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Many simulation studies in biomedicine are based on a similar sequence of processing
steps, starting from images and running through geometric model generation, assignment
of tissue properties, numerical simulation and visualization of the results—a process
known as image-based geometric modelling and simulation. We present an overview of
software systems for implementing such a sequence both within highly integrated
problem-solving environments and in the form of loosely integrated pipelines. Loose
integration in this case indicates that individual programs function largely independently
but communicate through files of a common format and support simple scripting, so as to
automate multiple executions wherever possible. We then describe three specific
applications of such pipelines to translational biomedical research in electrophysiology.

Keywords: simulation; geometric modelling; mesh generation; electrophysiology;
defibrillation

1. Introduction

Many simulation studies in biomedicine are based on a similar sequence that
starts from images and runs through geometric model generation, assigning
tissue properties, numerical simulation and visualization of the results. The
images, often sets of images that combine to describe volumes, come from many
modalities and the task then becomes to identify structures of interest and
describe those structures in a form suitable for the numerical solution of
equations that describe the function of these structures. Thus, one can define a
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pipeline for image-based model generation and simulation that, once created, can
find use in many different fields of biomedical (or other) science and engineering.
The desire for such models has, in turn, created a pressing need for software tools
that extract anatomy and tissue characteristics from the images, create
computational meshes and allow assignment of relevant parameters to the
resulting geometric model.

Unfortunately, another trait common to many areas of biomedical simulation
is the lack of available software, especially those in the public domain, to carry out
all the steps of this pipeline. A major goal of our research and development
is to address this need and we have created a set of software tools that
support simulation pipelines in at least a few application domains. Wherever
possible, we have maintained a high level of generality in the software and the
algorithms they combine; however, we propose that, in many situations, there
are substantial benefits to adapting software to a particular application that
outweighs the resulting inevitable loss of generality. Moreover, by striking a
suitable balance between the generality of the simulation pipeline and the specific
requirements of a problem domain, our experience suggests that one can achieve
another major objective of contemporary biomedical simulation, which is creating
subject-specific implementations of clinically relevant numerical simulations.
We will describe examples of subject-specific models that we have developed, as
well as highlight a few of the outstanding challenges that arise in this setting.

(a ) Image-based modelling

Interest in image-based modelling is based on the growing access of biomedical
scientists to three- (and even four-) dimensional imaging that allows the creation
of simulation models that, in some cases, include explicit and individualized
anatomical information from the objects under study. Where previous models
have used highly simplified representations of biological tissues based on simple
shapes (lines, sheets, spheres, cylinders, etc.), it is now possible to acquire sets of
images of all manner of cells, tissues and organs using modalities such as
microscopy (e.g. histological serial sections, electron tomographic or confocal),
X-rays (e.g. biplanar fluoroscopy or computed tomography (CT)), nuclear
medicine (e.g. single photon emission computed tomography (SPECT),
positron emission tomography (PET)), magnetic resonance (anatomical, T1,
T2 or diffusion weighted) or ultrasound. These images then provide a means to
create models that are highly realistic and even subject- (or patient-) specific in
their anatomical or geometric aspects.

Figure 1 shows a diagram of the resulting workflow that applies to many
problems in biomedical simulation and contains the following elements:

(i) image acquisition and processing for a tissue, organ or region of interest
(imaging and image processing),

(ii) identification of structures, tissues, cells or organelles within the images
(image processing and segmentation),

(iii) fitting of geometric surfaces to the boundaries between structures and
regions (geometric modelling),

(iv) generation of three-dimensional volume mesh from hexahedra or
tetrahedra (meshing), and
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(v) application of tissue parameters and boundary conditions and compu-
tation of spatial distribution of scalar, vector or tensor quantities of
interest (simulation).

Naturally, there are variations possible at each step in the pipeline depending on,
for example, the imaging modalities that are relevant and available, the physical
scale of the problem domain or the mathematical equations and their numerical
approximations. The arrows in figure 1 show an example of the output of surface
fitting becoming the basis of application of boundary conditions and simulation.

(b ) Software infrastructure

There are different approaches to addressing any multifaceted software project
and the choice of the structure of the software is critical to the success of the
project. The need for careful design is especially critical when the software is to
serve a diverse community of domain-specific experts. Decisive factors include
ease of use, flexibility to adapt to a wide range of data sources and applications,
robustness, efficiency and support for multiple platforms. It is also desirable to
have a certain degree of integration among different aspects of the software so
that users see a similar interface and use familiar terms across each step in the
workflow. An additional factor in the design of a large-scale software system is
whether to employ a ‘top-down’ design or to iterate from specific to general
solutions through a ‘bottom-up’ design that starts with elemental solutions
tailored to specific applications and then seeks to integrate them.

There are numerous open-source software systems for biomedical simulation
and one can organize them according to their degree of coverage from both their
technical capabilities and the breadth of their application domain. One category
of such software achieves broad technical coverage across a very general
application domain. Others, by contrast, target a particular application domain
and provide comprehensive and/or integrated solutions within that domain.
A third category includes programs that are very specific in their technical
coverage but are generalized in terms of the application domain. The final
category is the programs that are focused in terms of both technical capacity and
breadth of application. The list of open-source examples below, organized by

generation of volume model
(meshing)

discrete points
e.g. sensors

boundary
conditions

application of tissue parameters/boundary
conditions and computation

(simulation)

image acquisition
(imaging and image processing)

identification of structures
(image processing and segmentation)

fitting of geometric surfaces
(geometric modelling)

meshless approaches

surface-based approaches

Figure 1. Schematic of a simulation pipeline. Each element has a functional title and then, in
parentheses, the technical description of the associated task.
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these criteria, is meant to be representative and not comprehensive, and we
apologize for inevitable omissions. We have limited the list to our first-hand
knowledge, thus have also omitted commercial software.

(i) Comprehensive technical and broad application domain

These are the truly comprehensive systems that include a wide range of
technical tools that can be combined into workflows and applied to a wide range
of specific biomedical (or even more broadly scoped) problems.

—SCIRun (software.sci.utah.edu/scirun) is our own example of a general
purpose, problem-solving environment that has found extremely broad
application both within biomedicine (Johnson et al. 2002; Henriquez et al.
2004; Stinstra et al. 2005; Wolters et al. 2006; Jolley et al. 2008) and in areas as
diverse as nuclear physics (Sanderson et al. 2004; Jones et al. 2007) and
combustion (Parker 2006).

—CMISS (www.cmiss.org) also has a very broad technical scope and appli-
cation domain (Blackett et al. 2005), and is the basis of many simulation
studies in bioelectric fields and biomechanics of the heart and other organs
(Hooks et al. 2002; Garny et al. 2003; Nash 2005), respiratory physiology
(Tawhai et al. 2000) and bioelectric fields in the gastrointestinal system
(Pullan et al. 2004).

—SIMBIOS (simbios.stanford.edu) is a newly emerging software system from the
NIH-funded Center for Physics-based Simulation of Biological Structures
(Schmidt et al. 2008). The biological coverage of SIMBIOS is very broad, with
the goal to help biomedical researchers understand biological form and
function as they create novel drugs, synthetic tissues, medical devices and
surgical interventions (Blemker et al. 2007; Delp et al. 2007; Besier et al.
2008; Bowman et al. 2008).

— 3D SLICER (www.slicer.org) is a multi-platform, open-source set of tools for
visualization and image computing. It is also from an NIH NCBC Center, the
National Alliance for Medical Image Computing (NA-MIC; www.na-mic.org;
Pieper et al. 2006). SLICER includes a wide variety of image processing and
visualization capabilities, including segmentation, registration and analysis
(Lankton & Tannenbaum 2008; Maddah et al. 2008).

(ii) Comprehensive technical with focused application

Software systems that provide comprehensive technical support for a specific
application area in biomedicine.

—BRAINSTORM (neuroimage.usc.edu/brainstorm) is an integrated toolkit dedi-
cated to visualization and processing of data recorded from magnetoencepha-
lography (MEG) and electroencephalography (EEG). BRAINSTORM provides a
comprehensive set of tools for researchers interested in MEG/EEG (N’Diaye
et al. 2004; Sergent et al. 2005; Jerbi et al. 2007).

— SIMBIO and NEUROFEM (www.simbio.de and www.neurofem.com) are a
combination of programs directed at source localization in the brain using
patient-specific finite-element models with multiple conductivities and even
anisotropic conductivity (Wolters et al. 2006).
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—CONTINUITY (www.continuity.ucsd.edu) is a problem-solving environment for
multiscale modelling in bioengineering and physiology with special emphasis
on cardiac biomechanics, transport and electrophysiology.

—PCENV (www.cellml.org/downloads/pcenv) is the Physiome CellML Environ-
ment, an integrated software that provides an interface to the cell simulation
models of the CellML project.

—VIRTUAL CELL (www.nrcam.uchc.edu) is a software system for a wide range of
scientists, from experimental cell biologists to theoretical biophysicists, who
wish to create models of cellular structure and chemical, electrical or
mechanical function.

—NEURON (www.neuron.yale.edu/neuron) is a simulation environment for
modelling individual neurons and networks of neurons, which is especially
well suited to comparisons with experimental data. It has a very user-friendly
interface that provides tools for building, managing and using models in a way
that is numerically sound and computationally efficient.

—GENESIS (www.genesis-sim.org) has a very similar application domain to
NEURON as a general purpose simulation platform to simulate neural systems
ranging from subcellular organelles and biochemical reactions to complex
models of single neurons, large networks and system-level models.

(iii) Focused technical and broad application domain

Software systems that solve a technical need very well and become the basis
for integrated systems in a wide range of application areas.

—TETGEN (tetgen.berlios.de) creates tetrahedral volume meshes from volume
data made from triangulated surfaces for solving partial differential equations
by finite-element or finite-volume methods. TETGEN is an integrated
component in some of the modelling pipelines described here.

— INSIGHT toolkit (ITK, www.itk.org) is a comprehensive set of software
functions to perform image processing or analysis. ITK is the basis of many
other tools (e.g. SCIRUN and SEG3D) as they lack a graphical user interface
(GUI) and exist only as a CCC class library (Ibanez & Schroeder 2005).

—The VISUALIZATION toolkit (VTK, www.vtk.org), which consists of an extensive
library for visualization functions, is a component in many larger systems,
e.g. 3D SLICER (Schroeder et al. 2006).

(iv) Focused technical and focused application domain

There are a number of highly successful systems that have a highly focused set
of capabilities and applications.

—ECGSIM (www.ecgsim.org) is a program that computes the body surface
potentials from the heart and allows the user to make changes in the electrical
characteristics of the cells in any region of the heart. Its goal is not only to
provide an educational tool but also a way to study the relationship between
the electrical activity of the ventricular myocardium and the resulting
potentials on the thorax under both normal and pathological conditions.
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—LABHEART (www.labheart.org) is primarily a teaching tool that simulates the
cardiac action potential, including the individual ionic currents and the
fluctuations in intracellular calcium concentration.

— ICELL is an internet-based simulation program that allows the user to generate
action potentials from a wide range of cell types (Demir 2006).

These examples include both bottom-up and top-down solutions. The larger,
more comprehensive and general purpose software systems tend to be top-down
as they are integrated from the conception, while the more focused systems have
become components of loosely coupled bottom-up implementations.

2. Methods and implementations

We describe here a collection of methods that make up the elements of the image-
based modelling and simulation pipeline illustrated in figure 1 and how we have
implemented such pipelines. The technical level of the description will be modest
and we defer throughout to other more detailed reports.

(a ) Software pipeline and infrastructure

One goal in scientific software is to create suites of relatively general purpose,
ideally open-source tools that are modularized, so that it is easy to replace any
particular step and maintain all the benefits of the remaining elements. The
flexibility afforded by a modular approach is essential because of the always
changing needs of the application scientist and also because of the advantages of
a distributed development process. In such an environment, programs are the
product of teams of professional programmers, students, postdoctoral fellows or
investigators, with highly variable levels of coordination among those submitting
changes to the code. The higher the level of autonomy among elements of the
system and the simpler the means that the elements communicate, the less
coordination and agreement there must be among the development team and
the lower the cost to the whole system of changes made in any one module.
The advantages of open-source development have been well documented
(O’Reilly 1999) and recent changes in public funding policy have provided
further motivation for making software developed by public funding available to
the academic community.

We have considerable experience with both the top-down and bottom-up
approaches to software architecture (MacLeod & Johnson 1993; Johnson et al.
2002, 2004; CIBC 2008a–d; SCI Institute 2008a,b) and have found advantages
and disadvantages to each. The top-down approach ensures tight coordination
and integration of software components; data storage and structures are common
across modules, application programming interfaces (APIs) between modules are
standardized and GUIs can maintain a consistent appearance and terminology,
which can reduce the time required for users to learn to use the resulting
software. However, top-down design requires prescient appreciation of all the
potential uses of the software and a keen sense of anticipation of not only the
immediate goals but also the future applications. Top-down systems also seek to
abstract the operations and interactions, to find generic terms for steps that may
have domain-specific names, thus potentially challenging the new user and
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slowing down the learning process. The advantages of the bottom-up
approach are the complements; programs arise and evolve in direct response to
the applications and are thus very well tuned to the workflow and the
nomenclature of the field. They are often smaller with less elaborate internal
architecture and thus can be easier to write, often the product of a single person
or a very small team.

Our approach has been something of a hybrid or even a parallel system. On
the one hand, we continue to use and expand SCIRUN, a very general purpose
problem-solving environment, to test algorithms and approaches and develop
application-specific solutions. SCIRUN is a stable platform that exhibits many of
the advantages of the top-down design strategy—data structures and APIs are
consistent and predictable and there is a high degree of code sharing and
usefulness of capabilities developed previously. Using SCIRUN greatly simplifies
interactive visualization and steering of the process because of pre-existing
capabilities and provides extensive support for the simulation component of the
project. However, the interface to SCIRUN is complex for a biological user and
even the nomenclature of the user interface elements is quite computer technical
rather than biomedical, further intimidating the typical biomedical user. As a
result, the burden of setting up and carrying out the simulations often falls more
to the technical members of the team than to the biomedical collaborator.

We have also followed the complementary path of developing a small, focused
and standalone software system for tasks that are ubiquitous across many
projects. Our oldest example of this strategy is MAP3D, which is an interactive
visualization program created for multichannel time signals whose spatial
organization is in surfaces (MacLeod et al. 1992; CIBC 2008e). The program has
a highly focused set of technical capabilities and the application domain has
traditionally been cardiac or neural electrophysiology (Punske et al. 2005;
Ciaccio et al. 2008). The program is also the creation of a very small team, one of
whom is a biomedical scientist so that the interface and the nomenclature are
familiar and easily adopted by the target community.

(b ) Implementation of the pipeline

(i) Top-down approach

We have implemented within SCIRUN several meshing and mesh refinement
schemes based on hexahedral and tetrahedral elements and used them
extensively in the example of simulation of cardiac defibrillation described in
detail in §3. Most of these meshing schemes start by overlaying a regular grid on
top of the voxelized images and then turning them into a model by adding local
refinements and boundaries based on the needs of the simulation. Although
carrying out refinement to an existing mesh is a relatively straightforward task,
it becomes much more challenging when maintaining good mesh quality,
i.e. controlling the shape and size of the elements. In biological problems, meshes
often require embedding of irregularly shaped boundaries of different tissue
properties as well as adding local refinements for detailed simulations around
biological sources. We have developed novel methods to approximate such
features using hexahedral meshes that also allow the addition of irregular
boundaries while still maintaining high mesh quality.
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(ii) Bottom-up approach

The key to benefitting from the bottom-up approach is creating efficient and
flexible elemental pieces that can interact through simple passing of data via
files. Pipeline structures, in general, lend themselves well to this concept and we
have implemented image-based modelling pipelines from such elements.
Elements of this strategy include IMAGEVIS3D and SEG3D (www.seg3d.org),
which provide volume rendering and segmentation capabilities, respectively.
IMAGEVIS3D is based on our own volume rendering capabilities (figure 2), and
SEG3D uses tools from the ITK (Ibanez & Schroeder 2005) and has a relatively
focused technical breadth. SEG3D reads stacks of images as a volume using
standard file formats and provides a set of tools to identify different regions within
the image volume and thus generate a ‘label map’ of the volume.
The nomenclature of both IMAGEVIS3D and SEG3D is largely generic and not
specific to any particular application domain and both are small programs,
created within a year by a small team with the goal of facilitating rapid addition of
new features or adjustments to the user interface. While these are separate
programs, they integrate functionally into the workflow through files, which they
can flexibly read and write.

Figure 2. Example of volume rendering with IMAGEVIS3D of a torso model based on a high-
resolution CT scan (512!512!3172 with a voxel size of 0.51!0.51!0.50 mm, courtesy of Siemens
Corporate Research, Princeton). By controlling transfer functions, it is possible to identify different
systems (e.g. skeleton, vasculature) and organs (e.g. heart, kidneys and bladder).
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In some applications, we have also used a second segmentation tool, 3D SLICER
(www.slicer.org), which is part of the NA-MIC kit (see §1). Although SLICER
is much more than a segmentation program, it is also portable and flexible
enough to serve as a dedicated segmentation tool in the simulation pipeline.
Integration occurs, as with SEG3D, by means of compatible file formats using
the Near Raw Raster Data (NRRD) format and the associated TEEM toolkit
for accessing and writing NRRD files.

Another component of all our tetrahedral mesh generation pipelines is TETGEN

(tetgen.berlios.de), at the moment the most effective and robust open-source
tetrahedral mesh generation program, especially for cases with multiple
embedded surfaces. It is this ability to deal effectively with the internal
boundaries between regions of different characteristics (e.g. electrical conduc-
tivity or optical opacity) and to maintain the integrity of outer boundaries,
especially when they are concave, which are essential and challenging
requirements for applications in biomedicine.

In a recent description, we have outlined the details of a new mesh generation,
BIOMESH3D, which includes support for both hexahedral and tetrahedral mesh
elements (Callahan et al. 2009). BIOMESH3D makes use of TETGEN and other
meshing tools and handles the integration and user interface to modular
programs and libraries.

3. Examples of image-based modelling and simulation

The field of electrophysiology provides a rich domain for modelling and
simulation, and has been the inspiration for many advances in computing and
numerical methods, including projects that have led to Nobel Prizes. From the
subcellular to the whole organism, the role of anatomy and spatial organization
on the mechanisms of electrophysiology leads naturally to subject-specific
models. We will describe three examples of subject-specific image-based models
that illustrate the common elements of the pipeline in figure 1 over a range of
sources of image and anatomical information.

(a) (b) (c)

Figure 3. Example of meshing of the head in a paediatric epilepsy patient. (a) The particle
distribution over the head surface and highlight of the variation in particle size, the adaptivity of
the particles over the skin. (b) The associated tetrahedral mesh and (c) another higher resolution
view of the mesh highlighting the cortex and cerebrospinal fluid.
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(a ) Example 1: modelling of focal current sources in the brain

Figure 3 contains geometric model results from a 15-year-old paediatric patient
suffering from epileptic seizures. The segmentations came from a semi-automated
tissue classification algorithm developed by Wu et al. (2006), followed by
extensive manual inspection and hand editing of mislabelled pixels using SEG3D.
The meshing component of the pipeline was implemented in BIOMESH3D, a new
program that incorporates separate surface-fitting and mesh generation programs
(e.g. TETGEN) in a scripting environment (Callahan et al. 2009). The triangle mesh
quality in figure 3a is excellent, a result of the distributed particle method that we
have developed (Meyer et al. 2005, 2007). The tetrahedral quality, as measured by
radius ratio (which is indicative of the conditioning of the finite-element stiffness
matrix in the resulting linear system), is not as good as for the surfaces, but still
highly suitable for simulations. The most disruptive tetrahedra are slivers, a
frequent product of the triangularization algorithms implemented in TETGEN. One
of the potential advantages of incorporating programs such as TETGEN into
integrated systems is a simplification for the user by optimizing, or at least
limiting the range of, control parameters. TETGEN has a number of user-control
settings that allow it to work in a wide range of applications; by focusing on a
smaller application range, it is possible to identify settings that achieve acceptable
results and expose only the essential parameters to the user interface. In
BIOMESH3D, we have been able to generally use the same set of TETGEN

parameters for all cases and required only minor manual intervention after
the initial tuning. Future research will focus on the computation time, which is
8–12 hours for datasets such as that in figure 3, and is mostly spent on
(i) preprocessing and distributing particles, (ii) carrying out the tetrahedrali-
zation, and (iii) dealing with remnant errors in the mesh, such as slivers.

Figure 4 shows simulation results from a patient-specific model of the head
carried out with NEUROFEM (for source simulation) and SCIRUN (for mesh
generation and visualization). The mesh was composed of 179 643 nodes and
1 067 541 tetrahedral elements and the preliminary simulation was carried out
with a dipole source in the right posterior region. Future improvements here will
focus mainly on the incorporation of diffusion tensors and then the inverse
computation to identify bioelectric sources in patients with epilepsy.

(b ) Example 2: myocardial ischaemia and epicardial potentials

The goal of the second example was to create subject-specific models of the
heart for use in simulating myocardial ischaemia, a condition in which the blood
supply to the heart does not match the demand, which represents the
physiological basis of a heart attack. The goal of the simulations was to mimic
the results of experiments in which reduced blood flow to the heart in an animal
model produced ischaemia that we measured electrically with high-resolution
mapping systems (Shome & MacLeod 2007).

For this simulation, we selected the modelling approach known as the bidomain
(Geselowitz & Miller 1983; Henriquez 1993), in which one pictures the intracellular
and interstitial domains of the cardiac tissue as continuous and separate over the
entire volume of the heart, linked only by the cell membrane, which is also
approximated as being continuous throughout the volume. This approach is
essentially a homogenization of the discrete structure of heart tissue in which it
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replaces the ensemble of individual cells, which each have their own intra- and
extracellularvolumes,witha continuousmodel of tissue-wide intra- andextracellular
volumes. The continuous approximation is then suitable for a subsequent
discretization into finite elements, which provide a means of computation.

To implement the bidomain solution for ischaemia requires an accurate
discrete model of the heart that includes values for conductivity in both the
intracellular and interstitial spaces. Because cardiac tissue is highly anisotropic in
structure (Roberts et al. 1979), and this anisotropy has effects on the distribution
of electric potentials (Franzone et al. 1982; Taccardi et al. 1994), a bidomain
model should also include fibre structure information. The most frequently used
geometric model of the whole dog heart with fibre structure comes from Nielsen
et al. (1991) at the University of Auckland, and, in our initial studies, we also used
this model to simulate ischaemia. Starting from the raw Auckland heart points,
we created a parametric representation of the epicardial and endocardial surfaces
using spherical harmonic basis functions in which we could easily vary the
location and transmural extent of an ischaemia zone (Hopenfeld 2004). Within
the ischaemia area, we assumed action potentials of 30 mV lower amplitude
than surrounding healthy cells, and thus created an anisotropic source of
ischaemia in a bidomain model of the entire canine heart (Hopenfeld et al. 2004).

More recently, we have converted the code of the original ischaemia
simulations into SCIRUN modules and also performed diffusion tensor magnetic
resonance imaging (MRI) of hearts from animal experiments using post-mortem
scans on a dedicated, 7 T, small animal MRI system. Subject-specific
segmentation on each heart was performed within a few hours using SEG3D
and then modules in SCIRUN performed all additional steps, including alignment,
preprocessing of fibre orientations, meshing of the myocardium, assigning the
ischaemic zone interactively and solving the potentials. Figure 5c,d illustrates
initial results from these studies, including volume renderings of the coronary
circulation and perfusion bed of the individual hearts.

(c ) Example 3: simulation of implantable cardiac defibrillators

The goal of these simulations was to calculate the electric potentials in the body,
and especially in the fibrillating heart, which arise during a shock from an
implantable cardiac defibrillator (ICD), over 90 000 of which are implanted
annually in theUSAalone.Of special interestwas the use of such devices in children,
who are bothmuch smaller in size than adults and almost uniformly have some form
of anatomical abnormality that makes patient-specific modelling essential.

We have developed a complete pipeline for the patient-specific simulation of
defibrillation fields from ICDs, starting from CT or MRI image volumes and
creating hexahedral meshes of the entire torso with heterogeneous mesh density in
order to achieve acceptable computation times (Jolley et al. 2008). In these
simulations, there was effectively a second modelling pipeline that was executed
each time the user selected a candidate set of locations for the device and the
associated shock electrodes. For each such configuration, there was a customized
version of the volumemesh that had to be generated and prepared for computation.

Figure 6 shows the steps required to implement the customized mesh for
each new set of device and electrode locations. The user manipulated an
interactive program implemented in SCIRUN that allowed very flexible design
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and placement of the components of the device, an image of which is shown in
figure 6a. Modules in SCIRUN then carried out a refinement of the underlying
hexahedral mesh, so that the potentials applied by the device and electrodes were
transferred with suitable spatial fidelity to the torso volume conductor
(figure 6b). Then additional modules in SCIRUN computed the resulting electric
field throughout the torso and visualized the results, also showing the details of
the potentials at the heart and deriving from the simulations a defibrillation
threshold value (figure 6c,d ). We have also carried out initial validation of the
complete system by comparing computed with measured defibrillation thresholds
and obtained encouraging results (Jolley et al. 2008).

4. Discussion

Our experience in developing image-based modelling and simulation software for
diverse application areas suggests several points of discussion. Some are related
to the strategies of software development for this problem domain; however, we
begin with an evaluation of evidence that suggests that image-based modelling

(a) (b)

(c) (d )

Figure 4. (a–d ) Illustration of simulation of electromagnetic field propagation in a patient-specific
brain model. The figure shows a finite-element method discretization of Poisson’s equation with a
patient-specific, five-compartment, geometrical model derived from a segmentation of brain
magnetic resonance imaging. The solid lines in the simulation images indicate isopotentials and the
small white lines are electrical current streamlines.
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and patient/subject-specific modelling are both technically feasible and
scientifically desirable.

A key premise of the drive to develop efficient pipelines such as the onewe describe
is that creating subject-specific geometric and computational models will result in
improved accuracy and more useful results. At this point, the proof to support this
premise is incomplete, although intuition would suggest it to be true. For example,

(a) (b) (c) (d )

Figure 6. Pipeline for computing defibrillation potentials in children. The figures shows the steps
((a) setting electrode configuration, (b) refinement of hexahedral mesh for electrode locations,
(c) finite-element solution of potentials and (d ) analysis of potentials at the heart to predict
defibrillation effectiveness) required to place electrodes and then compute and visualize the
resulting cardiac potentials.

(a)

(c)

(b)

(d )

(iii)(ii)(i)

(ii)(i) (ii) (iii)(i)
28
17
6.6
–4.3
–15 mV

Figure 5. Whole-heart electrical model of ischaemia with a realistic ischaemic zone. (a) A single
image from an interactive session using SCIRUN with the three-dimensional heart geometry cut
away to reveal the location of the interactive ischaemic region tool. (b) The associated computed
epicardial potentials of a simulation of subendocardial ischaemia of progressing transmural extent
((i) 40, (ii) 70 and (iii) 90%). (c(i)(ii)) A volume rendering of gadolinium-enhanced images of an
animal heart illustrating the coronary vessels and the perfusion bed for this heart, which we used to
create subject-specific models. (d(i–iii)) Slices of the heart model with colour indicating the electric
potential from a simulation of ischaemia in the subject-specific geometric model.

2305Software pipeline for image-based models

Phil. Trans. R. Soc. A (2009)

 on 20 May 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


the relative comparisons in the defibrillation study seem to show the same trends
across all the different age (and size) models, suggesting that patient-specific
modelling may not be needed (Triedman et al. 2008). On the other hand, we see
substantial influence from factors such as the presence of bowel gas on the absolute
values of defibrillation potential, which would argue in favour of patient-specific
modelling. The problem of source localization in the brain is perhaps at the forefront
of patient-specific modelling (Huiskamp et al. 1999; Wolters et al. 2006).
Of particular recent interest are cases in which EEG and MEG data from a patient
are supplemented by cortical surface potentials, which, in turn, mean that the skull
is disrupted in a very patient-specificmanner. Such cases seem to require both highly
realistic and very likely patient-specific models to achieve suitable accuracy for
surgical guidance (Tao et al. 2007).

The question of technical feasibility is more resolved, in that modern imaging
combined with recent developments in the associated software suggest that
image-based modelling is, indeed, highly possible, if by no means easy. Thus,
a second question arises as to which general approach, what we have described as
top-down versus bottom-up, will lead to the most effective solutions. We have
pursued both approaches for over 10 years and continue to develop along both
lines. We have, however, begun to identify settings in which one or the other
seems best suited. For our in-house development and original research in either
new algorithms or their application to new biomedical questions, the advantages
of the top-down or integrated environment are considerable and justify the
additional time required to develop the necessary knowledge. Graduate students
with suitable access to knowledgeable developers and experienced scientists can
now learn to use SCIRUN in days and can even develop their own modules within
weeks. The resulting savings in time by having a growing suite of visualization,
analysis and simulation tools available within SCIRUN more than make up for
the learning time. By contrast, for users from other biomedical laboratories, the
technical hurdles to learning an environment as complex and flexible as SCIRUN

can be challenging. With enough support and the availability of customized data
flow networks (the equivalent to ‘programs’ in SCIRUN), a dedicated and
reasonably computer literate biomedical scientists or physicians can and do use
SCIRUN (Jolley et al. 2008). More often, however, such a user will appreciate the
simplicity of separate programs that are each dedicated to a piece of the image-
based modelling pipeline. Our experience with programs such as MAP3D, SEG3D,
IMAGEVIS3D and BIOTENSOR all illustrate the advantages of a more limited
interface in which the user can relatively quickly become facile, even at the cost
of some flexibility. The reasons for this finding are open to speculation but may
result from the rapid gratification of learning a small piece of software and then
seeing immediate use, even if for only a small piece of the entire workflow.

A second perspective that determines the cost of developing software for use
by the biomedical community is the time required to develop robust and portable
programs in each of these approaches. A large integrated environment such as
SCIRUN has a development learning curve that can be daunting, so that even
experienced professional software developers can take months to achieve the
knowledge required to expand, alter or maintain the system. We have recently
overhauled and simplified the API to the SCIRUN infrastructure and have seen
dramatic improvement in the training time required to create functional
modules, a less daunting entry point and one that will satisfy the needs of
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most who wish to develop within SCIRUN. The benefits we have seen suggest that
simplification should always be a major goal of a software infrastructure, even at
the cost of some numerical efficiency. However, even with such simplifications,
there is a certain inertia inherent in a large system; changes in data structures,
memory management or user interface can ripple through the entire system and
result inmonths of development time. Additionally, in a system such as SCIRUN that
implements a particular event management, some tasks will be very efficient,
while others will require undue complexity purely because of the event structure.
SCIRUN implementsdataflow, i.e. each functionalmodule acceptsdata,manipulates,
integrates or adds to the data stream and passes the results to one or more
downstreammodules. Data flow is inherently linear and sequential, which can result
inunwantedoverhead fromfrequent recomputingofmany interimresults each timea
user makes small changes in parameters. In addition, iterative approaches are not
linearly sequential and map poorly to a strict data flow paradigm.

Many of the obstacles that come from the inertia and enforced consistency of large
systems are reduced dramatically in software systems that are built from small,
largely independent programs that interface through files. Each program can use
data structures, memory management and event management suited only for one
task. The result can be smaller programs that are easier and faster to create and
maintain and which can be re-engineered quickly when the inevitable knowledge
that comes with widespread use of software in real-world applications motivates a
major reorganization of the program. From the user perspective, because the results
of each step in such a pipeline are captured as files, it is also easier to create or use
additional third-party programs such as Matlab (The Mathworks, Inc.), OSIRIX
(http://www.osirix-viewer.com) or even PHOTOSHOP (Adobe Systems, Inc.) to
perform customized manipulations or analyses, further adding to the flexibility of
the overall system. With some expertise, it is also possible to gather such a set of
individual programs into a scriptable, and thus automated,workflow.BIOMESH3D is
just sucha system,drivenbyscriptswritten inPYTHON that call individualprograms,
pass the data files and provide interactive control and feedback to the user.

In summary, image-based modelling and simulation appear to be paradigms
with growing implications and opportunities for biomedical research and
software systems to support the resulting pipeline that are bound to continue
to grow and become more robust and useful for biomedical scientists. The
question of which software architecture offers the most effective infrastructure for
the development of such systems remains open. We have shown biomedical
examples using both strategies and will continue to explore the benefits of both,
driven always by the close collaborations with biomedical scientists that
motivate the development and ultimately determine its success.

The support for this research comes from the NIH/NCRR Center for Integrative Biomedical
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Eccles Treadwell Foundation and the Richard A. and Nora Eccles Harrison Fund for
Cardiovascular Research.
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