ION CHANNEL DIVERSITY and CHARACTERIZATION

Voltage clamp techniques K channels Na channels Ca channels Ligand-gated channels Channelopathies

OUTLINE

Voltage clamp techniques whole cell, single channel, gating K channels Na channels Ca channels Cardiac AP Na nerve vs cardiac Ica: L vs T type; drugs (BayK, nitrendipine) Ito: inactivation, subtypes Kv1.4, Kv4.2/3, accessory subunits Ikr, Iks, Ikur (drugs dofetilide) IK1 – rectification Cardiac channelopathies (LQTS, SQTS, Brugada syndrome)

Ligand-gated channels (AChR) Pancreatic beta cell channels (KATP, ICa)

Voltage clamp techniques

Fig. 3. Voltage clamp techniques. In each case FBA is the feedback (or clamping) amplifier, E' is the voltage electrode and I' is the current electrode. (Reproduced with permission from Hille, 1984).

Capacitance currents (I_c) and ionic currents (I_i) are activated by rapid changes in membrane potential using voltage clamp

Variable V_{test} can be applied with voltage clamp

Simplified schematic of voltage clamp circuit

Fig. 4. Two electrode voltage clamp circuit. The circuit may be switched either to clamp voltage (VC) or current (IC).

Original patch clamp recordings (1981)

Figure 5. The Patch-clamp technique (Hamill et al, 1981)Pflugers Arch 391: 85-100Upper panel shows the photograph of the preparation used for the first recordings
of acetylcholine receptor single channel currents from denervated frog (Rana
pipiens) cutaneous pectoris muscle (Neber & Sakmann, 1976).Lower panel is the reproduction of Fig 6 from 1981 Pflügers Archiv paper (Hamill
et al., 1981), which shows giga-seal formation between pipette tip and
sarcolemma of frog muscle. (A) Schematic diagrams showing a pipette pressed
against the cell membrane when the pipette-membrane seal resistance is of the
order of 50-100 Megohms (left), and after formation of a gigaseal when a small
patch of membrane is drawn into the pipette tip (right). (B) The upper trace

Four modes of patch clamp technique

High-throughput, automated patch clamp instruments

EVOLUTION and **Ion channel diversity**

Diversity of ion channels

Example: nematode C. elegans

- 73 K channels (20 6 TM, 3 IRK, 50 TWIK)
- 89 ligand-gated channels (42 ACh, 37 inhibitory GABA_A or glutamate, 10 excitatory glutamate)
- 5 voltage-gated Ca channels
- 6 chloride channels
- 24 gap junction channels (connexins)
- 22 mechanosensitive channels
- 6 cyclic-nucleotide gated channels
- 11 TRP-related channels

Total: 236 channel subunit genes

Origin of ion channel diversity

- 1) gene duplication & divergence
- 2) alternative mRNA splicing
- 3) heteromultimeric assembly of different pore-forming (α) subunits
- 4) heteromultimeric assembly of alpha and auxillary (β , γ , δ) subunits

1) Gene duplication and divergence

(example: K channels)

Amino acid relationships of the minimal pore regions of the voltage-gated ion channel superfamily (143 types)

Pharmacol Rev 57:387-395, 2005

2) Alternative mRNA splicing (NMDA subtype of Glutamate receptor channels)

The different NR1 subunit splice variants arise from alternative splicing of the exons 5, 21, and 22, giving rise to the cassettes N1, C1, C2, and C2'.

3) Heteromultimeric assembly of different α-subunits example: six Connexins combine to form a connexon two connexons combine to form a gap junction channel

Kumar and Gilula. Cell 84, 1996

4) Auxiliary subunits of the voltage-gated ion channel superfamily

Pharmacol Rev 57:387-395, 2005

Aquaporins (water channels)

Movement of water across cell membrane is often faster than predicted for a purely passive process.

AQPs (6 types) are widely expressed

- erythrocytes (200,000/RBC),
- specialized regions of the kidney, iris, lens epithelia,
- lung alveolar capillaries and endothelium
- epithelium of colon,
- capillary and lymphatic endothelium of all muscle tissue.

AQP1

End-on view from the extracellular surface

side view

 Pore radius ~ 5 Å
Narrowest part of pore (1 amino acid): 3 Å (diameter of water molecule: 2.8 Å)
Exclude all ions, including H⁺

Each Monomer: six membrane-spanning helices, two pore helices 4 water channels/tetrameric structure

MURATA et al (2000) Nature **407**: 599 - 605

Ion channels and cardiac excitability

Ionic currents in human ventricular myocyte

Molecular basis of human cardiac potassium channels

Phylogenetic Tree, Kv1-9 Families

VOLTAGE-GATED K CHANNELS

Pharmacol Rev 57:473-508, 2005

Delayed rectifier K currents: I_{Kr} and I_{Ks}

Variable V_{test} can be applied with voltage clamp

I_{Kr}: hERG subunits

I_{Kr} (hERG)

I_{Kr} (hERG)

hERG single channel currents

I_{Ks}: KCNQ1 + KCNE1 subunits KCNQ1 x 4 +40 mV α **KCNQ1** alone 1 μA + x 2 1 s Amplitude increased KCNE1 KCNQ1 + KCNE1 (I_{Ks}) **Activation** slower 1 μΑ

1 s

Sanguinetti et al (1996) Nature

Transient outward K current: I_{to}

KChIP2 = K Channel Interacting Protein #2

I_{to}: KChip2b and 2d increases membrane expression of Kv4.3 channels

Patel et al (2004) *J Physiol* 557:19

I_{to}: KChip2's alters Kv4.3 channel inactivation

Patel et al (2004) *J Physiol* 557:19

I_{to}: KChip2 accelerates recovery from inactivation of Kv4.3 channel current

Two components of I_{to}: Kv1.4 (slow) and Kv4.2/3 (fast)

Patel et al (2004) *J Physiol* 557:19

Inward rectifier K current: I_{K1}

Bichet et al (2003) Nature Reviews Neurosci. 4:957

Pharmacol Rev 57: 509-526, 2005

I_{K1}: I-V relationship determined from single channel recordings

High $[K^+]_o$

Normal [K⁺]_o (4 mM)

Bichet et al (2003) Nature Reviews Neurosci. 4:957

Current-voltage relationship of cardiomyocyte I_{K1}: Rectification caused by internal Mg²⁺ block

Proc. Natl. Acad. Sci. USA 84 (1987) 2563

C. Vandenberg

Kir2.1 channel rectification: caused by blocking of pore by internal polyamines and Mg²⁺ ions

Bichet et al (2003) Nature Reviews Neurosci. 4:957 1-5: residues that form binding sites for polyamines and Mg²⁺

Inward sodium current: I_{Na}

Structure of voltage-gated sodium channel

Na channel beta subunits and phosphorylation sites

Na_v1.5 whole cell and single channel currents

Chen and Sheets (2002) Am J Physiol

()
-120 -	
	1-4
closed	
open	

	$\sigma_{1,2},\ldots,\sigma_{n-1},\ldots,\sigma_{n-1},\ldots,\sigma_{n-1},\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\sigma_{n-1},\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots$
	Apr il 1946 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 19 47 - 194
	₽ ₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	······
5.	
РА	
	50 msec

Bennett et al Nature

# Na_v1.5: I-V and voltage dependence of activation



Bankston et al (2008) Plos One 12:e1258

#### Na_v1.5: Steady-state voltage dependence and recovery from inactivation



 $V_{1/2}$  inact = -75 mV

recovery from inactivation

Bankston et al (2008) Plos One 12:e1258

## Inward L-type calcium current: I_{Ca-L}



## **Voltage-gated calcium channels**

#### **Ancillary subunits**



Heart L-type: Ca_V1.2,  $\beta_{2b}$ ,  $\alpha_2\delta_1$ , (no



#### Cardiomyocytes have two types of voltagedependent Ca channels (T and L)





canine atrial myocytes

FIGURE 2. Two components of Ba current. 115 mM Ba,  $10 \mu M TTX$ . (A) Currents elicited by steps from -80 or -30 mV; for -30 traces, the holding potential (HP)

Bean (1985) J Gen Physiol 86:1

#### Physiological function and pharmacology of calcium channels

Channel	Current	Localization	Specific Antagonists	Cellular Functions
Ca _v 1.1	L	Skeletal muscle; transverse tubules	Dihydropyridines; phenylalkylamines; benzothiazepines	Excitation-contraction coupling
Ca _v 1.2	L	Cardiac myocytes; smooth muscle myocytes; endocrine cells; neuronal cell bodies; proximal dendrites	Dihydropyridines; phenylalkylamines; benzothiazepines	Excitation-contraction coupling; hormone release; regulation of transcription; synaptic integration
Ca _v 1.3	L	Endocrine cells; neuronal cell bodies and dendrites; cardiac atrial myocytes and pacemaker cells; cochlear hair cells	Dihydropyridines; phenylalkylamines; benzothiazepines	Hormone release; regulation of transcription; synaptic regulation; cardiac pacemaking; hearing; neurotransmitter release from sensory cells
Ca _v 1.4	L	Retinal rod and bipolar cells; spinal cord; adrenal gland; mast cells	Dihydropyridines; phenylalkylamines; benzothiazepines	Neurotransmitter release from photoreceptors
Ca _v 2.1	P/Q		-Agatoxin IVA	Neurotransmitter release; dendritic Ca ²⁺ transients; hormone release
Ca _v 2.2	N	1	-Conotoxin-GVIA	Neurotransmitter release; dendritic Ca ²⁺ ; hormone release
Ca _v 2.3	R	Per Francisco		firing; dendritic calcium transients
Ca _v 3.1	т	ad a d		ng; repetitive firing
Ca _v 3.2	т	and smooth muscle myocytes		ng; repetitive firing
Cav3.3	Т	Neuronal cell bodies and dendrites	George Sangloulogiou Co	nus magus 59 mm. ng; repetitive firing

## **Calcium channelopathies (human)**



- Hypokalemic periodic paralysis type-1
- Malignant hyperthermia
- Ca_V1.4 (α_{1F} subunit; L-type)
  - Stationary night blindness type-2
- Ca_V2.1 (α_{1A} subunit; P/Q-type)
  - Familial hemiplegic migraine
  - Episodic ataxia type-2
  - Spinocerebellar ataxia type-6
  - Episodic/progressive ataxia
- □ Ca_V3.2 ( $\alpha_{1H}$  subunit, T-type)
  - Idiopathic generalized epilepsy
- □ CaV1.2 ( $\alpha_{1C}$  subunit, L-type)
  - Timothy syndrome (arrhythmia, etc)



#### Long QT syndrome: 9 genes, many mutations

(incidence:  $\sim 1/2000$  in general population)

	Gene	<u>channel protein</u>	<u># of mutations</u>	
<u>locus</u>			ר	Pomano Ward
LQT2	HERG	$I_{ m Kr}lpha$ -subunit	291	syndrome
LQT6	KCNE2	eta-subunit	11	(dominant)
LQT1	KCNQ1	$I_{Ks} lpha$ -subunit	246	Jervell and
LQT5	KCNE1	eta-subunit	30	Lange-Nielsen
				syndrome
LQT3	SCN5A	$I_{Na}lpha$ -subunit	77	(recessive)
LQT7	KCNJ2	$I_{K1} \alpha$ -subunit	29	
LQT8	CACNAIC	$I_{CaL}lpha$ -subunit	3	
LQT4	ANKB	ankyrin-B	11	
LQT9	CAV3	caveolin-3	5	

Gene Connection for the Heart website (Carlo Napolitano) - Nov 2007

# Long QT syndrome

#### **Loss** of function mutations in 5 different K channel genes

**Gain** of function mutations in Na or Ca channel genes



# Long QT syndrome: prolonged ventricular repolarization



## Long QT syndrome:

early afterdepolarizations (EADs) trigger arrhythmia



Rudy and Silva (2006) Quarterly Rev Biophys

## Torsades de pointes

#### (signature arrhythmia of long QT syndrome)



ventricular fibrillation  $\rightarrow$  sudden death

# K channel mutations in LQTS

#### Mechanisms:

- 1. Loss of function (biophysical, or protein misfolding)
- 2. Altered function
- 3. Dominant-negative effect
  - coassembly of mutant with normal subunits alter, or destroy heteromultimeric channel function



#### **Mutations can alter Na channel inactivation**



Balser (1999) Cardiovasc Res 42:327

#### Long QT syndrome: Gain of function mutation in Nav1.5 channel

Wild-type Na channel single channel currents

mutant Na channel  $\Delta KPQ$  (impaired inactivation)

mV ( -120 -	0	ر — 120-	) 
closed open			July and the second sec
			Marthaland and Marthaland Marthaland Carlos and Carlos
	······································		
5 pA	ция арала на на на разна разна на н	5 pA	hanner with
	50 msec		50 msec

# **Other channels**

#### Two-pore K channels: "leak" channels



#### **Calcium- activated K channels**



#### **TRP channels and CatSper channels**



#### **Cyclic-nucleotide gated channels**







CNG channels • in photoreceptors (shown) and olfactory neurons

# Ligand-gated ion channels

### **Classification of ligand-gated ion channels**

#### **Receptor type**

1. Purinergic ATP (excitatory, depolarizing effect in neurons; cation selective)

2. Cys-loop

acetylcholine GABA serotonin glycine

Ligands

extracellular binding site

3. Glutamate

glutamate

4. Intracellular receptors

ATP cAMP cGMP

#### GABA, glycine, ACh, serotonin receptor channel subunit



Glutamate receptor channel subunit



Channel

(5 subunits):



**Channel** (4 subunits):


# **Ionotropic Glutamate Receptors**

Classified according to preferred synthetic acidic ligand (glutamate is the only <u>natural</u> ligand)

1. NMDA (N-Methyl-D-Aspartate)



- **2.** AMPA ( $\alpha$ -Amino-3-hydroxy-5-Methyl-4-isoxazolePropionic Acid)
- 3. Kainate

#### metabotropic receptors:

-not ion channels -activate 2nd messenger cascade



# Subtypes of GluR channels

GluR channels are activated by glutamate released from presynaptic terminals

NMDA receptors are much more permeable to Ca²⁺ than AMPA or Kainate receptors

NMDA receptors are blocked by Mg²⁺ unless cell is depolarized

 $Mg^{2+}$ 



# **EPSPs and GluR channels**

AMPA and Kainate Receptor activation mediates *fast* EPSP

# NMDA Receptor activation mediates *slow* **EPSP**

important for "long-term potentiation", a component of the learning/memory process

EPSP: Excitatory PostSynaptic Potential





# NMDA receptor channel regulation



Feldman, Fundamentals of Neuropharmacology

# Acetylcholine (ACh) receptors

#### Two types:

muscarinic metabotropic receptors (activated by muscarine)

- ACh binding activates a 2nd messenger cascade
- blocked by atropine (from nightshade, Atropa belladona)
- no ion channel activity

nicotinic ionotropic receptors (activated by nicotine)

- ion channels: located at postsynaptic membrane of neuromuscular junction, and in some neurons

#### ACh is the <u>natural</u> ligand for both receptors

#### nACh receptors in neuromuscular junction



ACh degraded rapidly by ACh esterase

If End Plate Potential (EPP) is large, then action potential is initiated, muscle contracts

## nAChR are heteromultimeric channels

**Skeletal muscle**: 2  $\alpha$ 1,  $\beta$ 1,  $\gamma$ ,  $\delta$  subunits/channel in adult **Neurons**: 2  $\alpha$ , 3  $\beta$  subunits/channel



## Pharmacology of nAChR channels:

#### Agonists:

acetylcholine, nicotine (activators) succinylcholine: <u>depolarizing</u> muscle relaxant (not rapidly hydrolyzed by ACh esterase)

Antagonists:

hexamethonium (ganglionic blocker)

curare (Strychnos vine extract; arrow/dart poison) α-bungarotoxin (snake venom) (cause muscle paralysis)



#### Myasthenia gravis: effector mechanisms of anti-AChR antibodies

Glycine and GABA_A receptor channels

ANION (CI⁻) channels



#### Activated by glycine (GlyR channel) or $\gamma$ -aminobutyric acid (GABA_AR channel)

Location: neurons

GlyR: spinal cord and brain stem GABA_AR: throughout brain



glycine

# KATP channel is an octomer, formed by coassembly of Kir6 and SUR subunits



# Nucleotide regulation of KATP channel

ATP closes channel; PIP2 or ATP hydrolysis activates channel



# KATP channels and regulation of insulin secretion in pancreatic beta cells



Nichols (2006) Nature 440:470