

We can define the electrochemical potential as:

$$\mu_{1} = \mu_{0+} RTLn\alpha_{1} + zF\psi_{1}$$

$$\mu_{2} = \mu_{0+} RTLn\alpha_{2} + zF\psi_{2}$$
At equilibrium $\mu_{1} = \mu_{2}$

$$\therefore RTLn\alpha_{1} + zF\psi_{1} = RTLn\alpha_{2} + zF\psi_{2}$$

$$\psi_{1-}\psi_{2} = E = \frac{RT}{zF}Ln\frac{\alpha_{1}}{\alpha_{2}} = \frac{RT}{zF}Ln\frac{C_{1}}{C_{2}}$$

$$E = \frac{RT}{zF}Ln\frac{C_{1}}{C_{2}}$$
Nernst equation

The "sodium theory" of the action potential

Action potentials exhibit an overshoot. Thus the peak of the action potential is well above zero. Hodgkin and Katz suggested (in 1949) that this was due to a rapid and selective increase increase in the permeability towards sodium. Thus g_{Na} transiently becomes much greater than g_k . How can this idea be tested?

