Alonso P Moreno 'rqn
Con n Lab

l'lll'tfifi.'l.‘-'

CVRTI u fu+ h '?,55} i

fffffff

Bioengineering 6003
Cellular Electrophysiology
and Biophysics

Cardiac cell-cell

Communication
Part 2

Alonso P. Moreno D.Sc.

CVRTI, Cardiology
moreno@cyvrti.utah.edu



Regulation of intercellular
communication

e Itis simple

Electrically we evaluate gj or junction
conductance

gi=n *y~* Po

n = number of channels
Y; = unitary conductance
Po = open probability
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Gating of gap junction channels

e Gating by voltage
— Transjunctional and transmembrane

e Gating by intracellular pH

o Gating by protein phosphorylation
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Transjunctional voltage dependence
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Voltage gating of Cx45
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Rectifying
channels from
murine embryonic
Isolated ventricle
cells

The formation of
heterotypic channels
can be demonstrated
In this preparation,
where gap junctions
show gating
rectification.
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Isolated cardyocytes
from 18-day murine
embryo
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Multiple expression of connexins in a tissue

Connexins in the heart
Example of the co-expression of connexins

.
wli ¥ -

Canine sinus node
(Kwong et al, Circ Res. 1998)
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Heteromeric combinations modulate total
and unitary conductances
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Electrical propagation from the
SA node to the musculature

Uncoupled

Adding
connections

Control

Alonso P. Mareno g (]

Connexin Lab o] ‘
CVRTI U of Utah "lﬂﬁy‘j H i



| Gating by
Transmembrane

—Q—@i voltage

AV Gi _| Cx45

Evaluation of changes in 024 Vm (mV)
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Electrotonic conduction In cardiac
filbers

A CURRENT FLOW THROUGH GAP JUNCTIONS
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Gating by pH

The reduction of intracellular
PH causes a reduction in the
conductance of the junction
(Gj/Gmax).

When the COOH tail is
removed, there is no gating
by pH.

If the COOH tail is co-
expressed, the gating by pH
IS re-established.
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Intra-molecular interactions rule pH
gating for acidosis
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Fig. 1. Diagram illustrating the concept of a ball and chain model for
chemical regulation of connexins. An intracellular flexible domain (the Fig. 6. Secondary structure of a peptide corresponding to amino acids 119
carboxyl terminal domain) acts as a gating particle. Under normal 144 of Cx43, as solved by nuclear magnetic resonance. We propose that this
condilions, the gﬂlC i away Feasiii fhia pore. Under the approprialc Slil]]lllLIS, structure acts as a receptor for the gating particle during chemical regulation
the gate would swing toward the mouth of the channel, bind to a “receptor™

affiliated with the pore, and close (or modify) the channel.

of Cx43 channels.
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Connexins also gate for
Intracellular alkalosis
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Heterotypic channel formation reverts permeance
properties without changing charge selectivity

Heterotypic Cx43Wt/Cx45 Channels
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Connexin26 channel at 3.5A resolution
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Figure 4 | Pore structure of the Cx26 gap junction channel. a, Vertical
cross-section through the gap junction channel, showing the surface
potential inside the channel. The channel features a wide cytoplasmic
opening, which is restricted by the funnel structure, a negatively charged
path and an extracellular cavity at the middle. Electrostatic surface potential
of the Cx26 gap junction channel was calculated by the program APBS* as
implemented in PyMOL under dielectric constants of 2.0 and 80.0 for

600

Detalls from the pore

protein and solvent regions, respectively. The displayed potentials range
from —40 (red) to 40 (blue) kT e L. b, Pore-lining residues in a Cx26 gap
junction channel. Side view of Cx26 gap junction channel pore; the main
chain is depicted as a thin ribbon and side chains facing the pore as balls and
sticks. For fine viewing, two subunits in the foreground are omitted in the
surface representation and two further subunits in the background are
omitted in the model depiction. The colouring is the same as in Fig. 3b.

©2009 Macmillan Publishers Limited. All riahts reserved



A mathematical model representing
two cells coupled through a gap
junction pore
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Permeation modeling equations in a
particle collision model

External
Forces
1 .9, /-
FEIectrostatic = 4 : - 2 : (rlz)
g, T
I:Browniam - KBr 0
FEF - qE
F - I:Electrostatic + |:Brownian + FEF + I:Misc
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Particle-Particle
Interactions
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Wall- Particle
Interactions

v =d)(0 - 2A(7-0))

Particle
Dynamics

Velocity
V =U+ aAt

Acceleration

a=—
m

Position
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Collision model simulation of 16 Lucifer Yellow molecules
In a two cell model connected through a gap junction pore.
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Using Brownian Dynamics makes a
more realistic model

1 —_—

d
7=D. Frzy AL +V2VD.AW,5, + 5. DAL

Ap+L = Apn —
where, x is the position, n is the time step, k is the Boltzmann’s
constant, T is the temperature (in Kelvin), D is the diffusion matrix
of the particle, F is the net force acting on the particle, At is the time
step and AW is a random vector from Gaussian distribution with
zero mean variance.
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Collision Simulation
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Brownian Simulation
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Comparison between simu
trajectories from two C
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Particle collision Brownian dynamics
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Conduction after infarction

e Myocardial infarction (Ml)

healing process includes
revascularization and
formation of scar tissue.

o Scar tissue is composed of
fibroblast-like cells
embedded in a collagen-
fibrous matrix.

 Scar formation causes
complex changes in the
organization of cells in the
Infarcted area.

Electrogram from Canine Infarct
Region (in vitro, 2.0 mm spacing)
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Figure 1: Sachse et al.
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Building a FlexMEA as an alternative to regulate
and study heterocellular communication

Electrodes
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Recording system for the use of Perforated
Flexible MEAs

REcording membranc
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Summary

Gap junction channels could be formed of distinct
Isomeric forms.

Each isoform can form channels with unique gating
for voltage and chemical agents.

Permeability of gap junctions depends on the
Isoforms involved in the formation of channels and on
the properties of the crossing-molecules.

Heteromultimeric channels can become highly
selective and are thought to be involved in various
physiological and pathological processes.
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« Heterotypic communication can alter channel selectivity
and create a preferential flux direction of metabolites
across gap junction. One of the mechanisms to explain this
preferential flux could be based in differences in pore
mouth and charge.

e Long standing electrophysiological phenomena related to
the complex nature of electrograms in the infarct border
region could be explained by changes in cardiac
conduction due to hetero-cellular coupling.

« Studies related to this mechanism of conduction could
significantly impact the interpretation of cardiac
electrograms, increase the understanding of arrhythmia
substrates, and make a significant contribution on the
development of more guided approaches to arrnythmia
treatment.

Alonso P. Moreno T i
CVRTI U of Utah ’h',mu‘ilmjf.



