffusion across a semi-permeable
membrane

— Single ionic species in equilibrium

— Multiple ionic species in steady-state
Pumps

Osmotic effects
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Membrane structure
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http://telstar.ote.cmu.edu/biology/downloads/membranes/index.html

Methods of membrane transport

Endocytosis (requires energy)
Exocytosis
Diffusion

Protein-mediated transport
— Active transport (requires energy)
— Facilitated (passive) transport
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Diffusion: Fick’s first law

In general: ¢, =—D,Vc¢,, Ve, = gradient of ¢, = %i n %J + ac, K
ox ay oz
In 1D steady-state: @, =—D, de,
dx
¢y [F]mol/ L=M @, [=] mol/(s m®) D, [=] m¥s

Add in continuity to get the
diffusion equation

Net influx of particles in interval (t,t+At):

[O(x:1) - QRHAXDIXAXAL = [c(xFAR/2,HHAL) - o(x+HAX/2,)] XAXAX

- /‘7 Area=A (assuming flux is constant during At and concentration is constant in Ax)
o0t o(x+axt) Rearrange to put like terms on each side:
[p(xt+AX,1) - (x,1)] / Ax = - [c(x+AX/2,t+AL) - c(x+AX/2,t)] / At
X xrax Take limit as Ax, At — 0:

Ip(x,1) B de(x,1)

123 o

Combine Fick’s first law and the continuity equation:

1. Take 0/0x of Fick’s first law: rL(p =-D ()-,(
ox o’
2. Combine to get rid of ¢: Da—( _ de(x,1)
o
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Analytic solution of the diffusion equation

.. .. ut) -
Initial conditions : ¢(x,0) = 6(x) = c(x,1) = ——=—=e 74V
4Dt

Nernst-Planck equation

« Key assumption: linear summation of
diffusion and force-induced drift with
friction (i.e., velocity proportional to force)

QuE) = Cn Vi, Where v, [=] m/s is the drift velocity of species n

If f1s the force per mole, and we assume that collisions between particles make the system
frictional, the system acts like a dashpot, with velocity proportional to force:

v = u, f, where u, [=] (m mol)/(N s) is the molar mechanical mobility of n.
The total steady-state flux is the sum of the fluxes due to diftfusion and the force:

dc
(pn = (PH(D) + (pn(F) = _DH d; + unfcn (x’ t)
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Nernst-Planck equation

e= _d_\|/, where ¥ [=]| V
dx

f=e,F=—zF v
dx

(p” = _D” & - l["ZH Fc” (x’ r) M
dx r\ dx

3 dependent variables, but only 1 equation, per ion. Not good!

Additional constraints make Nernst-
Planck (theoretically) solvable

¢ dc
Continuity: n—_n
¥ ox ot
2
Poisson's equation : J 1/2/ _—px,0)
ox €

e= permittivity of medium [=] C/(m V)
p(x,t) = density of mobile & fixed charge within the medium

Still not good! A big pool of interlinked, nonlinear PDEs!
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Nernst-Planck can be solved for
one ion in steady-state equilibrium

insid tsict s de
inside outside 0,(x)=0= u 2, Fe,(x) y(x) -, c,(x)

. Cn(X) o dx dx

cn Cn

W(x) Because D, = u,RT (this is the Einstein relationship,
which relates the diffusion coefficient to molar
molecular mobility), we can write:

A, _ e (I

RT
dx dx

CRr L@ Ay
c,(x) dx dx

Integrate both sides over [0,d] to give the Nernst Equation:

RT . ¢

E =——In==

L= og
"z F ¢ z,Floge "¢

1 1
n n n

RT 1 e

Getting a feel for the Nernst

equation
RT 1 ¢
W= o log—
z,Floge ~ ¢
OmV. For frog muscle:
=2 MW 10e% @24C) 6@ =225mM, o= 124 mM, E =101 mV
Z, n Cna® = 109 mM, ¢y, = 10.4 mM, E, =+59 mV
61 mV 0 Cc® = 77.5mM, c.f = 1.5 mM, Eg, =-99 mV
~ 2 log ™ @t 37 0)

Z

n

n
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Resting potential: hypotheses

« Potassium is the only permeable ion at
rest: V. = Ex

» Multiple ions lie in simultaneous Donnan
equilibrium: e.g., V s = Ex = Eg

* No ion is in equilibrium; resting potential is
a combination

In the absence of chloride, resting muscle fibers
can act something like “potassium electrodes”

ernal potential (mV)
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Hodgkin and Horowicz, 1959
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Simultaneous changes in c;° and c¢,° that allow
simultaneous equilibrium suggest Donnan eq.
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Hodgkin and Horowicz, 1959

Pushing the muscle cell out of equilibrium leads to
osmotic changes that re-establish Donnan eq.
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Hodgkin and Horowicz, 1959




Additional assumptions are typically
made to solve Nernst-Planck for
multiple ions in steady-state

 Constant-field assumption: Assuming that the
voltage profile varies linearly through the
membrane allows one to derive the Goldman-
Hodgkin-Katz (GHK) equation, which looks like
a multi-ion version of the Nernst equation

RT . Py cyt Pecyqt P czcéz
=—In

rest i i 0
F Pyonat Peenat Poce

D, . . . .
P, = 7” (assuming continuous concentrations at boundaries)

Additional assumptions are typically
made to solve Nernst-Planck for
multiple ions in steady-state

* Linear I-V assumption: Assuming that current
flow depends linearly on V for each ion, as long
as permeability (conductance) does not
change, gives us a circuit model:

inside
+

Ina gk dei vV o= 8vaEny T 8xEng T 8ciE ¢

rest

+ + 8va T 8x T 8a
r

ENa_-|- EK_-|- = T

V' Cn7

Al

outside
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GHK and circuit give different outcomes
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