
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
INTRODUCTION

1

today…

2

3

-meet the teaching staff

-what is this course about?

-why should you care?

-nuts & bolts

-good coding practice

meet the teaching staff

4

born in Martinsville, VA

year 0

dad buys a Commodore64

decide to become a surgeon
on a space station

year 10

decide to become a surgeon

decide to become an astronaut

start college at Penn State

start grad school at the U

discover computer graphics,
realize CS is awesome

software engineer at Raytheon

finish BS in astronomy

year 20

interned at the Chicago Tribune

year 30

finish PhD in computer science

Robust Particle Systems for Curvature
Dependent Sampling of Implicit Surfaces.
M. Meyer et al., SMI 2005.

Topology, Accuracy, and Quality of
Isosurface Meshes Using Dynamic
Particles.
M. Meyer et al., Vis 2007.

Particle-based Sampling and
Meshing of Multimaterial Volumes.

M. Meyer et al., Vis 2008.

Particle Systems for Efficient and Accurate High-
Order Finite Element Visualization

M. Meyer et al., TVCG 2006.

year 30

postdoc at Harvard University

finish PhD in computer science

!"

!#

!$%
!$&
!$#
!$'
!()
!($
!((
!(*

+$

+$#

,$

+$#,(

+(

+**

,*

+$*

+*)

,"

-

.

+&

+$)

/

0

+(

+$)

1$

!*)

+(#

)2)) $2))

)2)) $2))

!"# !"#"$
3456/5. 5787597 0:.:57-;:4</=

%"&'()*+&"$ %"&,+-$
,7/594<>??

$%

@A2)

B(2#

$&

@%2"

B*2'

$'(

@"2%

B*2*

$')

@"2#

B&2A

$'&

@A2"

BA2)

$'*

@A2(

BA2)

$+,

@%2'

B"2*

$+'

@%2*

B*2#

$++

@A2)

B#2$

$+-

@%2(

B#2$

@%2'

B&2)

@"2'

B&2A

@$2&

B(2"

@(2*

B*2'

@"2$

B"2%

@)2*

BA2)

@%2"

B$2'

@A2#

B(2A

@(2#

B*2)

@"2%

B*2"

@A2A

BA2)

@*2&

B$2&

@*2$

B$2(

@$2'

B#2$

.'

.+

.-

.%

./

.(

.)

.&

.*

.',

.''

.'+

.'-

.'%

0123456" 172884798:7;8<01:125="79>6;2586147?"68<5;@
0123A1# <"2:5;78=":=5"A @0";5"@ ;>:="<10 8=":41#@

M. Meyer et al., EuroVis 2010. Pathline
source: Human
destination: Lizard chr1

chr2

chr3

chr4

ch
r5

ch
r6

chr7

chr8
chr9

chr10

chr11

chr12

chr13

chr14
chr15

ch
r1

6
ch

r1
7

ch
r1

8
ch

r1
9

ch
r2

0

chr21

chr22

chrX
chrY

chr3

chr1

chr2

chr3

chr4

ch
r5

ch
r6

chra
chrb

chrc
chrd
chrf
chrg
chrh

saturation
line

- +

10Mb

chr3

go to:

chr3 chr3

237164 146709664

386455 146850969

orientation:
match
inversion

 invert

out in

M. Meyer et al., InfoVis 2009.MizBee

!"#$%&'()*+$,-

(.+/

!"#$%&'(.+/

()*+$,-

!"#$%&'(.+/

(012$3

!"#$%&'(.+/

(456$3

.5789+-'(.+/

()*+$,-

!"##$%&'(

)#*%+,-.$/

&:& &:% 3:&
&:;

&:<

3:&
#=>=?@=(A?=>>BA,C;3
="D!EFBA(.+/

GHH!=HG@IFJBA.1K
"=@!I?BA!"#$%&'()*+$,-

&:L,

3:%,
3:%,

&:L,

0"%1'#$/GHH!=HG@IFJAH!FMN ?!=G@=(AH!FMN

5//

2+.O0+

85- +0+ P69 P7Q R7 9S 96S 6K1 T2 O--
!"#$
%&'(

()*+$,-
,3U;

()*+$,-
,;&,

()*+$,-
,;&;

()*+$,-
,3<V

()*+$,-
,;&L

()*+$,-
,3,C

()*+$,-
,;,C

()*+$,-
,3U,

85- +0+ P69 P7Q R7 9S 96S 6K1 T2 O--

3:&

&:&

&:;V &:,V
&:<U

&:UU ;:U%

3:3&

.+7218A05/W+
;:C

3:3

M. Meyer et al., InfoVis 2010.MulteeSum

Alignment

clear

class1
class2
class3
class4
class5
class6
class7
class8

Site types

100 bp

region1

region2

region3

region4

region5

region1

region2

region3

region4

region5

Regions

InSite

year 30

WE ARE HEREassistant professor at the U in
School of Computing and SCI

postdoc at Harvard University

finish PhD in computer science

Visualization Design Lab
@ the University of Utah

Miriah Meyer
assistant professor

Sean McKenna, PhD student

Sam Quinan, PhD student

Zella Urquhart, undergraduate

Ethan Kerzner, PhD student

Nina McCurdy, PhD student

Kris Zygmunt, PhD student

Alex Bigelow, PhD student

what can we build?
technique-driven

problem-driven
what should we build?

target specific domain problems
close collaboration with domain experts

rapid, iterative prototyping
refine visualizations through user feedback

p
o

et
ry

 v
is

u
al

iz
at

io
n visualization design tools

visualizing weather forecasts

what is this course about?

17

18

fundamentals of coding
-how to analyze your algorithms

-improve efficiency
-make good coding choices

-recursion
def. Recursive loop: See “recursive loop”.

-basic sorting algorithms
-one of most studied operations in CS

-elementary data structures
-provide mechanism for what we can do with data

19

why should you care?

20

why do(n’t) algoritms matter?

-many different ways to solve a problem
-one method may take 1ms longer per item….
-computers operate on LARGE numbers of items

-millions
-billions
-… or more

-this matters, but not as much as algorithmic
complexity

22

1x1012 *(minuscule amount of time) = large amount of time

N
-we refer to unspecified integer quantities as N

-N is the problem size
-sorting an array of N numbers
-searching for an item in a set of N items
-inserting an item into a set of N items

-amount of work done for these operations usually
depends on N

-work required is a function of N

23

why DO algorithms matter?

-algorithms don’t always require N steps for N items
-could be linear, quadratic, logarithmic, …
-called the complexity of an algorithm

-N2 is much MUCH bigger than N
-what if N == 1 million?

-we only care about large N

24

sort1 versus sort2

25

Choosing an Algorithm
(small problem size)

How important is it to pick the best algorithm for the job?

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 10 20 30 40 50 60 70 80 90 100

ru
nn

in
g

tim
e

(m
ilis

ec
on

ds
)

N (size of list)

sort 1 sort 2

small N

26

medium N

27

Choosing an Algorithm
(medium problem size)

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

 100 150 200 250 300 350 400 450 500 550

ru
nn

in
g

tim
e

(m
ilis

ec
on

ds
)

N (size of list)

sort 1 sort 2

large N

28

Choosing an Algorithm
(large problem size)

As N becomes large, complexity matters!

 0

 5

 10

 15

 20

 25

 30

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ru
nn

in
g

tim
e

(m
ilis

ec
on

ds
)

N (size of list)

sort 1 sort 2

take away:
as N becomes large
complexity matters!

29

void sort1(int[] arr) {
 for(int i = 0; i < arr.length-1; i++) {
 int j, minIndex;
 for(j = i+1, minIndex = i; j < arr.length; j++)
 if(arr[j] < arr[minIndex])
 minIndex = j;
 swap(arr, i, minIndex);
 }
} so

rt
1

best case: O(N2)
average case: O(N2)

worst case: O(N2)

void sort2(int[] arr, int beg, int end) {
 if (end > beg + 1) {
 int piv = arr[beg], l = beg + 1, r = end;
 while (l < r) {
 if (arr[l] <= piv)
 l++;
 else
 swap(arr, l, --r);
 }
 swap(arr, --l, beg);
 sort2(arr, beg, l);
 sort2(arr, r, end);
}

}

so
rt

2

best case: O(N log N)
average case: O(N log N)

worst case: O(N2)

complexity matters…
the difference between
1ms and 30ms doesn’t
matter if you run the
algorithm once…

… but this is rarely the
case in computing

30

~30ms/frame for all
algorithms in a game

~1 billion Google searches
per day, every day

data structures & algorithms matter

-for large N, the difference between O(N log N) and
O(N2) is HUGE!

-is running time the only measure of efficiency?

-transitioning from cs1410 to cs2420
cs1410: correct algorithms (or just code?) to solve
problems

cs2420: correct algorithms analyzed for efficiency;
advanced structures for intuitive organization of data

31

nuts & bolts

32

33

http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/
http://www.eng.utah.edu/~cs2420/

34

-programming homework
-one assignment per week
-must be done with a partner, except this week
-all programming to be done in Java 7

-exams
-two midterms, held during class time
-one final

-labs
-held most Mondays
-practice with class topics, 1-on-1 help from TA’s
-required: they count towards your final grade!

35

-assignments

-grades

-student-to-student discussion forum

-announcements

36

37

-help sessions this Friday
-9:40am | 10:45am | 11:50am
-MEB 3225

-getting started with Eclipse
-Java refresher
-assignment posted by Thursday night

-this will not count towards your grade

good coding practice

39

the nature of programming
-requires more time than you think

-more time consuming than 4-credit hours may imply

-when is a program done?
-when it compiles?

-can the time required to code and debug a program be
reduced?

-YES! by practicing good software engineering

40

phases of software development

-requirements gathering
-read and understand assignment specs, ask questions

-planning | design | analysis
-outline how to solve a problem, determine algorithms, write
pseudocode

-construction
-write code, debug syntactic errors

-testing
-test thoroughly to find semantic errors and boundary cases

-maintance

41

using SE in assignments
-careful planning and coding can save hours of
debugging

-learn from your mistakes: anticipate errors
-misspellings, typos, off-by-one errors

-thorough, organized testing will detect more errors

-pay attention to the way you design, code, debug,
test — habits form quickly!

42

testing
-white-box

-test with knowledge of the program’s inner-workings
— from the programmer’s perspective

-unit testing, boundary analysis

-black-box
-test only with knowledge of the program’s interface
— from the user’s perspective

-stress testing

-test-first model
-write acceptance tests before writing any code

43

good coding style
-benefits the programmer and all other readers of the
program

-components:
-descriptive names (variables, methods, classes)
-clear expressions, straightforward control flow
-consistency, conventions, and language idioms
-comments!

-well-written code is often smaller, has fewer errors,
and is easier to extend and modify

44

SE in cs2420
-start practicing good coding style for its own rewards,
not just credit

-try applying SE to each assignment
-learn from development process on previous
assignments
-make necessary improvements on future
assignments

-cs3500 (Software Practice 1) will cover SE principles
more thoroughly

45

this week…

46

47

-reading
-chapters 1 & 2

-homework
-proficiency exam (do not hand in)
-student survey (due Thursday, Jan 15th at 5pm)

-no lab
-optional help sessions on Friday

